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Abstract: Active Queue Management (AQM) methods significantly impact the network performance,
as they manage the router queue and facilitate the traffic flow through the network. This paper
presents a novel fuzzy-based AQM method developed with a computationally efficient precise fuzzy
modeling optimized using the Genetic Algorithm. The proposed method focuses on the concept
of symmetry as a means to achieve a more balanced and equitable distribution of the resources
and avoid bandwidth wasting resulting from unnecessary packet dropping. The proposed method
calculates the dropping probability of each packet using a precise fuzzy model that was created and
tuned in advance and based on the previous dropping probability value and the queue length. The
tuning process is implemented as an optimization problem formulated for the b0, b1, and b2 variables
of the precise rules with an objective function that maximizes the performance results in terms of loss,
dropping, and delay. To prove the efficiency of the developed method, the simulation was not limited
to the common Bernoulli process simulation; instead, the Markov-modulated Bernoulli process was
used to mimic the burstiness nature of the traffic. The simulation is conducted on a machine operated
with 64-bit Windows 10 with an Intel Core i7 2.0 GHz processor and 16 GB of RAM. The simulation
used Java programming language in Apache NetBeans Integrated Development Environment (IDE)
11.2. The results showed that the proposed method outperformed the existing methods in terms of
computational complexity, packet loss, dropping, and delay. As such, in low congested networks,
the proposed method maintained no packet loss and dropped 22% of the packets with an average
delay of 7.57, compared to the best method, LRED, which dropped 21% of the packets with a delay
of 10.74, and FCRED, which dropped 21% of the packets with a delay of 16.54. In highly congested
networks, the proposed method also maintained no packet loss and dropped 48% of the packets, with
an average delay of 16.23, compared to the best method LRED, which dropped 47% of the packets
with a delay of 28.04, and FCRED, which dropped 46% of the packets with a delay of 40.23.

Keywords: queue management; fuzzy systems; Genetic Algorithm

1. Introduction

The ever-growing sharing of large multimedia files, using the Internet-of-Things (IoT)
and the growth of applications and device controls remotely increase computer network
utilization and distribution [1]. The communication between the distributed devices and
applications is intermediated with router devices, which are responsible for transferring
all transmitted packets via the network while maintaining the network performance [2].
The challenge these routers face is embodied in the number of transmitted packets that
may exceed their capacity. Congestion occurs as the router’s buffer is overflowed, and no
more packets can be accommodated. In such a case, packet loss occurs, and the network’s
performance is dropped significantly [3,4]. Active Queue Management (AQM) methods
control the queue at the router buffer and avoid congestion. The packets that arrive at
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the router are accommodated in the buffer as long as possible while packet loss occurs
otherwise. Packet dropping is implemented as the expected situation exposes the overload-
ing or overflowing of the router buffer. If packet dropping is not implemented efficiently,
packet loss will be presented as packets cannot be accommodated. For its role in actively
managing the queue at the router buffer, various AQM methods were proposed to replace
the old method for queue management, the Drop-Tail (DT). The existing AQM methods are
built on two main components: (1) network status variables and (2) dropping schemes [5].

The AQM’s status variables perceive the buffer and the traffic for efficiently operating
the packet-dropping scheme. These variables are updated with every networking event
to observe the traffic. Various variables have been used in the literature, such as the
average queue length (AQL), the queue length (Q), and the change in the queue (∆Q).
The first AQM, random early detection (RED) [6], relied on the AQL variable, which
showed limitations in response to sudden congestion as value changing is very slow. The
Q variable is more efficient in addressing such congestion status yet leads to increased
packet dropping in short-term high traffic status (i.e., false congestion). Generally, selecting
the status variable depends on the expected network behavior (i.e., congested vs. low-
traffic network). Unfortunately, no standard network status variable is to be used, and no
specific network behavior can be expected. Thus, no mechanism exists to identify the most
appropriate status variables [7].

The stochastic packet-dropping scheme of the AQM considers the status of the network.
In highly congested networks, dropping is increased to prevent loss, as loss leads to
bad consequences with packet retransmission. As the flow reduces, dropping should be
stopped as packet dropping leads to delays, increases traffic, and consumes more resources.
The dropping scheme also considers the problem of global synchronization to maintain
high network performance in different states [8]. The dropping action is performed by
calculating a dropping probability, which is translated into stochastic packet dropping. The
problem with the decision-making techniques utilized in the AQM methods is that they are
manually created, which shows limitations in addressing the expected burstiness of the
network traffic [9].

The early AQM methods calculate the value of the dropping probability (Dp) based on
the value of the status variables using a set of rules wrapped in case-based reasoning; these
methods can be denoted as crisp-based AQM methods. These methods were extended with
the fuzzy inference process to ease the parameterization problem and reduce packet loss [10].
For the fuzzy-based methods, the fuzzy system is formed using input variables mapped
from the status variables in the crisp-based AQM methods while the output variable
represents the Dp. The fuzzy rules are equivalent to the decision rules in the crisp-based
methods. Although the results of fuzzy-based methods are better than those of crisp-based
methods, there are limitations to these methods related to the performance of the network
and the computation requirements. Moreover, fuzzy-based methods showed a high drop
rate, especially when encountering low traffic [11]. The reasons for such results are as
follows: (1) using the same variables as those utilized in the crisp-based methods but using
different techniques and (2) using a non-adaptive process that implements unnecessary
high or low dropping with loss. (3) The linguistic technique of fuzzy systems is not precise
in forming the problem based on the given inputs. (4) Using expert-constructed and tuned
rules does not produce the optimal results, similar to the rules in the crisp-based methods.

