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Abstract: The Burgers–Huxley equation is a partial differential equation which is based on the Burg-
ers equation, involving diffusion, accumulation, drag, and species generation or sink phenomena.
This equation is commonly used in fluid mechanics, air pollutant emissions, chloride diffusion in
concrete, non-linear acoustics, and other areas. A general methodology is proposed in this work to
solve the mentioned equation or coupled systems formed by it using the network simulation method.
Additionally, the implementation of the most common possible boundary conditions in different
engineering problems is indicated, including the Neumann condition that enables symmetry to be
applied to the problem, reducing computation times. The method consists mainly of establishing an
analogy between the variables of the differential equations and the electrical voltage at a central node.
The methodology is also explained in detail, facilitating its implementation to similar engineering
problems, since the equivalence, for example, between the different types of spatial and time deriva-
tives and its correspondence with the electrical device is detailed. As an example, several cases of
both the equation and a coupled system are solved by varying the boundary conditions on one side
and applying symmetry on the other.

Keywords: mathematical modelling; simulation; network simulation method; coupled differential
equations; engineering science; symmetry

1. Introduction

The Burgers–Huxley equation is a partial differential equation [1,2], based on the
Burgers equation, which involves accumulation, diffusion, drag, and species generation or
sink phenomena. This or similar equations [3–6], together with its approximate solutions,
are common in many areas of science and engineering, such as fluid mechanics [7,8], heat
transmission [9–14], air pollutant emissions [15–17], chloride diffusion in concrete [18–24],
nonlinear acoustics [25,26], optical fibres [27–32], and other areas. For example, pollutant
emission problems include phenomena of accumulation, drag, diffusion, and in some
cases chemical reactions [33]. Likewise, the diffusion problems of chlorides in reinforced
concrete include all these phenomena of accumulation, drag, and diffusion [18], so all these
problems could be solved through a common methodology with minor variations.
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Thus, proposing a methodology for solving this equation or coupled systems of
equations formed by variants of it is important due to its widespread applicability, since, as
indicated above, numerous problems in engineering or science are variants of it.

On the other hand, in order to try to provide a general methodology for solving this
type of problem, it is not enough to merely indicate how the equation should be solved, but
also how the most common boundary conditions should be implemented. Therefore, the
way to implement boundary conditions, such as Neumann’s or Dirichlet’s, among others,
is indicated.

One of the most important of these conditions is the symmetry condition, whose
importance lies in the fact that in 1D, 2D, and 3D problems it enables the study medium
to be reduced and, thus, shortens the simulation time. Its applicability stands out in
numerous engineering problems where there is symmetry, such as in cylindrical or square
columns, either for the study of heat transmission, chloride diffusion, etc., or its application
to different types of storage tanks where several phenomena can be studied [34–36].

Thus, as indicated above, having a methodology for solving this equation, or a system
of coupled equations formed by variants of it, can prove extremely useful, as it facilitates
the resolution of different problems in science and engineering.

In the present paper, a resolution methodology is proposed using the Network Simula-
tion Method, NSM, which will indicate how this equation, or its variants, should be solved
and how the boundary conditions should be implemented. This method has been chosen
because NSM has been used efficiently in numerous science and engineering problems,
including heat transfer [37–39], chloride diffusion [40], soil consolidation [41], etc.

In this way, the main purpose of the present article is to propose a resolution method-
ology, applying NSM, which is valid for solving symmetric or asymmetric problems that
include the different variants of the Burgers–Huxley equation, or coupled systems of equa-
tions of it, with the most common boundary conditions for this type of problem. Thus,
the novelty of this paper lies in it presenting a clear and concise methodology that allows
science and engineering problems which include a partial differential equation or coupled
systems of the same that imply phenomena of diffusion, drag, accumulation, and genera-
tion or decay of species to be easily solved, with variations of the most common boundary
conditions, as well as different initial conditions.

