
Citation: Salah, H.; Moaaz, O.; Askar,

S.S.; Alshamrani, A.M.; Elabbasy,

E.M. Optimizing the Monotonic

Properties of Fourth-Order Neutral

Differential Equations and Their

Applications. Symmetry 2023, 15,

1744. https://doi.org/10.3390/

sym15091744

Academic Editors: Sergei D. Odintsov,

Renhai Wang and Pengyu Chen

Received: 26 May 2023

Revised: 30 August 2023

Accepted: 8 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Optimizing the Monotonic Properties of Fourth-Order Neutral
Differential Equations and Their Applications
Hend Salah 1,*, Osama Moaaz 1,2,* , Sameh S. Askar 3 , Ahmad M. Alshamrani 3 and Elmetwally M. Elabbasy 1

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
emelabbasy@mans.edu.eg

2 Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39,
00186 Rome, Italy

3 Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; saskar@ksu.edu.sa (S.S.A.); ahmadm@ksu.edu.sa (A.M.A.)

* Correspondence: hend.sci44@std.mans.edu.eg (H.S.); o_moaaz@mans.edu.eg (O.M.)

Abstract: We investigate the oscillation of the fourth-order differential equation for a class of func-
tional differential equations of the neutral type. We obtain a new single-oscillation criterion for the
oscillation of all the solutions of our equation. We establish new monotonic properties for some
cases of positive solutions of the studied equation. Moreover, we improve these properties by using
an iterative method. This development of monotonic properties contributes to obtaining new and
more efficient criteria for verifying the oscillation of the equation. The results obtained extend and
improve previous findings in the literature by using an Euler-type equation as an example. The
importance of the results was clarified by applying them to some special cases of the studied equation.
The fourth-order delay differential equations have great practical importance due to their wide
applications in civil, mechanical, and aeronautical engineering. Research on this type of equation is
still ongoing due to its remarkable importance in many fields.
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1. Introduction

Differential equations have been a significant area of pure and applied mathematics
since their establishment in the middle of the 17th century. Despite their extensive study in
the past, it remains an important field for research with the arrival of new connections with
other branches of mathematics, the fruitful interaction with applied fields, the interesting
reformulation of fundamental issues and theories in various eras, the new perspectives
in the twentieth century, and so on. Ordinary differential equations (ODEs) have several
applications in mathematics and other fields, but when they are used to explain certain
phenomena, including natural phenomena, we find that they contain delay times in their
modeling, which leads to the so-called delay differential equations (DDEs). DDEs are a type
of differential equation that takes into account time delays in the dynamics of the system.
This indicates that the delay differential equation can directly represent any event that hap-
pened in the past, which gives it the ability to capture and analyze the behavior of systems
where time delays play a critical role. Therefore, it is easy to see how these equations are
utilized in physics, engineering, biology, and other sciences (see references [1,2]). A subtype
of delay differential equations is known as neutral delay differential equations (NDDEs),
where the highest-order derivative of the unknown function appears on the solution both
with and without delay, and the development of NDDEs involves past values of the time
and state variables. The delay differential equation solution requires information about the
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state at a certain time in the past in addition to the current state. There are numerous appli-
cations for neutral delay differential equations (NDDEs) in science and engineering. They
are employed in the modeling of systems with delayed feedback, including control systems,
neural networks, chemical reactions, and populations, as highlighted in references [3,4].
One of the fundamental goals of oscillation theory is to find sufficient conditions to en-
sure that all differential equation solutions oscillate. The first monograph that dealt with
oscillation theory was that of Ladas et al. [5], which covered the results until 1984. There
has been a lot of research done in the last few years on the oscillation and the oscillatory
properties of differential equations (see references [6–10]). In recent years, there have been
numerous studies on the oscillation and non-oscillation of solutions to various kinds of
neutral functional differential equations (see references [11,12]). Numerous authors have
examined the oscillations of fourth-order differential equations, and a number of methods
for generating oscillatory criteria for these equations [13,14].

In this paper, we pay particular attention to the oscillatory behavior of solutions to the
fourth-order neutral differential equation

z(4)(s) + q(s)x(τ(s)) = 0, (1)

where s ≥ s0, z(s) = x(s) + p(s)x(σ(s)) is called the corresponding function of the solution
x. We will assume the following conditions:

(H1) p, q ∈ C([s0, ∞), [0, ∞)), 0 ≤ p(s) ≤ p0 < 1;
(H2) τ, σ ∈ C([s0, ∞),R), τ(s) ≤ s, σ(s) ≤ s and lims→∞ τ(s) = ∞, lims→∞ σ(s) = ∞.

Via a solution of (1), we mean a function x ∈ C([sx, ∞),R) for sx ≥ s0, which has
the property z ∈ C4([sx, ∞)), and satisfies (1) on [sx, ∞). We only take into account the
solutions x of (1) that satisfy Sup{|x(s)| : s ≥ T} > 0 for all T ≥ sx oscillatory.

Definition 1. If solution x for (1) is ultimately positive or negative, it is said to be non-oscillatory;
if not, it is said to be oscillatory. If all of an equation’s solutions oscillate, the equation itself is said
to be oscillatory.