In summary, the fuzzy-based AQM methods extend the crisp methods using fuzzy
logic systems. The existing fuzzy-based AQM methods are built using the linguistic model
using rules constructed by experts in the domain. The results of these fuzzy AQM methods
are better than the crisp-based methods in parameterization and packet loss. However,
the fuzzy AQM methods suffer from a high dropping rate and computation requirements.
Moreover, the dropping problem of these methods indicates the low adaptiveness of these
AQM methods, which harms the network performance with the bursty nature of the
traffic. This paper proposes a novel fuzzy-based AQM to address the limitations of the
existing fuzzy-based AQM and improve the network’s performance. The proposed method
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focuses on the concept of symmetry as a means to achieve a more balanced and equitable
distribution of the resources and avoid bandwidth wasting resulted from unnecessary
packet dropping. The proposed method is developed based on inputs that do not require a
mapping from crisp-based AQM and uses a computationally efficient fuzzy approach. The
proposed method uses a simple variable and precise fuzzy model instead of a linguistic one.
First, the input variables are identified. Then, the fuzzification rules are constructed in their
generic forms. The rules are then tuned using the Genetic Algorithm (GA) to overcome the
limitations of the human-generated rules. The constructed system is then used to calculate
the Dp value based on the Q value only. In the simulation process, both the Bernoulli and
the Markov modulated Bernoulli are used to mimic the traffic’s burstiness and evaluate
the proposed method effectively. The rest of this paper is organized as follows: Section 2
presents a literature review on the crisp-based and fuzzy-based AQM methods with a
brief overview of the existing fuzzy inference processes and systems. The proposed work
includes the proposed framework, the utilized variables, rules, and the algorithm, which
are discussed in Section 3. The simulation settings and the results are presented in Section 4.
Finally, Section 5 presents the conclusion of this paper.

2. The Literature Review

The AQM is founded on a decision-making approach that comprises multiple rules
designed to determine appropriate actions based on the network and buffer status. Within
the AQM, these decision rules function as mappings, translating observed values of status
variables into suitable actions related to dropping packets. The typical decision-making
steps within the AQM process are illustrated in Figure 1 [12]. Existing AQM methods
are broadly categorized into two main types: crisp-based AQM and fuzzy-based AQM.
Fuzzy-based methods expand upon the crisp approach by incorporating the fuzzy inference
process, as illustrated in Figure 2 [10].
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2.1. The Crisp-Based AQM Methods

AQM methods depend on tracking some status variables and managing the queue
at the router buffer using a packet-dropping mechanism. RED [6] is implemented based
on the AQL status variable, the initial dropping probability (Dini) parameter, and two
manually predetermined thresholds. The AQL indicates the number of queued packets
over time and guides the dropping process. The thresholds set different ranges with dif-
ferent consequences. As such, if the AQL is below the first threshold (i.e., the minimum
threshold), the dropping probability is set to zero; as in such a case, the network is consid-
ered to be at a low load. If the calculated AQL is between the first and second threshold
(i.e., the maximum threshold), stochastic dropping is implemented to avoid congestion
as the flow is considered high. Finally, if the calculated AQL is higher than the second
threshold, the dropping probability is set to one in such a case, as the network flow is
considered aggressive. Figure 3 illustrates the status variable and the dropping mechanism
implemented in RED [13].
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Various crisp-based methods were proposed using different variables and mechanisms
compared to the one implemented by the RED. Gentle RED (GRED) [14] is also based on the
AQL and three thresholds instead of two. As such, if the AQL is below the first threshold or
higher than the third threshold, the dropping probability is set to zero and one, respectively,
similar to RED. However, compared to RED, GRED had more flexibility in calculating
Dp when the AQL is between the first and second thresholds or between the second
and third thresholds. Accordingly, GRED is more responsive and fixable but requires
more parameter settings. The Adaptive RED (ARED) [15] is also based on the AQL,
two thresholds, and one target variable. Moreover, the Dini value is changed adaptively
based on the value of the AQL. If the AQL is below the first threshold or higher than the
third one, the dropping probability is set to zero and one, respectively, similar to RED
and GRED. Dp is calculated such that the AQL value shall be close to the target value
when the AQL is between the first and second thresholds. Overall, ARED is similar to
GRED in responsiveness and flexibility and is more adaptive than GRED and RED. RED,
GRED, and ARED used the same status variables and variations of the dropping scheme.
Effective RED (ERED) [16] used AQL and Q. Multi-level RED (MRED) [17] used packet
loss (PL), while the Adaptive Virtual Queue (AVQ) [18], Stabilized AVQ (SAVQ) [19], and
Enhanced AVQ (EAVQ) [20] used the arrival rate. Link Utilization Based AQM (LUBA) [21],
Stabilized Virtual Buffer (SVB) [22], Rate-Based AQM (RAQM) [23], Robust Active Queue
(RaQ) [24], and Yellow [25] used load rate and arrival rate. Curvy Random Early Detection
(CurvyRED) [26] and various other techniques [27,28] use the delay as a status variable.