The paper is structured as follows: Section 1 contains the introduction; then, the
fundamentals of the network simulation method are explained in Section 2. The following
section details the different mathematical models related to the Burgers–Huxley equation
so that their network models are built in Section 4 with what is specified in Section 2. The
results of different case studies are shown in Section 5. Finally, the conclusions of the paper
are presented in Section 6.

2. Network Simulation Method

The network simulation method is used to solve complex systems with multiple vari-
ables, coupled and with non-linear relationships in science and engineering. The technique
is based on building an electrical circuit, whose nodes are interconnected, representing the
study problem, where the variables of interest (temperature, velocity, etc.) are the voltage
at the central node [42].

The network simulation method has been used in numerous problems including the
simulation of biological, social, and economic systems, among others. In engineering,
the network method has been efficiently applied to electrochemical reactions [39], heat
transport and coupled flow problems [13,38], membranes, soil mechanics [41], and oxida-
tion problems [42], among others. One of the main characteristics of the method is that it
requires thorough knowledge of the problem to be studied when constructing the network
circuit. Thus, the geometry of the problem must be taken into account (Cartesian, spherical,
cylindrical, 1D, 2D, and 3D coordinates, etc.), the precision of the necessary meshing, the
precision parameters of the circuit resolution software, etc., in order to avoid obtaining
erroneous results or the system not converging.
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Thus, the main advantages of the method are as follows:

• It allows us to work with ideal electrical components.
• There is an almost intuitive relationship between the addends of the equation and the

electrical components.
• It has extensive component libraries available.
• It provides very precise solutions thanks to the fact that the software includes trape-

zoidal integration and Gear’s fixed time methods, reducing the local truncation error
and allowing model convergence.

• It requires a relatively short execution time.
• It only requires a limited number of software programming rules.
• The software parameters, such as RELTOL and VNTOL, allow us to improve the

precision of the solutions and the convergence of the system.

The main disadvantage of the method is that in very complex systems a very fine
mesh is required, as occurs with any other similar simulation methodology, in order to
obtain precise solutions so that the system can converge.

If we compare the method with other similar software, the methodology has turned
out to be more precise [43], or the same results have been obtained as with commercial
software [42], the disadvantage being that the latter only allow the problems for which
they are programmed to be solved. Finally, the same results have been obtained as those
obtained experimentally [42]. Thus, the main advantage of the methodology compared to
other software is that it enables us to solve the study problem with precise results using a
few straightforward programming rules.

Although the models will be described in detail in the appropriate section, a simple
synthesis of the procedure is as follows:

1. First, the equivalence between the study variable and the voltage at the network nodes
is established.

2. Secondly, the space is discretised in volume elements.
3. Finally, the addends of the previous equations are implemented as electrical elements,

such as resistors, voltage sources, etc.

Focusing on the last point, we now propose a series of equivalences between the
mathematical operation and the corresponding electrical device, which, although other
devices could be used, can serve as an application guide. Once the equivalent circuit has
been created, it is solved with circuit simulation software, such as NgSpice. The manual for
that software provides detailed explanations as to how each element of the circuit should
be implemented, as well as functions (sine, cosine, logarithm, etc.), conditionals, etc. [44].

2.1. The Concept of the Time Derivative

The rate at which a variable changes with respect to time is referred to as the time
derivative in NgSpice. It is very important to understand this time derivative to analyse the
behaviour of circuits over time using the software program NgSpice v36 [44]. Variables that
change dynamically over time, such as voltages and currents, are frequently encountered
when simulating circuits using NgSpice. The correct circuit components and functions in
NgSpice simulations to account for the time derivative must be employed, for example,
by using time-varying voltage sources, such as pulse or sinusoidal sources, and studying
the behaviour of currents or voltages at various locations in the circuit. Overall, the
time derivative concept in NgSpice enables us to study how circuit variables change
over time and aids comprehension of the transient response of the circuit under different
circumstances.