One of the most important motivations for conducting this research is the importance
of neutral differential equations, which have many uses in technology and natural science.
They are often employed, for instance, in the study of distributed networks with lossless
transmission lines (see reference [15]), therefore, their qualitative characteristics are crucial.
Besides the importance of fourth-order differential equations in mathematical representa-
tions of several physical, biological, and chemical phenomena, fourth-order differential
equations are frequently encountered. Their applications include, for example, elasticity
issues, structure distortion, or soil settlement (see reference [16]). Complementary to the
motives behind this paper is the fact that one of the conditions for oscillation is to find a
condition in the form of a Kneser-type oscillation. The Kneser oscillation theorem states
that a second-order linear differential equation of the form

x′′(s) + q(s)x(s) = 0,

is oscillatory if

lim inf
s−→∞

s2q(s) >
1
4

,

where one finds that the above condition ensures the oscillatory behavior of all solutions
while there is a positive solution in the case

lim sup
s−→∞

s2q(s) <
1
4

.

Thus, such conditions are more accurate and effective for the oscillation test. Therefore,
the aim of this study was to extend the results obtained in the second- and fourth-order
delay equations to neutral. Moreover, there are a number of related results that inspired our
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study in particular; Chatzarakis et al. [17] analyzed the oscillation behavior of the following
fourth-order differential equations[

r(s)
(
[x(s) + p(s)x(τ(s))]′′′

)α]′
+

b∫
a

q(s, ν) f (x(σ(s, ν)))dν = 0, (2)

under the canonical case
∫ ∞

s0
r−1/α(ζ)dζ = ∞.

Li et al. [11] studied the oscillatory behavior of the fourth-order nonlinear differential
equation:

[r(s)z(s)](4) + q(s)x(σ(s)) = 0. (3)

Bazighifan et al. [18] study the oscillatory properties of solutions of the following equation:(
r(s)

(
z′′′(s)

)β
)′

+
j

∑
i=1

qi(s)xk(τi(s)) = 0,

for s ≥ s0, under the canonical case
∫ ∞

s0
r−1/α(ζ)dζ = ∞.

In this work, we investigate the oscillatory behavior of solutions of fourth-order differ-
ential equations with neutral-delay arguments. We establish new monotonic properties
for some cases of positive solutions of the studied equation and improve these properties
by using an iterative method. This development of monotonic properties contributes to
obtaining new and more efficient criteria for verifying the oscillation of the equation. The
solutions of any equation are classified as positive, negative, and oscillatory. Most of the
techniques used in studying oscillation to find oscillation standards are based on excluding
positive and negative solutions. In this paper, we are interested in finding conditions that
exclude positive solutions only, and this is based on the fact that every negative value of
a positive solution to the studied equation is also considered a solution, or what is called
symmetry between positive and negative solutions. As usual, Euler-type differential equa-
tions are used to highlight the improvement over the previous results from the literature.
We will organize our paper as follows. In Section 2.1, we introduce the essential notations
and the base of the method established in the sequel. In Section 2.2, we introduce the we
introduce a number of lemmas that iteratively enhance the monotonic properties of the
positive solutions. In Section 2.3, we present the main results and our main oscillations,
that is, a single-oscillation criterion for (1) based on a series of lemmas. In the end, we
highlight the importance of our results by comparing them with previous results in the
literature.

Lemma 1 ([19]). Let F ∈ Cm([s0, ∞),R+). If F(m) is eventually of one sign for all large s, say,
s1 ≥ s0, then there exists a sx ≥ s0 and an integer l, 0 ≤ l ≤ m, with m + l even for F(m)(s) ≥ 0,
or m + l odd for F(m)(s) ≤ 0 such that

l ≥ 0 implies that F(k)(s) > 0 for s ≥ sx, k = 0, 1, .......l − 1,

and l ≤ m− 1 implies that (−1)l+kF(k)(s) > 0 for s ≥ sx, k = l, l + 1, .......m− 1.

2. Main Results

In this section, we will establish some important lemmas that we will use in the proof
to illustrate the main results of the research.

Notation 1. Firstly, we will display the important notation used in this paper. Our results are
dependent on the necessity of positive β∗ stated by

β∗ = lim inf
s−→∞

τ3(s)sq(s)(1− p(τ(s)))
3!

,

also, let us define
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γ∗ = lim inf
s−→∞

τ(s)s3q(s)(1− p(τ(s)))
3!

,

δ∗ = lim inf
s−→∞

s
τ(s)

,

where {β∗, γ∗} are positive because of (H1) and (H2). We will use, in our proof, the statement that
there is a sufficiently large s1 ≥ s0, such that

τ3(s)sq(s)(1− p(τ(s)))
3!

≥ β,
τ(s)s3q(s)(1− p(τ(s)))

3!
≥ γ and

s
τ(s)

≥ δ, (4)

on [s1, ∞), where for arbitrary but fixed

β ∈ (0, β∗), γ ∈ (0, γ∗) and δ ∈ (1, δ∗),

for δ∗ > 1, and δ = δ∗ for δ∗ = 1.

In the following lemma, we classify the signs of the derivatives of non-oscillatory
solutions to study the oscillatory features of solutions.

Lemma 2. Assume that x is a positive solution of (1), then there are eventually only two possible
cases for z

Case(1) z(s) > 0, z′(s) > 0, z′′(s) > 0, z′′′(s) > 0, z(4)(s) < 0,

Case(2) z(s) > 0, z′(s) > 0, z′′(s) < 0, z′′′(s) > 0.

Proof. Let x be a positive solution of (1), we get z(4)(s) ≤ 0 from (1). By using Lemma 1,
we obtain case (1), case (2), and their derivatives.

Notation 2. We will eventually refer to the class of positive solutions whose corresponding function
to Case (1) by ρ1, and whose corresponding function to Case (2) by ρ2.