Various adaptive strategies were put forth during the AQM’s evolution. The term
“adaptive” has been used in two ways: (1) to calculate the values of the utilized variables
that are being used rather than using fixed values, and (2) to increase or decrease the
value of a variable rather than recalculating it or using a fixed value. Many methods,
including RED, rely on initialized variables that might negatively affect performance; these
variables are modified to be adaptive as implemented by ARED and New Adaptive RED
(NARED) [29]. Accordingly, in such a case, adaptive techniques minimize the number of
parameter sittings required and improve the response time to congestion. ARED, NARED,
and Adaptive Threshold RED [30] used adaptive values for the variable Dini while Length-
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Threshold RED (LTRED) [31] and Probability-RED (P-RED) [32] modified the value of the
AQL adaptively. The second direction of the adaptive technique involves increasing and
decreasing the value of a variable based on its previous value. BLUE [33] calculated the
value of Dp adaptively. BLUE used a mechanism that adaptively increases and decreases
the Dp value with reference to loss and buffer utilization. In such a case, the congestion
responsiveness was improved, and the performance was stabilized as the value of Dp was
stabilized. Linear RED (LRED) [34] developed a linear equation with calculations to reduce
the complexity of RED. Integrated RED (IRED) [35] used arrival, departure, and queue
length factors to improve the AQM performance. Table 1 summarizes the existing work on
crisp-based AQM methods.

Table 1. Summary of the Crisp-Based AQM Methods.

Method Title Control Variable(s) Aims

RED Random Early Detection AQL Eliminate global synchronization
and improve packet loss

GRED Gentle RED AQL Improve packet loss
ARED Adaptive RED AQL Improve packet loss
MRED Multi-level RED PL Improve packet loss
AVQ Adaptive Virtual Queue Arrival Improve packet delay

SAVQ Stable AVQ Arrival Improve packet delay
EAVQ Enhanced AVQ Arrival Improve packet delay
ERED Effective RED AQL and Q Improve packet loss
LUBA Link Utilization-Based AQM Load Improve packet delay
SVB Stabilized Virtual Buffer Arrival and Q Improve packet loss and resource utilization

RAQM Rate-Based AQM Arrival and Q Improve packet loss and resource utilization
RaQ Robust Active Queue Arrival and Q Improve resource utilization

Yellow N/A Arrival and Q Improve resource utilization
CurvyRED N/A Delay Improve packet delay

NARED New Adaptive RED AQL Ease parameter initialization
ATRED Adaptive Threshold RED AQL Ease parameter initialization
LTRED Length-Threshold RED AQL Ease parameter initialization
P-RED Probability-RED AQL Ease parameter initialization
BLUE N/A PL Improve packet loss

Delay-based N/A Delay Improve delay
LRED Linear RED AQL Reduce the complexity
IRED Integrated RED Arrival, Departure, and Q Improve the performance

2.2. The Fuzzy-Based AQM Methods

Fuzzy-based AQM methods use the network status variables in the crisp-based meth-
ods with a fuzzy system. The ranges of the values for the input and output variables
are initiated based on predefined membership functions. The rules of the fuzzy system
create more variations in the decision-making processes compared to the limited decisions
created in the crisp-based AQM. The fuzzy-based AQM methods have been implemented
using different inputs, membership functions, rule-sets, and a slight variation of the output
variable. The Fuzzy RED [36] method used Q and ∆Q as equivalent to AQL in the RED
method, and the Fuzzy Explicit Marking (FEM) [37] used the same input variables with
different processes. Fuzzy BLUE (FBLUE) [38] used buffer size and packet loss as input
variables, Fuzzy GREEN [39] used Q and dropping rate, Fuzzy-logic Controller-based
RED [40] used AQL and Pl, and Fuzzy-logic RED (FLRED) [41] used the delay and AQL as
the input variables. Fuzzy Comprehensive RED (FCRED) [42] used three indicators, which
monitor the router’s arrival, departure, and queue length. Table 2 summarizes the existing
work on fuzzy-based AQM methods. These fuzzy-based AQM methods used the linguistic
modeling approach proposed by Mamdani [43].
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Table 2. Summary of the Fuzzy-Based AQM Methods.

Method Title Control Variable(s) Aims

Fuzzy RED Fuzzy RED Q and ∆Q Ease the parameter initialization
FEM Fuzzy Explicit Marking Q and ∆Q Ease the parameter initialization

FBLUE Fuzzy BLUE Loss and Q Ease the initialization and
adaptively calculating Dp

Fuzzy GREEN Fuzzy GREEN Dropping and Q Ease the parameter initialization
Fuzzy-Controller-RED Fuzzy Controller RED AQL and loss Ease the parameter initialization

FYZREM Fuzzy REM Packet price Ease the parameter initialization

Deep-BLUE Deep BLUE Loss and Q Ease the initialization and
adaptively calculating Dp

Fuzzy-ARED Fuzzy ARED AQL Ease the parameter initialization
FGRED Fuzzy GRED AQL and Delay Ease the initialization

FLRED Fuzzy Logic RED AQL and delay Ease the initialization and
Improve packet dropping

FCRED Fuzzy Comprehensive RED Load and Q Improve packet dropping

2.3. Fuzzy System Models

There are two approaches to modeling the fuzzy system: the linguistic and precise
models [44]. The linguistic modeling approach is characterized by its interpretability with
a low ability to model the system precisely (i.e., accuracy). Takagi and Sugeno proposed
the precise modeling approach, commonly called the TSK fuzzy system. The precise model
is characterized by its low interpretability and high accuracy. The difference between
linguistic and precise modeling is implied in the rule set, which consists of linguistic
variables only in the linguistic approach. Thus, a defuzzification component is required to
convert the output linguistic variable into a crisp value. The precise modeling uses a rule set
of linguistic and crisp variables and does not require a defuzzification component. Figure 4
illustrates the linguistic and precise models for fuzzy systems, and Table 3 compares the
two models [45].
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Table 3. Linguistic vs. Precise Fuzzy Models Comparison.