2.2. The Concept of the First Spatial Derivative

The rate at which a physical quantity changes in relation to spatial coordinates is
referred to as the first spatial derivative in NgSpice. The first spatial derivative tells us
how the quantity modifies as we move along the spatial coordinate. The user typically
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defines the required elements and specifies the appropriate boundary conditions or sources
that affect the spatial variations in order to include the first spatial derivative in NgSpice
simulations. Once the circuit equations and the specified spatial dependencies have been
determined, NgSpice will calculate the first spatial derivative [44]. The way in which
different quantities in a circuit or system change and behave spatially can be understood
by looking at their first spatial derivative. This knowledge is essential for researching
processes affected by spatial variations, such as heat transfer and signal propagation.

2.3. The Concept of the Second Spatial Derivative

The second spatial derivative of a physical quantity with respect to space or distance
is the rate at which the first spatial derivative of that quantity changes. This derivative is
important for understanding the curvature or change in a physical quantity within a circuit
layout in the software program, which is used to simulate electronic circuits. It sheds light
on the spatial gradients and variations of that quantity. The rate of change in the current
gradient along the circuit path can be determined using NgSpice by calculating the second
spatial derivative of the current with respect to the spatial coordinate. These insights are
helpful in locating potential signal distortion, voltage drops, or circuit design inefficiencies.
In summary, the second spatial derivative in NgSpice measures the rate at which a physical
quantity, like current, changes its gradient with respect to a spatial coordinate inside an
electronic circuit.

When studying mechanical problems, the fundamental variable is the position, usually
defined by the letter “x”, just as the fundamental variable in circuit theory is the electric
charge, defined as “q”. The next step is to establish a relationship between the variables of
the mechanical problems and circuit theory. Starting with the capacitor, it is established
that the constitutive equation of the capacitor is as follows:

i(t) = C·duC(t)
dt

by clearing the voltage across the capacitor, the following can be seen:

uC(t) =
1
C
·
∫ t

−∞
i(t)·dt

Since the variation of the charge with time is the current itself, as follows:

i(t) = dq(t)/dt

Then
dq(t) = i(t)·dt

and ∫
dq(t) =

∫
i(t)·dt

Then
q(t) =

∫
i(t)·dt

This leads us to the conclusion that the voltage across the capacitor gives us the
position since:

uC(t) = q(t)

So
q(t) = x(t)

By studying the resistor, we obtain the velocity, as follows:

v(t) =
dx(t)

dt
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and the variation of the charge with time is the current, as follows:

uR(t) = R·i(t) = R·dq(t)
dt

Thus, the voltage in the resistor can be defined as the variable equivalent to
the velocity.

For the acceleration, we study the coil or inductance. Acceleration is the variation of
velocity with respect to time, as follows:

a(t) =
dv(t)

dt
=

d2x(t)
dt2

Therefore, following the reasoning for the velocity, we must derive twice the load, or
the current only once, which is the same, as follows:

d2q(t)
dt2 =

di(t)
dt

And the voltage across the coil is defined as follows:

uL(t) = L·di(t)
dt

Thus, the voltage in the coil is the acceleration multiplied by L.
In the above equations, the following terms appear: “C”, which is the capacitance of

the capacitor whose unit is the farad (F), “R”, which is the value of the resistance in ohms
(Ω), and “L”, which is the self-induction coefficient of the coil, whose unit of measurement
is the Henry (H). These three terms must be established in accordance with the problem
to be analysed for the multiplying coefficients that carry in each case, i.e., the position,
velocity, and acceleration.

2.4. Remaining Addends

The incorporation of other terms of the equation which are not derivatives can be
carried out, in most cases, by adding current sources. In an electrical circuit, a current
source provides a current to a certain node which, due to Kirchhoff’s law of current, is
added to the rest of the currents supplied by other branches or elements. Therefore, the
incorporation of a current source to a node of the network is equivalent to the addition of a
term in the equation. By defining the value of the current source as being equal to the term
equation, it is incorporated into the volume element of the network model.

2.5. Boundary Conditions

The boundary conditions of the problem are incorporated into the network model
by implementing them into the volume elements of the boundary. This implementation
depends on the type of conditions and always implies the modification of the volume
element of the network model in the boundary by changing one of its electric components
or adding a new one.

