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Abstract: In this work, we suggest a new method for solving linear multi-term time-fractional wave-
diffusion equations, which is named the modified fractional reduced differential transform method
(m-FRDTM). The importance of this technique is that it suggests a solution for a multi-term time-
fractional equation. Very few techniques have been proposed to solve this type of equation, as will be
shown in this paper. To show the effectiveness and efficiency of this proposed method, we introduce
two different applications in two-term fractional differential equations. The three-dimensional and
two-dimensional plots for different values of the fractional derivative are depicted to compare our
results with the exact solutions.
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1. Introduction

The fractional derivative (FD) is a generality of the usual differentiation of integer
order to non-integer-order fundamental operator hDβ

x , where h and x are the bounds of the
operation and β ∈ R. Chen et al. [1] showed the theory of FD and its extensive applications
in mechanics and engineering. Important applications of fractional calculus (FC) include
vibration and control, anomalous diffusion, continuous-time random walk, non-local phe-
nomena, Levy statistics, and fractional Brownian motion [2]. Different approaches were
suggested to answer fractional differential equations (FDE): monotone iterative method, ex-
ponential rational function method, homotopy analysis method, and fractional variational
iteration method. Symmetry is a major concept in mathematics and physics, and it can be
used to shorten the solution of partial differential equations. Iskenderoglu and Kaya [3]
considered Lie symmetry analysis of the boundary and initial value problems for partial
differential equations with Caputo fractional derivatives.

Several phenomena are defined by fractional (non-integer) derivatives instead of
classical (integer) derivatives, for example, using fractional derivatives for the mathematical
modeling of viscoelastic materials. Abuasad et al. [4] suggested fractional multi-step
differential transformed method (FMsDTM) to catch approximate solutions to the fractional
stochastic SIS epidemic model.

The main reason for writing this paper is that there are various techniques established
for single-term fractional derivatives, while only a few works in multi-term fractional
derivatives are available. There are many practical applications of the time-fractional
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diffusion-wave equation (TFD-WE). It defines vital physical phenomena which appear
in amorphous, glassy, colloidal and porous materials; in fractals and percolating clusters;
comb structures; dielectrics and semiconductors; and also appear in polymers, biological
systems, random and disordered media, and geophysical and geological processes [5].
Diverse uses for multi-term time-fractional wave-diffusion differential equations have been
presented; for example, El-Sayed et al. [6] related the Adomian decomposition method
(ADM) with the proposed numerical method (PNM) to explain the multi-term non-linear
fractional differential equations. Daftardar-Gejji and Bhalekar [7] resolved fractional
multi-term linear and non-linear diffusion-wave equations with ADM. Daftardar-Gejji
and Bhalekar [8] used a variable separation technique to solve the equation for multi-
term fractional diffusion-wave equations subject to homogeneous and non-homogeneous
boundary conditions. Edwards et al. [9] indicated that an approximation of the numerical
solution to a multi-term linear FDE can be considered by reducing the problem to a
system of ordinary and FDEs each of a max order of one. Jiang et al. [5] explained the
multi-term time-fractional diffusion-wave equation by applying the method of separating
variables. Katsikadelis [10] established a numerical solution method for solving linear multi-
term FDEs; this technique depends on the concept of an analog equation that converts
the multi-term to a single-term fractional differential equation with a fictitious source.
Pskhua [11] presented an important solution of the multi-time diffusion equation with the
Dzhrbashyan–Nersesyan fractional differentiation operator for the time variables. Liu et
al. [12] proposed several numerical methods for simulating the two-term mobile/immobile
time-fractional diffusion equation, two-term time-fractional wave-diffusion equation, and
two computationally effective fractional predictor-corrector methods for the multi-term
time-fractional wave-diffusion equations. Li et al. [13] solved a two-dimensional multi-
term time-fractional diffusion equation using L1 discretization of each fractional derivative
and with a finite difference method. Shen et al. [14] derived an analytical solution to
the two-dimensional multi-term time-fractional diffusion and diffusion-wave equation by
separating the variables and properties of the multivariate Mittag–Leffler function. Jin
et al. [15] examined a space semi-discrete scheme depending on the standard Galerkin
finite element technique using continuous piece-wise linear functions. Dehghan et al. [16]
proposed a high-order difference method of MT-TFPDEs. Gholami et al. [17] offered a new
numerical approach for solutions of single and MT-TFDEs, in which the pseudospectral
operational matrix has a critical role. Zheng et al. [18] established a high-order numerical
method for MT-TFDEs. Agarwal et al. [19] argued for the existence and uniqueness of
solutions to a new class of multi-point and multi-strip boundary value problems of multi-
term fractional differential equations using standard fixed point theorems. Katsikadel
et al. [20] proposed a new iterative method (NIM) and a modified Adomian decomposition
method (MDM) to solve the MT-TFDE with different conditions. Chen et al. [21] presented a
unified numerical scheme for solving MT-TFDEs and a class of two-dimensional MT-TFDEs.
Zhao et al. [22] suggested the finite element method.