Comparison Criteria Linguistic (Mamdani) Precise (TSK)

Membership Function Input and Output Input only
Defuzzification Required Not required

The Output of Surface Discontinuous Continuous
Developing Complexity Simple Complex

Understanding Complexity Intuitive (Human-Interpretation) Complex (Mathematical-Interpretation)
System Design Rigged Flexible

Although these models have great differences, they have similar components of input,
membership function, and rule set [46,47]. Identifying the rule set is the most complex
task in building the fuzzy system [48]. The rule set can be constructed using one of two
approaches: knowledge-based and data-based. The knowledge-based required human
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experts to construct the rules. The problem with this approach is the limitation of the
constructed knowledge base. The data-driven approach learns the rule set from sample
data [49]. While a data-driven approach is more adequate in covering all the detailed
mapping between inputs and outputs, the rules lose merit if a purely data-driven approach
is utilized. A comparison between the knowledge-based and the data-driven approaches is
given in Table 4 [50].

While the existing AQM methods use the linguistic approach, the precise approach
may produce more accurate results. An advantage of some crisp-based methods is their
adaptiveness, which is too complex to be modeled using the linguistic approach for fuzzy
systems. Accordingly, an adaptive method can be developed using a precise fuzzy approach.
The resulting system’s complexity can be eased using an optimization technique to tune
the rule set and produce the desired output.

Table 4. Knowledge-based vs. Data-Driven Rule Construction.

Comparison Criteria Knowledge-Based Data-Driven

Generality and Adequacy Not granted Granted
Rule Preciseness Granted Suspicious
Rule Complexity Interpretable Ambiguous

Rule Transparency Yes No (Questionable)

3. The Proposed Work

The proposed Fuzzy Random Early Detection with GA (FREDGA) method used the
queue length, Q, a simple counter for the number of packets residing in the queue, in
an adaptive mechanism. The variable Q did not require any calculation or parameter
settings, such as those required in calculating the AQL. Accordingly, using Q was more
efficient compared to using AQL. The drawback of using Q was overcome as the proposed
method adaptively calculated a new Dp value based on the previously calculated Dp. A
computationally efficient and precise fuzzy-logic system was built, tuned using GA, and used.

3.1. The Framework

The following steps were used to operate the proposed method and calculate the
value of Dp with each packet arrival. (1) The Q’s value was updated. (2) The pre-built
fuzzy model was executed. Fuzzification, rule evaluation, and aggregation were all carried
out accordingly. (3) The decision-making process was applied, and the decision to drop
or accommodate was made. The rules were constructed and tuned before the previously
mentioned arrival-based processes. The rules were constructed and tuned using a solution-
optimization process that identified the best rules using GA. Figure 5 shows the flowchart
of the proposed framework.
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3.2. The Fuzzy Set and Function

The proposed method used two input variables for the fuzzy logic system: the queue
length, Q, and the previously calculated Dp. These two crisp variables are simple because
Q does not need any calculation while Dp is the output of the fuzzy system. Initially, both
values were set to zero as the system was initiated, and then, the Q value was updated
based on packet arrival and departure. The value range for the Q was [0–capacity], and
the value range for the Dp was [0–1]. To unify the range of these two variables, the value
of Q was divided by the capacity, and the results would be in the range of [0–1], as given
in Equation (1).

Qnor = Q/capacity, ∈ [0− 1] (1)

where Qnor was the normalized Q value and will be referred to as Q for the rest of this
paper, Q was the original queue length, and the capacity was the buffer size.

The crisp inputs were converted into linguistic terms using the membership functions
and the fuzzy sets. One of the two approaches mentioned earlier (i.e., knowledge-based and
data-based) was used to construct these two fuzzy components. The membership function
and set definitions were related to constructing the rule set. However, the membership
function and sets were identified separately to ease the construction of the fuzzy system.
Based on the space-partitioning approach for fuzzy system construction [51], the domain
of each input was divided into equal-sized 2n + 1 regions (i.e., the value of n is set to
equal to 1) that were used to form the function with three terms. As illustrated in Figure 6,
the membership function was trapezoidal, and the boundaries of the function were set to
[{0, 0, 0.3, 0.4}, {0.3, 0.4, 0.6, 0.7}, {0.6, 0.7, 1.0, 1.0}], with low, moderate, and high terms.
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3.3. The Fuzzification Process

As a packet arrival occurred, the Q value was updated and used as an input to the
fuzzy system with the previously calculated Dp. Accordingly, at a time t, the input of the
fuzzy system was Qt (after normalization as given in Equation (1)) and Dpt−1. The crisp
values for Qt and Dpt−1 were converted into linguistic terms with confidence degrees in the
fuzzification processes. The fuzzification of a single value may produce more than a single
term, each with a confidence value. Each variable needed a linguistic set and a membership
function, as discussed in the previous subsection. The regions of the membership function
were identified by 2–3 lines and four points, a1, b1, a2, and b2, where a and b are the upper
and lower bounds of the horizontal lines of each region.