2.5.1. Dirichlet’s Boundary Condition

A Dirichlet boundary condition means that the value of the variable in the boundary
is fixed or depends on a function, which can be time- and/or spatially dependant. It can be
expressed mathematically as follows:

us = f (s, t)

where s indicates the points of the boundary and t indicates the time.
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As the value of u in a node of the network model can be fixed by a voltage source, a
Dirichlet boundary condition is implemented by the connection of a voltage source to the
node corresponding to the boundary. The value of the voltage source is determined by the
function f (s, t), so the voltage source can have a constant value, if u is constant, or it can be
a time-dependent source if u changes with time.

However, as there are no volume elements outside the boundary, the resistor of the
boundary element that is not connected with any other volume element must be eliminated.

2.5.2. Neumann’s Boundary Condition

A Neumann’s boundary condition means that the value of the spatial derivative is
fixed or depends on a function. It can be expressed mathematically as follows:(

∂u
∂x

)
s
= f (s, t)

As the spatial derivative is the equivalent of the current in the NSM, a Neumann’s
boundary condition can be implemented in the resistor that is not connected with another
volume element in the volume element of the boundary. In the case of

(
∂u
∂x

)
s
= 0, it

means that there is no current going outside the system, so it can be implemented using a
resistor with a very high resistance (theoretically infinite). In all other cases, the resistor
is substituted by a current source with a value determined by f (s, t), or f (s), if it is
time-independent.

2.5.3. Symmetry Boundary Condition

The symmetry condition is implemented as a Neumann condition, since introducing a
resistance of theoretically infinite value does not allow the current, and, therefore, the flow
of the variable under study, to leave the system. In this way, the spatial representation of
the variable shows us half of its behaviour in the medium, with the other part’s behaviour
being symmetrical to the half represented. This condition is particularly important since it
saves computing time and reduces study space.

2.5.4. Displacement-Type Boundary Conditions

Displacement-type boundary conditions specify the behaviour of the displacement
field of a physical system at the boundaries. They describe how the system responds to
external forces or constraints applied at its boundaries. These conditions are expressed in
terms of displacements or deformation components, as follows:

u(s, t) = f (s, t)

where u(s, t) represents the displacement as a function of position s and time t, and
f (s, t) is the function describing the displacement boundary condition at the boundary of the
domain. In most cases the displacement condition applies to the extremes and usually has
constant values over time, u(0, t) = u(L, t) = u0, or a value of zero, u(0, t) = u(L, t) = 0.
These displacement conditions are applied in NSM through a controlled voltage source
connected to the edge node [45–48].

2.5.5. General Boundary Conditions

It is possible to have more general boundary conditions. In such cases, it is necessary
to study the problem and determine the best way to implement the boundary conditions
using the equivalence between the variables of the problem and the voltage and current of
the network model. As the boundary conditions are imposed over the variable or its spatial
derivatives at the boundary, it requires the use of current or voltage sources, or a mix of
them. The addition of more electrical elements is sometimes necessary to obtain the values
that must be introduced in the current or voltage source, for instance, in the simulation of
longitudinal or transversal vibrations of a rod with an attached mass at one of its ends. In
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this case, it is necessary to add two auxiliary circuits to calculate the value of the boundary
current source because it depends on the second temporal derivative of the position of the
attached mass [49].

2.6. Initial Conditions

The initial conditions are implemented in the capacitor value of the first time derivative.
Thus, as will be shown later, a different initial value can be assigned to each volume element
of the spatial discretisation. Therefore, different initial conditions can be implemented,
such as the Riemann problem, where the problem presents constant initial values that have
a single discontinuity, as follows [50]:

u(x, 0) =
{

uL x < a
uR x ≥ a

where uL and uR are the initial values and a is the position where the discontinuity occurs.
On the other hand, this methodology also allows the implementation of other types of
initial variables, such as a distribution through a trigonometric or logarithmic function.
Finally, when the network model does not include a capacitor, the initial conditions are
implemented with the NgSpice “.ic” command [44].