Lemma 3. Suppose that x is a positive solution of (1), then

z(4)(s) + q(s)(1− p(τ(s)))z(τ(s)) ≤ 0. (5)

Proof. Suppose that x is a positive solution of (1), it follows that there exists s1 ≥ s0 such
that x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1. From the definition of z, we obtain

x(s) ≥ z(s)− p(s)x(σ(s)) ≥ z(s)− p(s)z(σ(s))
≥ (1− p(s))z(s), (6)

with which with (1), we obtain (5). The proof is achieved.

2.1. The Properties of the Solution in ρ1

We will proceed to the first lemma, which analyses and provides details regarding the
behavior of the positive solutions ρ1.

Lemma 4. Let β∗ > 0 and x is a positive solution of (1) belonging to the class ρ1. Then, eventually:

(A1) lims→∞ z(i)(s)/s3−i converges to 0 for i = 0, 1, 2, 3;
(A2) z′′(s)/s is decreasing;
(A3) z′(s)/s2 is decreasing;
(A4) z(s)/s3 is decreasing;
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Proof. Suppose x to the class ρ1, then for s1 ≥ s0 there is x(s) > 0, x(τ(s)) > 0 and
x(σ(s)) > 0 for s ≥ s1.

(A1): Since we have z′′′(s), which is a non-increasing positive function, then z′′′(s) −→
` ≥ 0 as s −→ ∞, if l > 0 then z′′′(s) ≥ l > 0, so

z(s) ≥ `(s− s1)
3

3!
, (7)

for s ≥ s2 ≥ s1. From (4) and (5), we see that

z(4)(s) ≤ − 3!β
τ3(s)s

z(τ(s)). (8)

From (7) into (8), we get

z(4)(s) ≤ − β`(τ(s)− s1)
3

τ3(s)s
. (9)

It is obvious that there exists s3 > s2 such that (τ(s)− s1)
3 ≥ 1

2 τ3(s) for s ≥ s3, so we find
from (9)

−z(4)(s) ≥ β`

2s
,

for s ≥ s3. By integrating the above inequality from s3 to s, we obtain

z′′′(s3) ≥ z′′′(s) +
β`

2
ln

s
s3

(10)

≥ `+
β`

2
ln

s
s3
→ ∞ as s→ ∞,

We find that there is a contradiction, therefore ` = 0. We see when z ∈ ρ1 that z(s) −→ ∞,
z′(s) −→ ∞ as s → ∞ , and also z′′(s) > 0 for i = 2, is increasing such that z′′(s)/s −→ 0
as s→ ∞. Then, according to L’Hôpital’s rule, we find that (A1) is satisfied.

(A2): Since z′′′(s) is non-increasing in ρ1, we see that

z′′(s) = z′′(s1) +
∫ s

s1

z′′′(ζ)dζ ≥ z′′(s1) + z′′′(s)(s− s1) ≥ tz′′′(s),

where by (A1) there is s4 > s3 such that z′′(s1) ≥ s1z′′′(s) for s ≥ s4. So(
z′′(s)

s

)′
=

z′′′(s)s− z′′(s)
s2 < 0,

for s ≥ s4, then z′′(s)/s is decreasing, which proves (A2).
(A3): From (A1) and (A2), z′′(s)/s decreases and tends to zero. Then, we find

z′(s) = z′(s4) +
∫ s

s4

z′′(ζ)dζ ≥ z′(s4) +
z′′(s)

s

(
s2

2
−

s2
4
2

)

= z′(s4) +
z′′(s)s

2
− z′′(s)s4

2t
>

z′′(s)s
2

, s ≥ s5,

for s5 > s4. Hence (
z′(s)

s2

)′
=

z′′(s)s− 2z′(s)
s3 < 0,

for s ≥ s5. We arrive at (A3).
(A4): Likewise, since z′′(s)/s2 is decreasing and tends to zero, we obtain

z(s) = z(s5) +
∫ s

s5

z′(ζ)dζ ≥ z(s5) +
z′(s)

s2

(
s3

3
−

s3
5
3

)
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=
z′(s)s

3
, s ≥ s6,

for s6 > s5, so (
z(s)
s3

)′
=

z′(s)s− 3z(s)
s4 < 0,

for s ≥ s6. That proves (A4).
As a result, the proof of the lemma is complete.

In this lemma, we will establish some additional properties of the behavior of positive
solutions in ρ1

Lemma 5. Assume x is a solution a positive of (1) belonging to the class ρ1 and let β∗ > 0. Then,
for s large enough and every β ∈ (0, β∗):

(A5) z′′(s)/s1−β is decreasing;
(A6) β < 1;
(A7) lims→∞ z(i)(s)/s3−i−β = 0, i = 0, 1, 2;
(A8) z′(s)/s2−β is decreasing;
(A9) z(s)/s3−β is decreasing.

Proof. Assume x is a positive solution of (1) to the class ρ1, then for s1 ≥ s0 there is x(s) > 0,
x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1, and (A1)–(A2) of Lemma 4 holds for s ≥ s1.