Using Equation (2), each crisp value was converted to a confidence degree associated
with a specific term. At least a linguistic term from the linguistic set was identified for
each crisp input. Equation (2) was applied for the input of three terms set to produce three
confidence values, each for a single term. Terms with zero confidence were removed.

d(v) =


0,

v− a1/b1 − a1,
1,

b2 − v/b2 − b1,

i f v < a1, v > b2
i f a1 ≤ v ≤ b1

i f b1 ≤ v ≤ a2
i f a2 ≤ v ≤ b2

(2)
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where d(v) was the confidence degree for the input value v while a1, b1, a2, and b2 were the
boundary points for each linguistic term in the membership function.

3.4. The Rule Set Construction and Utilization

The proposed method was created using the TSK model, as opposed to the existing
AQM methods, which used the fuzzy linguistic model. Each rule in the proposed method
connected inputs to an output value, such as linguistic terms with confidence values
representing the inputs, while the output was represented as a crisp value (while in
the linguistic model, the output was also represented as a linguistic term). As given in
Equation (3), each rule comprised a combination of different inputs. The set of N rules
covered all possible combinations of the input values (i.e., 9 (3 × 3) different rules for the
proposed method). Each rule formed a mapping function f, which mapped the values of
the inputs into dropping probability y, as given in Equation (4).

Rule1 :
(

x1
(1), x2

(1); y(1)
)

, Rule2
(

x1
(2), x2

(2); y(2)
)

, . . . , RuleN
(

x1
(N), x2

(N); y(N)
)

(3)

f (x1, x2)→ y (4)

where x1 was a linguistic term for Q, x2 was a linguistic term for Dp, and y was the output.
The output value y was calculated as given in Equation (5), which took the form of

a first-order polynomial rather than a tangible value. Thus, the constructed rules were
formed as a first-order TSK system. Accordingly, the concrete form of the constructed rules
was given in Equation (6).

y = b0 + b1x1 + b2x2 (5)

IFQ == X1 and Dpt−1 == X2 THEN y = b0 + b1x1 + b2x2 (6)

where X1 was a term value for Q, X2 was a term value for Dp, and x1, and x2 were confidence
values of the linguistic terms X1 and X2 while b0, b1, and b2 were selected parameters that
influenced the performance of the constructed system.

Based on the linguistic sets of the input variables, nine rules were constructed, but
the values for the parameters b0, b1, and b2 were assigned in the next step. These rules are
listed in Table 5, and Equation (7) provides a specific illustration of rule #2 from that table.

IFQ == low and Dpt−1 == moderate THEN Dpt = b0 + b1cvLow + b2cmoderate (7)

where cLow and cmoderate were the confidence values of low and moderate linguistic terms
of Q and Dp variables, respectively. The parameters b0, b1, and b2 were constants in the
range [0–1], which would be assigned values in the tuning process. The proposed method
implemented a simple aggregation step that depended on averaging for the output of
different applied rules.

Table 5. List of Cases for the Rule Construction Process.

# Term 1 (Q) Term 2 (Dp) # Term 1 (Q) Term 2 (Dp)

1 low low 6 moderate high
2 low moderate 7 high low
3 low high 8 high moderate
4 moderate low 9 high high
5 moderate moderate

3.5. The Rule Set Tuning

After creating the rules, they were tuned by finding the optimal values for the param-
eters b0, b1, and b2, as illustrated in Figure 7. GA was selected for the tuning processes
over many existing optimization algorithms because it is simple, performs well in varied
environments, and can search huge and uneven solution spaces, such as the one under
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investigation. GA was used to optimize the performance of the proposed AQM method,
which depended on the value of Dp. Dp optimization, in turn, was a function of b0, b1, and
b2. Accordingly, the optimization function for the proposed method is given in Equation (8).

Dpi = f (b 0i, b1i, b2i
)

(8)

where i was the rule’s index in the rule set as given in Table 5, each with specific values
for b0, b1, and b2.
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As such, there were 27 parameters to be optimized using GA for the nine rules.
The processes that the GA implemented are illustrated in Figure 8. GA consisted of an
initialization step, which created the initial population of multiple individuals. Each
individual (i.e., a chromosome) consisted of 27 genes. The initialization process was
implemented based on randomly generated values. In the evaluation process, the fitness
function, which measured the performance of the AQM method based on the current values
of b0, b1, and b2, was calculated. The selection was implemented to select chromosomes
from the old population to form the offspring, after which the crossover and mutation were
implemented on the selected individuals. The process continued until the stopping criteria
were met [52].
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Equation (9) provided the fitness function (also known as the objective function),
which was derived based on the problem, and Equation (10) provided the associated
hard constraint.

f (v) =
avgmax

j ∑N
i=1wi × vi

j/∑N
i=1wi (9)

∑N

i=1
wi = 1, ∀vi

j ∈ [0− 1] (10)

where N was the set of the performance measures to be optimized, which were determined
to be the delay, packet loss, and dropping rate at specific traffic load conditions. The value
vi

j was obtained for the performance measure i at iteration j. The value wi was the weight
of the performance measure i.