The fractional reduced differential transform method (FRDTM) mainly includes four
central stages: firstly, we find the fractional reduced transformed function; secondly, we
find the inverse of the fractional reduced transformed function; thirdly, we obtain the ap-
proximate the solution; and finally, using special functions, we attempt to discover the exact
solution. Gupta [23] suggested different applications to catch the approximate analytical
solutions of the Benney–Lin equation with fractional time derivatives using FRDTM and
the homotopy perturbation method (HPM). FRDTM was originally proposed by Keskin
and Oturance [24]. Different dimensions of non-linear fractional Burgers equations have
been solved by Mukhtar et al. [25] using FRDTM. Singh and Srivastava [26] used FRDTM to
offer an approximate series solution to the multi-dimensional diffusion equation. Abuasad
et al. [27] found the exact and approximate solutions of higher-dimensional time-fractional
diffusion equations using FRDTM. Abuasad et al. [28] submitted FRDTM for solving the
fractional Helmholtz equation. Saravanan and Magesh [29] connected binary analytical
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methods, FRDTM vs. FVIM, to obtain numerical solutions for the linear and non-linear
Fokker–Planck partial differential equations.

In Section 2, we provide definitions of two types of special functions as well as three
types of fractional derivatives. In Section 3, we introduce the definition and properties
of the FRDTM and then show four steps of the modified fractional reduced differential
transform method for the multi-term time-fractional diffusion-wave equations. Section 4
of this paper focuses on the practical applications and presents semi-analytical results.
Two specific examples are explored in this section: the first example involves solving the
two-term wave-diffusion equation, while the second example deals with the two-term
time-fractional diffusion equation. By examining these cases, we can gain valuable insights
into the effectiveness and applicability of the proposed methods. Moving on to Section 5,
we reach the conclusion of this paper. In this section, we summarize the main findings and
contributions of our study as well as highlight the importance of the results obtained.

2. Preliminaries

Several special functions have captivated the consideration of academics, for example,
the Millin–Ross function, the Error function, and the Wright function. We are motivated by
two of these special functions. The Mittag–Leffler function holds significant importance in
fractional calculus as it is frequently employed to express solutions in a concise manner.
By utilizing the definition of the Mittag–Leffler function, we can obtain the exact solution
after obtaining it in a compact form. Furthermore, the Gamma function plays a vital role in
defining fractional-order operations and is an integral component of the fractional calculus
framework.

2.1. Mittag–Leffler Function

The Mittag–Leffler (M-L) function is a generality of the familiar exponential function ex.
The one-parameter M-L function, represented in powers series, is [30]

Eγ(x) =
∞

∑
k=0

xk

Γ(γk + 1)
, γ > 0.