(A5): Define the positive function

ω(s) = z′′(s)− sz′′′(s), (11)

by differentiating ω(s) and employing (8), in addition to having z(s)/s3 decrease in (A4),
we get

ω′(s) = −sz(4)(s) ≥ 3!β
z(τ(s))
τ3(s)

> 3!β
z(s)
s3 . (12)

From (A4) and (A3) respectively, in the above inequality, we see

ω′(s) > 2β
z′(s)

s2 > β
z′′(s)

s
. (13)

By integrating the above inequality from s1 to s, and using (A1) and (A2), we obtain

ω(s) > ω(s1) + β
∫ s

s1

z′′(ζ)
ζ

dζ

≥ ω(s1) + β
z′′(s)

s

∫ s

s1

dζ,

for s ≥ s2, which is
ω(s) ≥ βz′′(s),

it follows from (11) that (1− β)z′′(s) ≥ sz′′′(s) for s ≥ s2, and hence(
z′′(s)
s1−β

)′
< 0, s ≥ s2. (14)

We observe that z′′(s)/s1−β is decreasing, thus (A5) holds.
(A6): Since z′′(s) is increasing, and from (A5) we find that β < 1, (A6) thus holds.
(A7): For i = 2, to display that

lim
s→∞

z(′′)(s)
s1−β

= 0, (15)
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it suffices to prove that there is ε > 1 such that, for large s,(
z′′(s)
s1−εβ

)′
< 0, (16)

which if z′′(s)
s1−β ≥ c > 0, then

z′′(s)
s1−β−β(ε−1)

≥ csβ(ε−1) → ∞, as s→ ∞.

We notice that there is a contradiction. We find that by using (14) for any η ∈ (2− β/2, 1),
then there is s3 > s2 large enough to obtain

z′(s) = z′(s2) +
∫ s

s2

z′′(ζ)ζ1−β

ζ1−β
dζ ≥ z′(s2) +

z′′(s)
s1−β

∫ s

s2

ζ1−βdζ (17)

= z′(s2) +
z′′(s)
s1−β

(
s2−β − s2−β

2

)
2− β

>
kz′′(s)s
2− β

,

for s ≥ s3, by employing this in (13), we have

ω′(s) > 2β
z′(s)

s2 >
2βkz′′(s)
(2− β)s

.

Integrating the above inequality from s3 to s and from (A1) this forms

ω(s) > ω(s3) +
2βkz′′(s)
(2− β)s

(s− s3) >
2βµ

(2− β)
z′′(s),

for s ≥ s4, from (11) in the above inequality; for s4 > s3 we arrive at(
1− 2βk

(2− β)

)
z′′(s) > −sz′′′(s),

so, from this, we can see that (16) is satisfied with

ε =
2k

(2− β)
> 1.

For i = 0, 1 the other limits in (A7) are obtained from (15) and from using L’Hôpital’s rule.
(A8): From (16) into (17), we see

z′(s) ≥ z′(s2) +
z′′(s)s
(2− β)

−
z′′(s)s2−β

2
s1−β(2− β)

>
z′′(s)s
(2− β)

,

for s ≥ s5, and for s5 > s4 we arrive at(
z′(s)
s2−β

)′
=

sz′′(s)− (2− β)z′(s)
s3−β

< 0,

for s ≥ s5, when it is obvious that z′(s)/s2−β is decreasing , then (A8) holds.
(A9): We notice from (A7) and (A8) that z′(s)/s2−β is decreasing and tends to zero,

then

z(s) ≥ z(s5) +
∫ s

s5

z′(ζ)ζ2−β

ζ2−β
dζ ≥ z(s5) +

z′(s)
s2−β

(
s3−β − s3−β

5

)
3− β
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= z(s5) +
z′(s)s
3− β

−
z′(s)s3−β

5
s2−β(3− β)

>
z′(s)s
3− β

,

for s ≥ s6, and for s6 > s5, we obtain(
z(s)
s3−β

)′
=

sz′(s)− (3− β)z(s)
s4−β

< 0,

for s ≥ s6. It follows that (A9) holds, thus Lemma 5 is proved.

The next lemma is a result of (A9).

Lemma 6. Assume that β∗ > 0 and δ∗ = ∞ then ρ1 = ∅.

Proof. Suppose the opposite is true and assume x is a positive solution of (1) to the class
ρ1; then, for s1 ≥ s0 there is x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1. From (4) in
(12), and taking into consideration (A9), we get

ω′(s) = −sz(4)(s) ≥ 3!β
z(τ(s))

τ3−β(s)τβ(s)
> 3!β

z(s)
s3

(
s

τ(s)

)β

,

which is

ω′(s) > 3!βδβ z(s)
s3 .

Furthermore, from (A9) and (A8), respectively, we obtain

ω′(s) > 3!βδβ z′(s)
(3− β)s2 > 3!βδβ z′′(s)

(3− β)(2− β)s
.

By integrating the above inequality from s1 to s and from (A1) and (A2) in Lemma 5, with
the definition of ω(s) in (11) for s2 ≥ s1, we arrive at(

1− 3!βδβ

(3− β)(2− β)

)
z′′(s) > sz′′′(s),

for s ≥ s2, where δ can be arbitrarily large, we chose it in such a way that

δβ >
(3− β)(2− β)

3!β
.

This indicates that −z′′(s) > sz′′′(s), where z′′(s) and z′′′(s) are positive, this causes a
contradiction and completes the proof of Lemma 6.

From (A10) and Lemma 6 we can assume that δ∗ < ∞, so ρ1 6= ∅.
The following lemma can be considered as an iterative version of Lemma 5.
Let us define a sequence {βn} (that is needed in the next lemma) as follows:

(J)0 = (J)∗, (J)m =
3!(J)0δ

(J)m−1
∗(

3− (J)m−1
)(

2− (J)m−1
)(

1− (J)m−1
) , (18)

for m ∈ N, where (J) denotes β or γ.
By induction, it is simple to demonstrate that, if (J)i < 1 for i = 1, 2, ..., m, then (J)m+1

holds, such that
(J)m+1
(J)m

= `(J)m
> 1, (19)

where the definitions of `(J)m
is as follows:
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`(J)0
=

(J)1
(J)0

=
3!δ(J)0∗

(3− (J)m)(2− (J)m)(1− (J)m)
> 1,

`(J)m
=

(J)m+1
(J)m

=
δ
(J)m∗
(
3− (J)m−1

)(
2− (J)m−1

)(
1− (J)m−1

)
δ
(J)m−1
∗ (3− (J)m)(2− (J)m)(1− (J)m)

> 1, m ∈ N.