2.7. Auxiliary Circuits
2.7.1. Time Generators

In some engineering problems it is necessary to operate with a variable, as will be
seen in Section 5. In these cases, a time generator is implemented by means of an auxiliary
circuit consisting of a unit value resistor and a voltage source that includes the “Piecewise
Linear Function”, where it is indicated how the voltage should follow the time.

2.7.2. Other Equations

When we encounter equations, such as T = ax + b or T = ax2 + bsin(x), they are
implemented as a circuit composed of a unity value resistor and non-linear dependent
voltage sources, which is where the equation is implemented.

3. Mathematical Model

The mathematical model for the Burgers–Huxley equation, as well as that of a system
of coupled equations formed by a variant of the Burger equation, will be shown below.

3.1. Burgers–Huxley Equation

The Burgers–Huxley equation is widely used in biology, physics, economics, etc., as
it describes the propagation of an impulse, such as that of a muscle. In its general form it
includes an accumulation term, a drag term, a diffusion term, and a generation or decay
term, as follows [1,2]:

du
dt

+ αuδ du
dx

− ζ
d2u
dx2 − βu

(
1 − uδ

)(
εuδ − γ

)
= 0 t ≥ 0 (1)

where u is the variable, such as concentration, temperature, etc., x is the distance, t is the
time, and, finally, the coefficients α, β, γ, δ, ε, and ζ can be constants or variables.

3.2. System of Coupled Differential Equations

For the example of a system of coupled non-linear partial differential equations,
variations of the Burgers–Huxley equation are proposed where the generation or decay
terms have been modified so that the system is coupled. Such a system is typical, for
example, in chemical reactors where one species is transformed into two other species,
as follows:

du
dt

+ αuδ du
dx

− d2u
dx2 − βu + αγvw = 0 (2)
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dv
dt

+ βvδ dv
dx

− α
d2v
dx2 + βu − γv = 0 (3)

dw
dt

+ γwδ dw
dx

− d2w
dx2 + βu − αw = 0 (4)

where u, v, and w are the variables, such as the concentration of the different species,
temperature, velocity, etc., x is the distance, t is the time, and, finally, α, β, γ, and δ can be
constants or variables.

4. Network Model

In this section, the network model will be built following the indications in Section 2
for the different case studies.

4.1. Burgers–Huxley Equation with Constant Coefficients

First, the space is discretised into n elements or volume segments. Equation (1) is
then expressed as a finite difference differential equation following the nomenclature in
Figure 1. Depending on the study problem, this nomenclature can be adapted, being able
to implement different mesh sizes [51] or different shapes of volume elements. Equation (5)
is as follows:

du
dt

+ αuδ

[
ux+∆x/2 − ux−∆x/2

∆x

]
−
[

ux+∆x/2 − ux

ζ ∆x2

2

− ux − ux−∆x/2

ζ ∆x2

2

]
− βu

(
1 − uδ

)(
εuδ − γ

)
= 0 (5)
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As indicated above, each addend is a current that balances with the other summands
at a central node. The first addend, or accumulation term, is implemented as a capaci-
tor, where the time derivative is the current across the capacitor Cu. Thus, the voltage
across each capacitor, uu(t) = C−1

u
∫ du

dt dt, is simply the variable u when Cu = 1F. The
third summand, i.e., the second spatial derivative, is implemented as simple resistors,
since the constitutive equation of this electrical component is iR (t) = uR (t)/R, where
the value of the resistance is Ru,in = Ru,out = ζ ∆x2/2. To finalise the network model, the
second and last addends, i.e., the drag term and the decay or generation term, are im-
plemented as controlled current sources, where iu,1(t) = αuδ