For particular integer values of γ, we obtain

E0(x) =
1

1− z
, E1(x) = ex,

E2(x) = cosh(
√

x).

While the two-parameter M-L function can be defined as

Eγ,β(x) =
∞

∑
k=0

xk

Γ(γk + β)
, γ > 0, and β > 0.

For distinct selections of the two parameters, γ and β, we gain the well-known tradi-
tional functions

E1,1(x) = E1(x) = ex, E1,2(x) =
ex − 1

x
,

E2,1(x2) = cosh(x), E2,2(x2) =
sinh(x)

x
.

2.2. The Gamma Function

The Gamma function, Γ(z), extends the concept of factorials to real arguments. The
Gamma function can be defined as [30]

Γ(z) =
∫ ∞

0
e−ttz−1 dt, z > 0,

which is convergent on the right side of the complex plane <(z) > 0.
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2.3. Fractional Derivative

Several special definitions are presented for the fractional derivative. The commonly
used definitions for the overall fractional derivatives are the Riemann–Liouville (RL), the
Grünwald–Letnikov operator (GLO), and the well-known Caputo definition [30–32].

2.3.1. Grünwald–Letnikov Operator

The Grünwald–Letnikov operator (GLO) is given as

aDα
t f (t) = lim

h→0
h−α

[ t−α
h ]

∑
j=o

(−1)j
(

α
j

)
f (t− jh),

where [.] means the integer part, which represents the derivative of order m in the case
when α = m, and the m-fold integral in the case when α = −m.

2.3.2. Riemann–Liouville Derivative

The Riemann–Liouville (RL) derivative is defined as [33]

Dα
a f (t) =


1

Γ(n− α)

dn

dtn

∫ t

a

f (τ)
(t− τ)α+1−n dτ, n− 1 < α < n,

dn

dtn f (t), α = n,

where n ∈ N, N is the set of all natural numbers, and α > 0, t > a, with α, a, t ∈ R, where
R represents the set of all real numbers.

2.3.3. Caputo Fractional Derivative

The Caputo fractional derivative is defined as [34]

cDα
t g(t) :=


1

Γ(n− α)

∫ t

a

g(n)(τ)
(t− τ)α+1−n dτ, n− 1 < α < n,

dn

dtn g(t), α = n,

where n ∈ N, and α > 0, t > a, with α, a, t ∈ R. The small c in the top left of cD refers to
the Caputo fractional derivative.

2.3.4. Relation between the Riemann–Liouville Operator and Caputo Operator

The relation between the RL operator and Caputo operator is given by [23]

cDβ
a w(x, t) = Dβ

a

[
w(x, t)−

n−1

∑
h=0

uh(x, a)
(t− a)h

h!

]
.

3. Fractional Reduced Differential Transform Method (FRDTM)

To explain the FRDTM, we provide its essential definitions and necessary properties.
Consider a function of (n + 1) variables µ(t, x1, x2, . . . , xn), such that

µ(t, x1, x2, . . . , xn) = µ1(x1)µ2(x2) · · · µn(xn)h(t),

then we have, from the properties of the one-dimensional differential transform method
(DTM), that
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µ(t, x1, x2, . . . , xn) =
∞

∑
i1=0

µ1(i1)xi1
1 · · ·

∞

∑
in=0

µn(in)xin
n

∞

∑
j=0

h(j)tj

=
∞

∑
i1=0
· · ·

∞

∑
in=0

∞

∑
j=0

Mk(i1, . . . , in, j)xi1
1 · · · x

in
n tj,

where Mk(i1, i2, . . . , in, j) = µ1(i1)µ2(i2) · · · µn(in) h(j) is referred to as the spectrum of
µ(t, x1, x2, . . . , xn), for k = 0, 1, 2, . . . . Furthermore, the lowercase µ(t, x1, x2, . . . , xn) is used
to represent the original function, while its fractional reduced transformed function is
represented by the uppercase Mk(x1, . . . , xn), which is called the T-function.