We need to specify the sequence
{

ε(J)n

}
as follows:

ε(J)0
=

(J)
(J)∗

< 1,

ε(J)m
= ε(J)0

δ
ε(J)m−1

(J)m−1
(
3− (J)m−1

)(
2− (J)m−1

)(
1− (J)m−1

)
δ
(J)m−1
∗

(
3− ε(J)m−1

(J)m−1

)(
2− ε(J)m−1

(J)m−1

)(
1− ε(J)m−1

(J)m−1

) , m ∈ N. (20)

The value of ε(J)n
is arbitrary and determined by the value of β, where β is defined in (4). It

is simple to show that
lim

(J)−→(J)∗
ε(J)0

= 1,

lim
(δ−→δ∗)((J)−→(J)∗)

ε(J)m+1
= 1.

Lemma 7. Assume x is a positive solution of (1) belonging to the class ρ1, and let β∗ > 0. Then,
for s large enough and εβm ∈ (0, 1)

(A10) m z′′(s)/s1−β̃m is decreasing;
(A11) m β̃m < 1;
(A12) m lims→∞ z(i)(s)/s3−i−β̃m = 0, i = 0, 1, 2;
(A13) m z′(s)(s)/s2−β̃m is decreasing;
(A14) m z(s)/s3−β̃m is decreasing,

where β̃m = εβm βm

Proof. Assume x is a positive solution of (1) belonging to the class ρ1; then, for s1 ≥ s0
there is x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1. This Lemma will be proved by
induction on m. For m = 0, it holds from Lemma 5 with β = β̃0. After that, assume that
(A10)m−(A13)m hold for m ≥ 1 and s ≥ sm ≥ s1. We will display that they all hold m + 1.

(A10)m+1; by using (4) and (A8) in (12) we see

ω′(s) ≥ 3!β̃0
z(τ(s))
τ3(s)

= 3!β̃0
z(τ(s))

τ3−β̃m(s)τ β̃m(s)

≥ 3!β̃0
z(s)
s3

(
s

τ(s)

)β̃m

≥ 3!β̃0δβ̃m
z(s)
s3 ,

from (A14)m and (A13)m we obtain

ω′(s) >
3!β̃0δβ̃m z′(s)(

3− β̃m
)
s2

>
3!β̃0δβ̃m z′′(s)(

3− β̃m
)(

2− β̃m
)
s

. (21)

By integrating the above inequality from sm to s and from (A10)m and (A12)m, we find that
there exists s′m > sm such that
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ω(s) ≥ ω(sm) +
3!β̃0δβ̃m(

3− β̃m
)(

2− β̃m
) ∫ s

sm

z′′(ζ)
ζ1−β̃m ζ β̃m

dζ

≥ ω(sm) +
3!β̃0δβ̃m z′′(s)(

1− β̃m
)(

3− β̃m
)(

2− β̃m
)
s1−β̃m

(
s1−β̃m − s1−β̃m

m

)
>

3!β̃0δβ̃m(
1− β̃m

)(
3− β̃m

)(
2− β̃m

) z′′(s),

which is
ω(s) > β̃m+1z′′(s),

from the definition of ω(s), it follows that(
1− β̃m+1

)
z′′(s) > sz′′′(s), (22)

and we obtain that (
z′′(s)

s1−β̃m+1

)′
< 0. (23)

That is the prove of (A10)m+1.
(A11)m+1: We have z′′(s) increasing and, from (A10)m+1, we arrive at proving (A11)m+1.
(A12)m+1: To prove this case, it suffices to prove that there is ε > 1, as done in the case

m = 0, such that for i = 2 (
z(i)(s)

s3−i−εβ̃m+1

)′
< 0. (24)

From (23), we find that there is s′′m > s′m sufficiently large such that

z′(s) = z′
(
s′m
)
+
∫ s

s′m

z′′(ζ)
ζ1−β̃m+1

ζ1−β̃m+1 dζ

≥ z′
(
s′m
)
+

z′′(s)
s1−β̃m+1

∫ s

s′m
ζ1−β̃m+1 dζ

= z′
(
s′m
)
+

z′′(s)
s1−β̃m+1

(
s2−β̃m+1 − (s′m)

2−β̃m+1
)

(
2− β̃m+1

) , (25)

which is
z′(s) >

η

2− β̃m+1
z′′(s)s, s ≥ s′′m,

for any η ∈ (0, 1). If we merge the above inequality with (21) we obtain

ω′(s) >
3!β̃0δβ̃m η(

3− β̃m
)(

2− β̃m+1
) z′′(s)

s
,

by integration from s′′m to s and from (A12)m we receive

ω(s) > ω
(
s′′m
)
+

3!β̃0δβ̃m η(
3− β̃m

)(
2− β̃m+1

) ∫ s

s′′m

z′′(ζ)
ζ1−β̃m ζ β̃m

dζ

>
3!β̃0δβ̃m η(

1− β̃m
)(

3− β̃m
)(

2− β̃m+1
) z′′(s)

=
η
(
2− β̃m

)(
2− β̃m+1

) β̃m+1z′′(s)

= εβ̃m+1z′′(s),
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for s ≥ s′′′m > s′′m. Since β̃m < β̃m+1, we can choose η such that ε > 1, from (A2) and the
definition of ω we see that (16) is satisfied; the other limits are the same as those for m = 0.