The soft constraint in Equation (9) aimed to maximize the performance based on the
weighted sum of the multi-objective function. Each performance measure had a value in
the range of [0–1] to avoid bias. In the proposed method, all three measures were given
equal weights of 0.33 to find the optimal solution that suited the burstiness nature of the
network. The hard constraint in Equation (10) ensured that the sum of the weights given to
all the performances equals 1.

The encoding scheme of the problem to be optimized consisted of real values for the
optimized constants, as illustrated in Figure 9.
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The GA parameter setting was defined as given in Table 6. The first generation in
GA was randomly initialized. The population size was 20, and the stopping criterion was
based on a steady state for ten iterations with maximum fitness variations below a small
threshold (i.e., 0.0001) or reaching the maximum number of iterations. The GA selection
operation type was roulette-wheel. The replacement type and ratio were “replacement of
the worst and 60% in a steady state manner”. The crossover rate was 0.95, and the mutation
rate was 0.05.

Table 6. GA Parameters.

GA Parameter Size/Value/Scheme

Population size 20
Generation size 100
Replacement Scheme Replace the worst 60%
Chromosome Length 27
Selection Scheme Rank-based roulette
Crossover probability 0.95
Mutation probability 0.05

4. Simulation and Results

The conducted simulation consists of three main components: departure process,
environment, and arrival process, similar to the previous AQM simulations. The departure
process is simulated as a geometric distribution controlled with a departure probability β,
while the arrival is simulated using the Bernoulli process (BP) and the Markov-modulated
Bernoulli process (MMBP).

4.1. Traffic Classes

The arrival process is simulated in two forms: the Bernoulli process (BP), which
models a single traffic class, and the Markov-modulated Bernoulli process (MMBP), which
captures traffic burstiness using multiple classes [53]. These stochastic processes, BP and
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MMBP, characterize sequences of binary events with success or failure options. In this
context, the binary events represent the packet arrival event. The BP models an independent
sequence of events, each with a specific probability of success. The number of successes for
a given trial follows a binomial distribution. On the other hand, the MMBP extends the
BP by incorporating principles from Markov chains to model probabilities with varying
values based on the current state of the Markov chain. As a result, the success probability
fluctuates based on the existing state of a hidden Markov chain.

As such, BP represents a sequence of independent trials with a constant probability
while the MMBP extends this concept by incorporating a Markov chain to model time-
varying success probabilities. Both processes are valuable for modeling binary events
in various scenarios, offering insights into the dynamics and characteristics of systems
influenced by probabilistic outcomes. In the BP, the simulation utilizes an arrival probability,
α, in a straightforward mechanism. The MMBP is modeled using a two-state model, as
illustrated in Figure 10. The process starts with state 1 with an arrival probability of α1. In
the next time slot, the process remains in state 1 with a probability of λ1 or is transmitted to
state 2 with a probability of 1 − λ1. On the other hand, if the current state is state 2, then
the arrival probability is α2. The process remains in state 2 in the next time slot with the
probability of λ2 or transmitted to state 1 with probability 1 − λ2. Accordingly, the arrival
process is characterized by the arrival diagonal matrix (R), and the transmission probability
is characterized by the matrix T, as given in Equation (11).

R =

[
α1 0
0 α2

]
, T =

[
λ1 1− λ1

1− λ2 λ2

]
(11)

where R is the arrival probability matrix for the MMBP of two states, and T is the transmis-
sion matrix for the MMBP states represented by R.
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4.2. The Simulation Environment

The simulation environment is the widely used discrete-time queue, which allows
for evaluating the performance based on network events. The discrete-time queue model
consists of time slots for unequal periods. A packet arrival and/or packet arrival occur in
each slot. The departure event occurs before the arrival process, as illustrated in Figure 11.
The simulated network events take place (stochastically) over a single router with a limited
capacity buffer. The buffer is modeled using first in first out (FIFO) with a capacity of
20 packets, regardless of its type and size [54].

Using the discrete-time queue model in the conducted simulation provides a signifi-
cant advantage by ensuring the reproducibility of the simulation process, regardless of the
tools or programming language employed. This reproducibility is crucial as it guarantees
consistent results that can be used to evaluate future methods, including real-world imple-
mentations. By adhering to this approach, simulation outcomes can serve as benchmarks
for assessing novel techniques, enabling researchers and practitioners to make informed
decisions based on reliable and consistent simulation results. However, it is important to
recognize that the discrete-time queue model does have certain limitations, particularly
when applied to real-world scenarios, such as computer networks. The primary limitation
is related to the inherent simplifications and assumptions that the model entails. As such,
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the model might overlook external influences that significantly affect the network perfor-
mance. Accordingly, the real-world implementation shall re-evolve the model using the
GA and create a new rule set.

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

R = α 00 α , T = λ 1 − λ1 − λ λ  (11)

where R is the arrival probability matrix for the MMBP of two states, and T is the trans-
mission matrix for the MMBP states represented by R. 

4.2. The Simulation Environment 
The simulation environment is the widely used discrete-time queue, which allows 

for evaluating the performance based on network events. The discrete-time queue model 
consists of time slots for unequal periods. A packet arrival and/or packet arrival occur in 
each slot. The departure event occurs before the arrival process, as illustrated in Figure 
11. The simulated network events take place (stochastically) over a single router with a 
limited capacity buffer. The buffer is modeled using first in first out (FIFO) with a capacity 
of 20 packets, regardless of its type and size [54]. 