[
ux+∆x/2−ux−∆x/2

∆x

]
(Gu,1) and

iu,2(t) = −βu
(
1 − uδ

)(
εuδ − γ

)
(Gu,2). Analogously to the first spatial derivative, the sec-

ond derivative and the third addend, can also be implemented as a controlled current
source. Finally, u takes the value of the voltage at the centre of each cell in the network
model, shown in Figure 2.
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The initial condition is given in the capacitor value and the boundary conditions,
i.e., Dirichlet, Neumann, etc., are implemented as specified in Section 2. The boundary
conditions can be implemented as batteries when they have constant values, voltage
sources when they have variable values, and finally as current sources when the boundary
condition is a flow magnitude. On the other hand, the Neumann’s or symmetry boundary
condition is implemented as a resistance of very high value, theoretically infinite. This last
condition, that of symmetry, enables the study space to be halved, considerably reducing
computing times.

4.2. Burgers–Huxley Equation with Variable Coefficients

In this subsection, the network model is the same for Equation (1) as the one shown
in the previous subsection, but it would be necessary to add as many auxiliary circuits as
there are variable coefficients. These coefficients are implemented with a voltage source,
where an equation can be entered that defines the coefficient, or so that its value is changed
by a condition, etc., and a resistor of unit value. As an illustrative example, it is presented
that the α coefficient is variable, as in Figure 3.
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4.3. System of Coupled Differential Equations with Constant Coefficients

The development of the network model is the same as in the previous cases, i.e., the
space is divided into n volume segments, as in Figure 1, Equations (2)–(4) are developed
in finite difference differential equations, as in Equations (6)–(8), and, finally, the analogy
between the addend of the equation and the electrical device is established. In this way,
the time variables are implemented as capacitors, the second spatial derivative as resistors,
where the value of the resistance is Ru,in = Ru,out = ∆x2/2, Rv,in = Rv,out = α ∆x2/2 and
Rw,in = Rw,out = α ∆x2/2, and the rest of the summands as current generators. Figure 4
shows the network model for the variable u, which is analogous for the variables v and w.

du
dt

+ αuδ

[
ux+∆x/2 − ux−∆x/2

∆x

]
−
[

ux+∆x/2 − ux
∆x2

2

− ux − ux−∆x/2
∆x2

2

]
− βu + αγvw = 0 (6)

dv
dt

+ βvδ

[
vx+∆x/2 − vx−∆x/2

∆x

]
−
[

1
α

vx+∆x/2 − vx
∆x2

2

− 1
α

vx − vx−∆x/2
∆x2

2

]
+ βu − γv = 0 (7)

dw
dt

+ γwδ

[
wx+∆x/2 − wx−∆x/2

∆x

]
−
[

wx+∆x/2 − wx
∆x2

2

− wx − wx−∆x/2
∆x2

2

]
+ βu − αw = 0 (8)
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4.4. System of Coupled Differential Equations with Variable Coefficients

To illustrate this subsection, it is assumed that the α coefficient is variable, implying
that an auxiliary circuit must be added, as was the case in Section 4.2. Furthermore, in this
case, as the α coefficient accompanies the second spatial derivative in the equation of the
variable v, Equation (3) must be written as follows:

dv
dt

+ βvδ dv
dx

− (α − 1)
d2v
dx2 − d2v

dx2 + βu − γv = 0 (9)

whose finite difference differential equation is given as follows:

dv
dt

+ βvδ

[
vx+∆x/2 − vx−∆x/2

∆x

]
− (α − 1)

 vx+∆x/2 + vx−∆x/2 − 2vx
∆x2

2

−
[

vx+∆x/2 − vx
∆x2

2

− vx − vx−∆x/2
∆x2

2

]
+ βu − γv = 0 (10)
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Thus, the first addend of the second time derivative is implemented as a current source,

iv,3(t) = (α − 1)
[

vx+∆x/2+vx−∆x/2−2vx
∆x2

2

]
(Gv,3) and the second as a resistor, Rv,in = Rv,out = ∆x2/2, as

in Figure 5.
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5. Results and Case Studies
Different examples will be presented below for both the solution of the Burgers–Huxley equation

and the coupled system of equations, varying the boundary conditions or varying the coefficients.
However, the boundary condition on the right-hand side will always be symmetrical for all examples.