Table 1 provides the specific properties of the FRDTM, where δ(a− b) is

δ(a− b) =
{

1, a = b,
0, a 6= b,

where τ = τ(t, x1, x2, . . . , xn), µ = µ(t, x1, x2..., xn), Tk = Tk(x1, x2, . . . , xn), and
Mk = Mk(x1, x2, . . . , xn).

Table 1. Fundamental operations of the FRDTM [28,35–37].

Original Function Transformed Function

c1µ± c2τ c1 Mk ± c2Tk
µτ ∑k

i=0 MiTk−i

Dmα
t µ Γ(kα + mα + 1)

Γ(kα + 1)
M(k + m)

∂hµ

∂xh
i

∂h Mk

∂xh
i

, i = 1, 2, . . . , n

xm
i tr xm

i δ(k− r), i = 1, 2, . . . , n
xm

i trµ xm
i Mk−r, i = 1, 2, . . . , n

Modified Fractional Reduced Differential Transform Method for Multi-Term Time-Fractional
Diffusion-Wave Equations

In this part, we present the introduction of the Fractional Reduced Differential Trans-
form Method (FRDTM) for multi-term time-fractional diffusion-wave equations. Previous
studies [26–28,36,38] have proposed the FRDTM for single-term time-fractional equations;
however, Abuasad et al. [39] suggested a new modification to the FRDTM, specifically
tailored for non-homogeneous linear multi-term time-fractional diffusion equations (MT-
TFDEs) with constant coefficients in a certain bounded domain and appropriate initial
conditions. This modified approach, known as the modified fractional reduced differ-
ential transform method (m-FRDTM), allows for the exact and approximate solutions of
MT-TFDEs to be obtained. We need to test more applications to ensure that this modi-
fied method is effective for different types of multi-term time-fractional diffusion-wave
equations. n

∑
i=1

Dαi
t µ(t, X) + a

∂βµ(t, X)

∂tβ
= b

m

∑
j=1

∂2µ(t, X)

∂x2
j

+ g(t, X), (1)

where X = (x1, x2, . . . , xm); n, m and β are natural numbers; 0 ≤ t ≤ T, T ∈ R+, where
R+ is the set of positive real numbers; 0 ≤ xj ≤ L, j = 1, 2, · · · , m, where L ∈ R+; and
αi > 0, i = 1, 2, · · · , n, with the initial condition µ(0, X) = µ0(t, X) and the arbitrary integer
constants a and b, not both of them equal zero.

Equation (1) represents the time-fractional diffusion-wave equation if 1 < αi < 2 and a
fractional diffusion equation if 0 < αi < 1. When αi = 2, Equation (1) represents a traditional
wave equation, while if αi = 1 it represents a traditional diffusion equation.

There are four steps for solving the multi-term time-fractional wave-diffusion equa-
tions using m-FRDTM:
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Step 1: Finding the Fractional Reduced Transformed Function (FRTF)

Let µ(t, X) be an analytical and continuously differentiable with respect to m + 1
variables t and X in the specified domain D; thus, the m–FRDTM in m-dimensions of
µ(t, X) is given by

Mk(X) =
1

Γ(k ∑n
i=1 αi + 1)

[
n

∑
i=1

Dαik
t (µ(t, X))

]
t=t0

, (2)

where k = 0, 1, 2, . . . .

Step 2: Finding the Inverse of FRTF

The inverse FRDTM of Mk(X) is defined by

µ(t, X) :=
∞

∑
k=0

Mk(X)(t− t0)
k ∑n

i=1 αi . (3)

By substituting Equation (2) into Equation (3), we obtain

µ(t, X) =
∞

∑
k=0

1
Γ(k ∑n

i=1 αi + 1)

[
n

∑
i=1

Dαik
t (µ(t, X))

]
t=t0

(t− t0)
k ∑n

i=1 αi .