 
Figure 11. Discrete-Time Queue Model [54]. 

Using the discrete-time queue model in the conducted simulation provides a signifi-
cant advantage by ensuring the reproducibility of the simulation process, regardless of 
the tools or programming language employed. This reproducibility is crucial as it guar-
antees consistent results that can be used to evaluate future methods, including real-world 
implementations. By adhering to this approach, simulation outcomes can serve as bench-
marks for assessing novel techniques, enabling researchers and practitioners to make in-
formed decisions based on reliable and consistent simulation results. However, it is im-
portant to recognize that the discrete-time queue model does have certain limitations, par-
ticularly when applied to real-world scenarios, such as computer networks. The primary 
limitation is related to the inherent simplifications and assumptions that the model entails. 
As such, the model might overlook external influences that significantly affect the net-
work performance. Accordingly, the real-world implementation shall re-evolve the model 
using the GA and create a new rule set. 

The simulation is conducted on a machine operated with 64-bit Windows 10 with an 
Intel Core i7 2.0 GHz processor and 16 GB of RAM. The simulation used Java program-
ming language in Apache NetBeans Integrated Development Environment (IDE) 11.2. The 
simulation parameters are summarized in Table 7. Among the 2,000,000 slots imple-
mented in the simulated environment, 800,000 are used as a warm-up period. The arrival 
probability α holds 14 values in the range [0.3–0.95] to create various congested and non-
congested scenarios. 

In evaluating the proposed method, the loss, drop, and delay are presented alongside 
the time required for the simulation. The results of the proposed method are compared to 
the well-known RED, ERED, and BLUE methods, together with the recently proposed 

Figure 11. Discrete-Time Queue Model [54].

The simulation is conducted on a machine operated with 64-bit Windows 10 with
an Intel Core i7 2.0 GHz processor and 16 GB of RAM. The simulation used Java pro-
gramming language in Apache NetBeans Integrated Development Environment (IDE)
11.2. The simulation parameters are summarized in Table 7. Among the 2,000,000 slots
implemented in the simulated environment, 800,000 are used as a warm-up period. The
arrival probability α holds 14 values in the range [0.3–0.95] to create various congested and
non-congested scenarios.

In evaluating the proposed method, the loss, drop, and delay are presented alongside
the time required for the simulation. The results of the proposed method are compared
to the well-known RED, ERED, and BLUE methods, together with the recently proposed
LRED and IRED, which are crisp-based. In addition, the proposed method is also compared
with early and recently developed fuzzy-based methods: Fuzzy RED (FRED), FGRED,
FBLUE, and FCRED. Table 7 shows the compared methods’ parameters [55].

Table 7. Parameter Settings.

Category Parameter Values

Si
m

ul
at

io
n

Packet arrival probability in BP (α) 0.3–0.95
Packet arrival probability in MMBP (α1 and α2) 0.3–0.95 and 0.5
Probability of Packet Departure (β) 0.3 and 0.5
Total Number of Slots 2,000,000
Number of Slots for Warm-Up Period 800,000
Number of Slots for the Results 1,200,000
Capacity of the Router Buffer 20

C
om

pa
re

d
M

et
ho

ds Queue Weight for AQL Calculation 0.002
Dmax 0.1
minth 3
maxth 9

4.3. Optimization Results

GA is used to fine-tune the rules before running the experiments. The convolution of
GA was remarkably quick, taking an average of only 100 iterations for 30 runs to reach the
optimal solution. Figure 12 shows the results in one of these runs with 63 iterations, and
the value obtained by the best solution is provided in Appendix A.
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4.4. AQM Results

The proposed method is implemented and evaluated in two experiment sets with
a single traffic class. The first experiment was conducted with a β value of 0.5 and all
α values. The second experiment is conducted with a β value of 0.3. Figure 13 illustrates
the evaluation based on loss, with β value of 0.5 and a single traffic class.
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Figure 13. Packet Loss-based Comparison at 0.5 Departure Rate.

As results showed, the proposed FREDGA method lost no packets regardless of the
arrival rate, similar to BLUE, LRED, FRED, and FCRED. FBLUE and ERED, on the other
hand, had suffered significant losses of 18% and 6% of the total number of packets sent
across the simulated network, respectively. An amount of 1% of the transmitted packets
were lost using the RED, IRED, and FGRED methods.

Figure 14 illustrates the evaluation results based on dropping with β value of 0.5 and
a single traffic class.

For the dropping, the proposed FREDGA method had a rate of 22%, which is better
than the results of the BLUE, which drops an average of 28% of the transmitted packets. As
for the rest of the methods that had no loss, LRED, FRED, and FCRED had a drop rate of
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21%, which is equivalent to the results obtained by the FREDGA method. However, it was
realized that the modest increase in the intended dropping rate of the proposed FREDGA
had greatly reduced the delay, as illustrated in Figure 15.
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Figure 15. Delay-based Comparison at 0.5 Departure Rate.

The average delay of the proposed FREDGA method for each packet was 7.57 while it
was 10.74 for LRED, 13.42 for FRED, and 16.74 for FCRED. As a result, compared to the
best methods, the proposed FREDGA method decreases the delay while maintaining no
loss and low drop.