5.1. Burgers–Huxley Equation
In the following, a series of illustrative cases will be shown in which the space takes a distance

of 2, and thanks to the symmetry condition in the right boundary, a distance of 1 will be indicated. On
the other hand, the space will be divided into 1000 cells, a time of 0.05 s will be used, and the initial
value will be zero. In the first illustrative case, Table 1, which will be taken as the reference, both the
coefficients and the boundary conditions remain constant. Figure 6a shows the spatial distribution
of the variable u at the final time, 0.05 s, and Figure 6b shows the evolution of the variable u at a
distance of 0.5. In the second case, the value of δ, which is an exponent in the equation, is modified
with respect to case 1. If we compare the results obtained with the previous case, Figure 7, a slight
increase in the variable u is shown in both the distribution and evolution figures. The value of the
boundary condition in the third case, which takes different values for different times, is modified.
In that case, the effect of varying the boundary condition modifies the behaviour of the variable u
with respect to the first case in Figure 8. In the fourth case, the boundary condition takes different
values when at a distance of 0.3, and the variable u takes values lower or higher than 0.2. Clearly, this
boundary condition shows a substantial change in the behaviour of u with respect to the first case
in Figure 9. In the fifth case, the boundary condition varies sinusoidally over time, the behaviour
of which can be clearly seen both in the distribution figure of the u variable and in the evolution
figure in Figure 10. Finally, in the sixth case, the α coefficient takes different values at different times.
Once again, it shows a noticeable effect on the variable u in Figure 11. However, in all the cases it
is clear that the diffusion phenomenon predominates, as occurs, for example, in chloride diffusion
problems in reinforced concrete. In addition, if we continue with the analogy in the chloride diffusion,
it can be observed how the variation of the boundary conditions drastically modifies the chloride
concentration in the concrete.
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Table 1. Case studies for the Burgers–Huxley equation.

Case A β γ δ ε ζ uext

1 1 1 0.001 1 1 1 1

2 1 1 0.001 4 1 1 1

3 1 1 0.001 1 1 1 1 (t < 0.025) 0 (t ≥ 0.025)

4 1 1 0.001 1 1 1 1 (ux=0.3 < 0.2) 0 (ux=0.3 ≥ 0.2)

5 1 1 0.001 1 1 1 100sin(3.5t)

6 1 (t < 0.025) 100 (t ≥ 0.025) 1 0.001 1 1 1 1
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a distance of 0.5.

Two more case studies will be presented below, in which the Riemann condition for initial
conditions involving discontinuous values will be implemented. These types of problems are known
as shock waves that propagate with the initial condition and where the boundary conditions are
a function of the solution to the problem [50,52]. In these cases, the symmetry condition clearly
cannot be applied; a space of unit length will be taken and will be divided into 1000 cells. In the
first of the examples, Case 7, the shock wave is studied only for the Burgers equation, as in Table 2,
which implies only accumulation and drag effects. Thus, Figure 12 clearly shows the advance of
the shock front for different times. The results obtained are similar to those of other authors using
other numerical methods [50]. For the second example, Case 8, the shock wave is studied by the
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Burgers–Huxley equation, where the shock wave can be less clearly seen due to phenomena of
diffusion and generation and decay of species, as in Figure 13.

Table 2. Case studies for the Riemann initial condition.

Case α β γ δ E Z Initial Value

7 1 0 0 1 0 0 0.6 x < 0.5
0.1 x ≥ 0.5

8 1 1 0.001 1 1 1 0.6 x < 0.5
0.1 x ≥ 0.5
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5.2. System of Coupled Differential Equations
A number of illustrative cases of a coupled system of equations formed by variants of the