In particular, for t0 = 0, the above formula becomes

µ(t, X) =
∞

∑
k=0

1
Γ(k ∑n

i=1 αi + 1)

[
n

∑
i=1

Dαik
t (µ(t, X))

]
t=0

tk ∑n
i=1 αi .

Step 3: Finding the Approximate Solution

The inverse transformation of the set of values {Mk(X)}z
k=0, where z = 0, 1, 2, . . .,

offers the approximate solution of the function µ(t, X) as a finite power series, where
z represents the order of the approximate solution

µ̃z(t, X) =
z

∑
k=0

Mk(X)tk ∑n
i=1 αi , (4)

where Mk(X) in (4) for MT-TFDE (1) can be described as

n

∑
i=1

Γ(kαi + 1)
Γ((k− 1)αi + 1)

Mk(X) + a
Γ(kβ + 1)

Γ((k− 1)β + 1)
Mk(X) =

b
m

∑
j=1

∂2M(k−1)(X)

∂x2
j

+ G(X),

where G(X) represents the FRDTM of g(t, X) and can be established from Table 1.

Step 4: Finding the Exact Solution

The exact solution by means of the m-FRDTM is specified by

µ(t, X) = lim
z→∞

µ̃z(t, X).

4. Semi-Analytical Examples

In this section, we present two examples, first for a two-term wave-diffusion equation
and the other for a two-term time-fractional diffusion equation. This is to show the
importance and effectiveness of the m-FRDTM in solving different types of multi-term
time-fractional wave-diffusion equations.

4.1. Example 1: (Two-Term Wave-Diffusion Equation)

Let this two-term wave-diffusion equation possess damping with 1 ≤ α < 2:
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Dα
t µ(x, t) +

∂µ(x, t)
∂t

=
∂2µ(x, t)

∂x2 + g(x, t), (5)

subject to the initial condition (I.C.)

µ(x, 0) = µ0(x, t) = 0, (6)

where t ∈ [0, 1], x ∈ [0, 1], and

g(x, t) =
(

3t2 − t3 +
6t3−α

Γ(4− α)

)
ex.

Applying the properties from Table 1 to Equation (5), we obtain the recurrence relation

Mk+1(x) =
Γ(kα + 1)

(k + 1)Γ(kα + 1) + Γ((k + 1)α + 1)

(
∂2Mk(x)

∂x2

+ 2exδ(k− 1)− exδ(k− 2) +
2exδ(k− 2 + α)

Γ(3− α)

)
, (7)

for k = 0, 1, 2, . . ..
From Equation (7), the inverse transform coefficients of tkα are set as

U0(x) = 0,

U1(x) =

 6ex

7
, α = 3,

0, True,

U2(x) =



3ex

7
, α = 2,

3ex

427
, α = 3,

0 True,

U3(x) =



428ex

72163
, α = 3,

8ex

77
, α = 2,

ex, α = 1,

3exΓ(2α + 1)
3Γ(2α + 1) + Γ(3α + 1)

, True,

....

After a few number of iterations, the differential inverse transform of {Mk}∞
k=0 pro-

vides the resulting series of solutions
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µ(x, t) =
∞

∑
k=0

Mk(x)tkα, (8)

= M0(x) + M1(x)tα + M2(x)t2α + M3(x)t3α + · · · ,

µ3(x, t) =



3ex

4
, α = 0,

t3ex, α = 1,

1
77

t4
(

8t2 + 33
)

ex, α = 2,

3exΓ(2α + 1)
3Γ(2α + 1) + Γ(3α + 1)

, α 6= 0, α 6= 1, α 6= 2.