Figure 16 illustrates the loss-based evaluation results under heavy load for the second
set of experiments with a low packet departure of 0.3.

As reported in the previous experiment, the results with a more congested network
at a departure rate of 0.3 showed that the proposed method FREDGA lost no packets,
similar to BLUE, LRED, and FCRED. A significant loss of 44% and 27% of the packets
transmitted across the simulated network, respectively, is experienced by the FBLUE and
ERED methods. While the FRED method lost 4% of the transmitted packets, FGRED lost
12%, and the RED and IRED methods lost an average of 1%.

Figure 17 illustrates the evaluation results based on dropping with β value of 0.3 and
a single traffic class.
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Figure 17. Packet Dropping-based Comparison at 0.3 Departure Rate.

For the dropping rate, in Figure 17, the proposed FREDGA dropped 48% of the
transmitted packets while BLUE dropped an average of 57%. As for the rest of the methods,
which had no loss, LRED and FCRED dropped 47% and 46% of the packets, respectively.
Again, it was realized that the modest increase in the intended dropping rate of the
proposed FREDGA had greatly reduced the delay, as illustrated in Figure 18.

As given in Figure 18, the average delay of the proposed FREDGA method was
16.23 while it was 28.04 for LRED and 40.23 for FCRED.

Similarly, for MMBP, the proposed method is implemented and evaluated with various
values for the arrival controller α1, with a single value for α2 of 0.5 and β set to 0.5. Figure 19
illustrates the evaluation results of the packet loss with 2-stated MMBP.

The results of the MMBP-based simulation confirmed the findings of the previous
experiments. For the loss, as illustrated in Figure 19, the proposed FREDGA method did not
lose any packets, similar to BLUE, LRED, FRED, FGRED, and FCRED. The FBLUE method
suffered a loss of 10% while RED, ERED, and IRED only lost 1% of the transmitted packets.

Figure 20 illustrates the evaluation results based on dropping with β value of 0.5 and
two-class traffic.
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Figure 19. Packet Loss-based Comparison for the MMBP Experiments.
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The dropping rate of the proposed FREDGA method is 14%, which is much better
than the results of the BLUE, which dropped an average of 22%. As for the rest of the
methods that had zero loss, LRED had a dropping rate of 15%, FRED reported a 14% drop,
FGRED reported a 13% drop, and FCRED reported a 14% drop.

The delay based on dropping with β value of 0.5 and two-class traffic is illustrated
in Figure 21.
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The average delay of the FREDGA method was 7.43 for each packet, 9.28 for LRED,
and 11.9 for FCRED.

The time for running the whole experiment for each method is reported in Table 8. As
noted, the proposed FREDGA required significantly less time compared to the linguistic
fuzzy-based methods, excluding the optimization time.

In summary, the proposed FREDGA method improved the delay and maintained
zero loss and a low dropping rate compared to the best methods reported in the litera-
ture. Moreover, the proposed FREDGA method required significantly less time than the
linguistic fuzzy-based methods, reducing the round-trip delay as the processing delay
reduced significantly.

Table 8. Running Time Comparison (Per second).

RED ERED BLUE LRED IRED FRED FGRED FBLUE FCRED FREDGA

β of 0.3 73 61 53 60 59 5840 8440 3801 26,613 942
β of 0.5 73 49 51 61 48 6025 7564 2757 26,882 1155
MMBP 91 77 71 74 76 5342 7015 4643 4289 944

5. Conclusions

This paper has proposed a new AQM method based on a precise fuzzy model with
GA optimization with a simple buffer counter of the queued packets, Q, as the congestion
indicator. The developed adaptive fuzzy-based AQM method aims to stabilize the AQM’s
performance. To do so, the proposed method is built on an adaptive calculation for
the Dp value. A precise fuzzy model, which replaced the fuzzy linguistic model for
AQM, was developed by utilizing GA optimization. The experiments showed that the
proposed method outperformed the compared methods in terms of delay and loss with low
computational requirements. The delay was improved by 29.5% in moderate single-class
traffic, 42.1% in heavy load single-class traffic, and 19.9% in two-class traffic compared to the



Symmetry 2023, 15, 1733 19 of 21

other methods. Zero loss was maintained in the proposed method, similar to BLUE, FCRED,
and LRED, with a good dropping rate that matches FCRED and LRED. The dropping rate
was improved by 21.4%, 15.7%, and 36.3% compared to BLUE. The proposed method
will be tested in a real-world environment using different models and protocols in the
future. Moreover, the proposed method shall be integrated with other counters, such as packet
delay and packet loss, to improve the method’s performance, especially during congestion.
Moreover, the precise fuzzy model will be used to replace the linguistic model in the state-of-
the-art methods, such as the LRED and FCRED, which showed high-performance results.
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Appendix A

The Optimization Results
The optimal values for b0, b1, and b2 parameters in the rule set are given in Table A1.

Table A1. Optimized Solution using GA.

b0 b1 b2 b0 b1 b2 b0 b1 b2

Rule 1–3 0.02 0.07 0 0.75 0.74 0.01 0.61 0.6 0.03

Rule 4–6 0.73 0.67 0.48 0.91 0.76 0.66 0.22 0.89 0.4

Rule 7–9 0.82 0.79 0.26 0.41 0.43 0.87 0.54 0.5 0.11
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