Burgers–Huxley equation will be provided in this subsection. This case could be typical for a
chemical reactor consisting of three species. For all cases the space takes a distance of 2 which, due to
the symmetry condition of the right-hand boundary, is implemented as a distance of 1. The space will
be divided into 1000 cells and a time of 0.05s the results will be taken. In the ninth illustrative case,
Table 3, which will be taken as a reference, both the coefficients and the boundary condition remain
constant. Figure 14a shows the spatial distribution of the variables u, v, and w at the final time, 0.05 s,
and Figure 14b shows the evolution of the three variables at a distance of 0.5. In the tenth case, the
value of δ, which is an exponent in the equation, is modified with respect to Case 9. Upon comparing
the results obtained with the previous case, as in Figure 15, a slight increase is shown, mainly in the
variable u, both in the distribution as well as in the evolution. In the eleventh case, the value of the
boundary condition, which takes different values for different times, is modified. In that case, the
effect of varying the boundary condition modifies the variables’ behaviour with respect to Case 9 in
Figure 16. In the twelfth case, the boundary condition takes different values when at a distance of 0.3,
and the variable u takes values lower or higher than 0.2. Clearly, this boundary condition shows a
substantial change in the behaviour of u with respect to Case 9, whilst the rest of the variables retained
similar values, as in Figure 17. In the thirteenth case, the boundary condition varies sinusoidally with
time; its behaviour can be seen both in the distribution figure of the three variables, mainly in the
variable u, and in the evolution figure, as in Figure 18. Finally, in the fourteenth case, the α coefficient
takes different values at different times. Once again, its effect on the three variables can be seen, as in
Figure 19. On the other hand, as in the previous section, the phenomenon of diffusion predominates.
When the results are transferred to the diffusion of atmospheric pollutants or to a chemical reactor, it
can be observed how the phenomenon of generation or decay of species favours the formation of one
of them to the detriment of the others.

Table 3. Case studies for the system of coupled differential Burgers–Huxley equations.

Case A β γ δ uext

9 1 1 1 1 1

10 1 1 1 4 1

11 1 1 1 1 1 (t < 0.025) 0 (t ≥ 0.025)

12 1 1 1 1 1 (ux=0.3 < 0.2) 0 (ux=0.3 ≥ 0.2)

13 1 1 1 1 100sin(62t)

14 1 (t < 0.025) 100 (t ≥ 0.025) 1 1 1 1
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6. Conclusions
In this work we have presented a methodology to solve the Burgers–Huxley equation, or a

coupled system of equations formed by variants of it, using the network simulation method. The
importance of this equation is that it is common to many processes as it includes accumulation,
diffusion, drag, and species sink or generation terms, involving most of the physical–chemical
phenomena that occur in many science and engineering problems. In addition, the way in which the
main boundary conditions that can be encountered should be implemented is also indicated. Among
them, the symmetry condition stands out, which is applicable in many engineering problems, such
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as cylindrical structures, since it enables the study medium to be reduced and, therefore, to reduce
simulation times. In this way, following the protocol outlined in this work, any problem involving
the phenomena indicated above can be solved.

Furthermore, a series of illustrative cases have been presented, following the protocol presented
in this paper, both for the Burgers–Huxley equation and for a system of equations formed by it where
the boundary conditions have been varied or variable coefficients have been used, where we can
highlight the resolution of the shock wave problem with the Riemann initial condition.

Finally, as future lines of the work presented, we intend to apply the proposed methodology to
new geometries in chloride diffusion problems in reinforced concrete and sedimentation problems,
among others.
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Nomenclature

a Position where the discontinuity occurs
a(t) Acceleration
C Capacitor, capacitance (F)
E Linear voltage-controlled voltage sources
G Linear voltage-controlled current sources
i Electric current (A)
L Self-induction coefficient (H)
q Electric charge (C)
R Resistance (Ω)
t Time (s)
u Variable
uL Initial value
uR Initial value
u(t) Voltage (V)
v Variable
v(t) Velocity
w Variable
x Spatial coordinate
α Coefficient
β Coefficient
γ Coefficient
δ Coefficient
ε Coefficient
ζ Coefficient
Subscripts:
0 Initial value
C Related to capacitor
L Related to coil
R Related to resistance
s Points of the boundary
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