If α = 1, then the m-FRDTM solution (8) gives the exact solution of the non-fractional
diffusion equation in (5), subject to the initial conditions in (6)

µ(x, t) = t3ex,

which is the matching outcome achieved in [12]; while for the fractional-order, we can
obtain the approximate solutions for different selected values of α:

µ3(x, t) = 0.114609t5.7ex, α = 1.9,

µ3(x, t) = 0.175913t5.1ex, α = 1.7,

µ3(x, t) = 0.25589t4.5ex, α = 1.5,

µ3(x, t) = 0.350459t3.9ex, α = 1.3,

µ3(x, t) = 0.450908t3.3ex, α = 1.1.

We can write the general form of the approximate solutions of the problem in (5),
subject to the initial condition in (6), as

µ3(x, t) = at3(α)ex, 1 ≤ α < 2,

where a ∈ R+, 0 ≤ a ≤ 1.
To clarify the results for the example in Section 4.1, it is possible to compare the

non-fractional exact solution with the approximate solutions for m-FRDTM with a three-
dimensional drawing of different selected values of fractional order α (α = 2, 1.7, 1) in
Figure 1. It is also appropriate to draw the absolute error between the exact solution and
the three-term approximate solution for m-FRDTM (when α = 1) in Figure 2. The figure
clearly shows that the maximum absolute error is 4× 10−16, while to compare our results
in the two-dimensional plot for the approximate solutions of different values of α and the
exact solution of non-fractional order, we plot Figure 3. The approximate solutions in the
two-dimensional schemes for α = 2 are shown for different values of x in Figure 4.

(a) (b)

Figure 1. Cont.
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(c) (d)
Figure 1. (a) Non-fractional exact solution, (b) α = 2 (three-term FRDTM), (c) α = 1.7, and (d) α = 1.

Figure 2. The absolute error between the exact solution and the three-term approximate solution for
the m-FRDTM µ3 when α = 1.

ExactHnon-fractionalL

alpha=1.2

alpha=1.4

alpha=1.6

alpha=1.8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3. The three-term FRDTM solutions µ3 for α = 1 (exact), 1.2, 1.4, 1.6, 1.8; t ∈ [0, 1] and x = 0.5.

x=0.1

x=0.3

x=0.5

x=0.7

x=0.9

x=1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The three-term FRDTM solutions µ3 for x = 0.1, 0.3, 0.5, 0.7, 0.9, 1; α = 2; t ∈ [0, 1].
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4.2. Example 2: (Two-Term Time-Fractional Diffusion Equation)

Consider the two-term time-fractional diffusion equation [17]

Dα1
t µ(x, t) + Dα2

t µ(x, t)− 4
∂2µ(x, t)

∂x2 = f (x, t), (x, t) ∈ [−1, 1]× [0, 1], (9)

subject to the initial condition

µ(x, 0) = µ0(x, t) =
1
4

(
1− x2

)
, (10)

where 0 ≤ αi < 1, i = 1, 2 and

f (x, t) =
t2−α1

Γ(3− α1)

(
1− x2

2

)
+

t2−α2

Γ(3− α2)

(
1− x2

2

)
+ 2(1 + t2).

Using the right properties from Table 1 in Equation (9), we obtain the resulting recur-
rence relation

Mk+1(x) =
Γ(kα1 + 1)Γ(kα2 + 1)

Γ((k + 1)α1 + 1)Γ(kα2 + 1) + Γ(kα1 + 1)Γ((k + 1)α1 + 1)

×
[

1
2

(
1− x2

)( δ(k + 1, 3− α)

Γ(3− α)
+

δ(k + 1, 3− β)

Γ(3− β)

)
+ 2(δ(k + 1, 3) + 1) + 4

∂2M(k)
∂x ∂x

]
, (11)

where k = 0, 1, 2, . . ..
From Equation (11), we obtain the inverse transform coefficients of tk(α1+α2) as follows:

M0(x) =
1
4

(
1− x2

)
,

M1(x) = 0, (α1 = 0∧ α2 = 1) ∨ (α1 = 1∧ α2 = 0),

M2(x) =



1
6

(
5− x2

)
, (α1 = 0∧ α2 = 1) ∨ (α1 = 1∧ α2 = 0),

1
4

(
3− x2

)
, α1 = α2 = 1,

−
α2
(
x2 − 5

)
Γ(α2)