(A13)m+1: By using (A12)m+1 in (25), we obtain(
2− β̃m+1

)
z′(s) > z′′(s)s.

Then, (A13)m+1 is satisfied.
(A14)m+1: From (A7) and (A8), we obtain

z(s) > z
(
s′′′m
)
+
∫ s

s′′′m

z′(ζ)
ζ2−β̃m+1

ζ2−β̃m+1 dζ

>
z′(s)(

3− β̃m+1
)
s2−β̃m+1

(
s3−β̃m+1 −

(
s′′′m
)3−β̃m+1

)
>

z′(s)s
3− β̃m+1

,

which indicates (A14)m+1 holds and submits the lemma’s proof.

The following lemma can be easily deduced from the aforementioned arguments.

Lemma 8. Suppose that δ∗ < ∞ and

lim inf
s−→∞

τ3(s)sq(s) > $0, (26)

where

$0 =
max {c(1− c)(2− c)(3− c)δ−c

∗ : 0 < c < 1}
(1− p0)

. (27)

Then ρ1 = ∅.

Proof. Suppose the opposite is true, that x ∈ ρ1. We claim that

βm−1 < 1, m ∈ N. (28)

From the case (A11)m we have β̃m < 1. Since εβm ∈ (0, 1) can be picked arbitrarily, set
εβm > 1/`βm , where `βm is given by (19). Then

1 > β̃m = εβm`βm βm−1 > βm−1,

which supports the claim. From (28) we conclude that the sequence {βm}∞
m=0 is increasing

and bounded from above, which is defined by (18), which means that

lim
s−→∞

βm = c,

where c ∈ (0, 1) is a root of the following equation:

c(1− c)(2− c)(3− c)δ−c
∗

(1− p0)
= 3!β∗. (29)

However, from (26) we find that (29) has no positive solutions. As a result, ρ1 = ∅, which
is the end of the proof and the Lemma.

2.2. The Properties of the Solution in ρ2

In this section, we will show results similar to the previous results of the section of
solutions in the class ρ2.
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Lemma 9. Assume x is a positive solution of (1) relating to the class ρ2 and let γ∗ > 0. Then, for
s large enough:

(A15) lims→∞ z(i)(s)/s1−i converges to 0 for i = 0, 1;
(A16) z(s)/s is decreasing.

Proof. Suppose x is a positive solution of (1) belonging to the class ρ2, then, for s1 ≥ s0,
there is x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1.

(A15): As a result of the fact that z′(s) is decreasing positive function, z′(s) −→ ` ≥ 0
as s −→ ∞, if l > 0 then z′(s) ≥ l > 0, so

z(s) ≥ `(s− s1) > `s/3, (30)

for s ≥ s2 ≥ s1. By (4) and (5) we obtain

−z(4)(s) ≥ 3!γ
τ(s)s3 z(τ(s)). (31)

From (30) in the above inequality we obtain

−z(4)(s) ≥ 2γ`/s3,

we have obtained this by integrating twice from s to ∞

−z′′(s) ≥ γ`

s
.

Integrating from s2 to s we arrive at

z′(s2) ≥ z′(s) + γ` ln
s2

s
−→ ∞ as s −→ ∞,

there is, as we found, a contradiction. Therefore ` = 0. We can show that (A15) is satisfied
by applying L’Hôpital’s rule.

(A16): we have z′(s) non-increasing and by (A15) we see that

z(s) = z(s1) +
∫ s

s1

z′(ζ)dζ ≥ z(s1) + z′(s)(s− s1) ≥ tz′(s),

for s ≥ s3 > s1, where s3 is sufficiently large such that z(s1)− s1z′(s) > 0 for s ≥ s3. Then(
z(s)

s

)′
=

sz′(s)− z(s)
s2 ,

for s ≥ s3, the completion of the proof follows.

Lemma 10. Assume x is a positive solution of (1) belonging to the class ρ2 and let γ∗ > 0. Then,
for s large enough and any γ ∈ (0, γ∗):

(A17) z(s)/s1−γ is decreasing;
(A18) γ < 1;
(A19) lims→∞ z(s)/s1−γ = 0;
(A20) z(s)/sγ is non-decreasing.

Proof. Suppose x is a positive solution of (1) belonging to the class ρ2, then for s1 ≥ s0
there is x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1.

(A17): From (A16) we have z(s)/s, which is decreasing; in (31) we obtain

−z(4)(s) ≥ 3!γ
τ(s)s3 z(τ(s)) ≥ 3!γ

z(s)
s4 ,
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by integrating from s to ∞ twice such that z(s) is increasing, it goes as follows:

−z′′(s) ≥ γ
z(s)
s2 . (32)

Let us define a positive function

µ(s) = z(s)− sz′(s),

by differentiating and from (32) we find

µ′(s) = −sz′′(s) ≥ γ
z(s)

s
. (33)

Integrating, again, s1 to s, and we have z(s)/s decreasing and tending to zero, and we see

µ(s) ≥ µ(s1) + γ
∫ s

s1

z(ζ)
ζ

dζ

≥ µ(s1) + γ
z(s)

s
(s− s1) > z(s)γ, (34)

for s ≥ s2, where s2 > s1 is sufficiently large such that µ(s1)− z(s)s1/s > 0 for s ≥ s2.
From the definition of µ(s) we obtain