2(2Γ(α2 + 1) + Γ(2α2 + 1))
, α1 = 1,

−
α1
(
x2 − 5

)
Γ(α1)

2(2Γ(α1 + 1) + Γ(2α1 + 1))
, α2 = 1,

M3(x) =



1
48

(
35− 3x2

)
, (α1 = 0∧ α2 = 1) ∨ (α1 = 1∧ α2 = 0),

1
3

, α1 = α2 = 1,

4Γ(2α2 + 1)(Γ(α2 + 1) + Γ(2α2 + 1))
(2Γ(α2 + 1) + Γ(2α2 + 1))(3Γ(2α2 + 1) + Γ(3α2 + 1))

, α1 = 1,

4Γ(2α1 + 1)(Γ(α1 + 1) + Γ(2α1 + 1))
(2Γ(α1 + 1) + Γ(2α1 + 1))(3Γ(2α1 + 1) + Γ(3α1 + 1))

, α2 = 1,

....



Symmetry 2023, 15, 1721 11 of 14

After a few number of iterations, the differential inverse transform of {Mk}∞
k=0 offers

the resulting series of solutions

µ(x, t) =
∞

∑
k=0

Mk(x)tk(α1+α2),

= M0(x) + M1(x)t(α1+α2) + M2(x)t2(α1+α2) + M3(x)t3(α1+α2)

+ · · · .

If α1 = α2 = 1, then the third-approximate solution of the two-term time-non-
fractional diffusion equation in (9), subject to the initial condition in (10), is

µ3(x, t) =
t6

3
+

1
4

t4
(

4
(

x− x2
)
+ 2
)
+ (1− x)x.

The actual solution of the non-fractional diffusion equation in (9), subject to the initial
condition in (10), was given in [15] as

µ(x, t) =
1
4

(
t2 + 1

)(
1− x2

)
.

The approximate solutions for different values of α1 and α2 are

µ3(x, t) =
1
4

t3
(

1
4

(
1− x2

)
+

8
3

)
+

1
3

t2
(

1
2

(
1− x2

)
+ 2
)
+

1
4

(
1− x2

)
,

(α1 = 0∧ α2 = 1) ∨ (α1 = 1∧ α2 = 0), non-fractional,

µ3(x, t) = 0.628591t4.5 + 0.319654t3
(

0.5
(

1− x2
)
+ 2
)
+ 0.25

(
1− x2

)
,

α1 = 1, α2 = 0.5, fractional-one term,

µ3(x, t) = 1.50451t3 + 0.886227t2 + 0.25
(

1− x2
)

,

α1 = α2 = 0.5, fractional-two term.

The three-dimensional schemes of the FRDTM solutions of (9) with the initial
condition (10) are presented in Figure 5 for different values of α1 and α2.

(a) (b)
Figure 5. Cont.
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(c) (d)
Figure 5. (a) The exact solution and the three-term FRDTM solutions µ3 for (b) α1 = 1, α2 = 0.5;
(c) α1 = 1, α2 = 0; and (d) α1 = 0.2, α2 = 1; with x ∈ [0, 1], t ∈ [0, 0.5].

5. Conclusions

In this study, we applied a new method, termed m-FRDTM, to solve multi-term
time-fractional wave-diffusion equations. It should be noted that the methods for solving
multi-term time-fractional wave-diffusion equations are limited, as dealing with single-term
time-fractional wave-diffusion equations is straightforward. Therefore, the significance
of this study lies in the qualitative addition of the fractional calculus, by emphasizing the
position of the m-FRDTM for solving different types of multi-term fractional diffusion
equations. In future work, we will test more real-world applications of m-FRDTM for
solving fractional wave-diffusion equations.
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version of the manuscript.
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