(1− γ)z(s) ≥ sz′(s),

and (
z(s)
s1−γ

)′
=

sz′(s)− (1− γ)z(s)
s2−γ

< 0, (35)

s ≥ s2, then (A17) holds.
(A18): This simply implies from (A17), and from the case that x is increasing.
(A19): The proof is identical to the proof for class ρ1, and it is sufficient to show that(

z(s)
s1−εγ

)′
< 0. (36)

For ε > 1, we can derive from (35) into (34), finding that there exists s3 ≥ s2, such that

µ(s) ≥ µ(s2) + γ
∫ s

s2

z(ζ)
ζ1−γζγ

dζ (37)

≥ µ(s2) +
γz(s)

(1− γ)s1−γ

(
s1−γ − s1−γ

2

)
>

ηγ

(1− γ)
z(s), s ≥ s3,

for any η ∈ (1− γ, 1), from that we deduce that(
1− ηγ

(1− γ)

)
z(s) ≥ sz′(s).

It is now obvious that (36) holds with ε = η/(1− γ) > 1.
(A20): By integrating (32) from s to ∞ we see

z′(s) ≥ γ
∫ ∞

s

z(s)
s2 ≥ γ

z(s)
s

,

and so (
z(s)
sγ

)′
≥ 0,

which is proof that z(s)/sγ is increasing. The lemma’s proof is now accomplished.
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Lemma 11. Assume that γ∗ > 0 and δ∗ = ∞ then ρ2 = ∅.

Proof. Suppose x is a positive solution of (1) belonging to the class ρ2, then for s1 ≥ s0
there is x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1. From (4) into (31), and taking
into account (A17), we arrive at

−z(4)(s) ≥ 3!γ
s3

z(τ(s))
τ1−γ(s)τγ(s)

≥ 3!γz(s)
s4

(
s

τ(s)

)γ

≥ 3!γδγz(s)
s4 .

By twice integrating from s to ∞, with the assumption that x is increasing, we obtain

−z′′(s) ≥ γδγz(s)
s2 . (38)

From the above inequality into (33)

µ′(s) = −sz′′(s) ≥ γδγz(s)
s

.

Using integration as in (34), and replacing γ by γδγ, we obtain

(1− γδγ)z(s) ≥ sz′(s),

where we can choose δ in such a way that it can be arbitrarily large, so that δγ > 1/γ, this
shows −z(s) = sz′(s)—a contradiction. This illustrates the lemma.

Now, from Lemma 10, we obtain an iterative.

Lemma 12. Assume x is a positive solution of (1) belonging to the class ρ2 and let γ∗ > 0. Then,
for s large enough and any εγm ∈ (0, 1):
(A21) m z(s)/s1−γ̃m is decreasing;
(A22) m γ̃m < 1;
(A23) m lims→∞ z(s)/s1−γ̃m = 0;
(A24) m z(s)/sγ̃m is non-decreasing;
where γ̃m = εγm γm.

Proof. Assume x is a positive solution of (1) belonging to the class ρ2, then for s1 ≥ s0 there
is x(s) > 0, x(τ(s)) > 0 and x(σ(s)) > 0 for s ≥ s1 by induction on m. For m = 0, it holds
from Lemma 5 that γ = γ̃0. After that, assume that (A21)m−(A24)m hold for m ≥ 1 and
s ≥ sm ≥ s1. We will show that (A21)m+1 holds.

(A21)m+1: From (31) and (A21)m we find

−z(4)(s) ≥ 3!γ̃0

s3
z(τ(s))

τ1−γ̃m(s)τγ̃m(s)
≥ 3!γz(s)

s4

(
s

τ(s)

)γ̃m

≥ 3!γ̃0δγ̃m z(s)
s4 .

Integrate the above inequality from s to ∞, and taking into account that z(s)/sγ̃m is increas-
ing, yield

z′′′(s) ≥ 3!γ̃0δγ̃m

∫ s

s2

z(ζ)
ζ4−γ̃m ζ γ̃m

dζ

≥ 3!γ̃0δγ̃m z(ζ)
sγ̃m

∫ s

s2

dζ

ζ4−γ̃m
≥ 3!γδγ̃m z(s)

(3− γ̃m)s3 .
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Repeating this process, we obtain

z′′(s) ≥ 3!γδγ̃m z(s)
(3− γ̃m)(2− γ̃m)s2 ,

By incorporating this into (33), we have

µ′(s) = −sz′′(s) ≥ 3!γδγ̃m z(s)
(3− γ̃m)(2− γ̃m)s

,

By integrating from sm to s and from (A21)m and (A23)m, we find

µ(sm) ≥ µ(s) +
3!γ0δγ̃m

(3− γ̃m)(2− γ̃m)

∫ s

sm

z(ζ)
ζ1−γ̃m ζ γ̃m

dζ

≥ 3!γ0δγ̃m z(s)
(3− γ̃m)(2− γ̃m)(1− γ̃m)s1−γ̃m

(
s1−γ̃m − s1−γ̃m

m

)
≥ γ̃m+1z(s), s ≥ s′m,

That is the proof of (A21)m+1. The other parts’ proofs of the lemma are the same as those in
the case where m = 0.

Lemma 13. Suppose that δ∗ < ∞ and

lim inf
s−→∞

τ(s)s3q(s) > $0, (39)

where

$0 =
max

{
c(1− c)(2− c)(3− c)αc−3}

(1− p0)
, (40)

for 0 < c < 1, then ρ2 = ∅.

Proof. The proof is similar to the proof of Lemma 8 and defines {γm} as in (18).

Now, in the next theorem, we offer the fundamental result in this work by combining
the results from the previous two sections.

2.3. Oscillation Results

Theorem 1. Suppose that

lim inf
s−→∞

τ3(s)sq(s) >
{

0 f or δ∗ = ∞,
$0 f or δ∗ < ∞,

(41)

where

$0 =
max {c(1− c)(2− c)(3− c)δ−c

∗ }
(1− p0)

,

where 0 < c < 1, then (1) is oscillatory.

Proof. From (41) observe that β∗ > 0, and since

lim inf
s−→∞

τ3(s)sq(s) ≤ lim inf
s−→∞

τ(s)s3q(s),

we find that γ∗ > 0. Now, if δ∗ = ∞, then Lemmas 6 and 11 imply that ρ2 = ρ1 = ∅.
For δ∗ < ∞, from Lemmas 8 and 13, the same conclusion is derived. This illustrates the
theorem.
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Corollary 1. Let τ(s) = αs with 0 < α ≤ 1. If

lim inf
s−→∞

s4q(s) >
max

{
c(1− c)(2− c)(3− c)αc−3 : 0 < c < 1

}
(1− p0)

,

then (1) is oscillatory.

2.4. Application and Discussion

In the next section, we provide an example to highlight our study results.

Example 1. Now, consider the fourth-order Euler delay differential equation

(x(s) + p0x(σ(s)))(4)(s) +
q0δ3
∗

s4 x
(

1
δ∗

s
)
= 0, (42)

for s > 1, where p0 > 0, q0 > 0 and δ∗ ≥ 1, By applying condition (41), we obtain

lim inf
s−→∞

(
s
δ∗

)3
s
(

q0δ3
∗

s4

)
>

max {c(1− c)(2− c)(3− c)δ−c
∗ }

(1− p0)
,

which is,

q0 >
max {c(1− c)(2− c)(3− c)δ−c

∗ }
(1− p0)

, (43)

where 0 < c < 1. Thus, by applying Theorem 1, we can guarantee that all solutions of Equation (42)
are oscillatory if condition (43) is satisfied.

Remark 1. If we consider the special case p0 = 0.5 and δ∗ = 2, the condition (43) reduces to

q0 > 1.785. (44)

By checking the result of the oscillation constants for Equation (42) in references [20] and [21],
respectively, with p0 = 0.5 and δ∗ = 2, we see

q0 >
96

e ln 2
' 50.951, (45)

and
q0 >

82
9
' 9.111. (46)

Example 2. Consider the NDE as the following:(
x(s) +

3
4

x
(

5s
2

))(4)
(s) +

(4)3q0

s4 x
( s

4

)
= 0, (47)

where s > 1, p0 = 3
4 , q(s) = (4)3q0

s4 and δ∗ = 4, σ(s) = 5s
2 . To check the oscillation of

Equation (47), we will apply condition (41) of Theorem 1 in the previous section and see that

lim inf
s−→∞

( s
4

)3
s
(

64q0

s4

)
>

max {c(1− c)(2− c)(3− c)4−c}
(1− p0)

,

which is
q0 > 2.561. (48)

Applying results in both [22] and [23] to Equation (47), we get, respectively,

q0 > 832, (49)
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and
q0 >

675
14e ln 10

' 8.627. (50)

We notice that the condition (48) improves the condition (49) and (50). It also improves results (45)
and (46).

Remark 2. It can be easily observed that condition (44) and (48) improve conditions (45), (46),
(49), and (50). In addition to this improvement, there is something that distinguishes our results
from other results in [20] and [21] is that their results require constraints τ(s) < s, τ′(s) ≥ 0 but
Theorem 1 does not need them. This leads to the conclusion that Theorem 1 improves many previous
results in the literature, even without the usual restrictive suppositions on the diverging argument.

Remark 3. We make a simulation experiment for Example 1, by considering the ODE of (42)

(x(s) + p0x(s))(4)(s) +
q0δ3
∗

s4 x(s) = 0, (51)

where p0 = 0.5, q0 = q0δ3
∗

s4 and δ∗ = 1. By using Theorem 1, Equation (51) is oscillatory if

lim inf
s−→∞

(s)3s
( q0

s4

)
>

max {c(1− c)(2− c)(3− c)}
(1− p0)

,

which is

q0 >
max{c(1− c)(2− c)(3− c)}

(1− p0)
, where 0 < c < 1. (52)

3. Conclusions

The oscillatory behavior of the solutions of the equation of the neutral type was
studied, where the positive solutions of the equation were classified as ρ1 and ρ2, and then
we studied the monotonic properties of these positive solutions by providing a series of
lemmas for each case to iteratively improve the monotonicity features of non-oscillatory
solutions. We observe that the main difference between ρ1 and ρ2 is the change of the
second derivative of the function z, but this simple change constitutes a change in many
of the monotonic and asymptotic properties. For example, in case ρ1, we can get new
monotonic properties of the first, second, and third derivatives of the function z, while
in case ρ2 we can only get an ordinal behavior of z; there is no change except for the
function z only. By using the iterative method based on these characteristics, we have
provided a single criterion to eliminate the positive solutions to our equation that ensures
the oscillatory nature of the solutions. The example improved upon previous results and
showed the importance of the new properties. The most important thing that distinguishes
our results is that they can be applied without some of the restrictions that other results
require.
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