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Abstract: Fuzzy neural networks have both the interpretability of fuzzy systems and the self-learn-

ing ability of neural networks, but they will face the challenge of “rule explosion” when dealing 

with high-dimensional data. Moreover, the structure and parameter identifications of models are 

generally performed in two stages, and this always a�ends to one thing and loses another in terms 

of interpretability and predictive performance. In this paper, a fuzzy neural network regression 

method (FNNR) that coordinates structure identification and parameter identification is proposed. 

To alleviate the problem of rule explosion, the structure identification and parameter identification 

are coordinated in the training process, and the numbers of fuzzy rules and fuzzy partitions are 

effectively limited, while the parameters of fuzzy rules are optimized. The symmetrical architecture 

of the FNNR is designed for automatic structure identification. An alternate training strategy is 

adopted by treating discrete and continuous parameters differently, and thus the convergence effi-

ciency of the algorithm is improved. To enhance interpretability, regularized terms are designed 

from fuzzy rule level and fuzzy partition level to guide the model to learn fuzzy rules with simple 

structures and clear semantics. The experimental results show that the proposed method has both a 

compact structure and high precision. 

Keywords: fuzzy neural networks; TSK fuzzy systems; regression; interpretability; symmetrical  

architecture 

 

1. Introduction 

Fuzzy neural networks (FNNs) [1] have both interpretability and a self-learning abil-

ity, achieved by combining fuzzy systems [2,3] and neural networks, and they are im-

portant parts of the prevailing eXplainable Artificial Intelligence (XAI) field [4]. The FNN 

can learn a set of fuzzy IF-THEN rules with appropriate linguistic labels from data, so that 

it is easy to understand the decision-making process of the model. In addition, the FNN can 

improve its performance via an iterative algorithm. With a powerful capability for knowledge 

representation and learning, FNNs have been widely applied to related fields [5–9]. 

The identifications of FNNs can be divided into two parts: structure identification 

and parameter identification [10]. Structure identification refers to finding appropriate 

fuzzy partitions for the input space and determining the number of fuzzy rules. Parameter 

identification means determining the parameters of the antecedents and consequents of 

the fuzzy rules. In structure identification, the key work is to determine the number of 

fuzzy rules. Too many fuzzy rules will increase the complexity of the model, reduce in-

terpretability, and easily lead to overfi�ing, while too few fuzzy rules will affect the per-

formance of the model. 

The adaptive network-based fuzzy inference system (ANFIS) [11] is a well-known 

model of FNN based on the TSK fuzzy inference system [2]. The traditional ANFIS uses 
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the grid-based method for structure identification, that is, for features of size M, the num-

ber of fuzzy rules is HM  when the fixed H-grid method is used. In terms of parameter 

identification, the gradient descent method, the least square method, or a combination of 

both is adopted by the ANFIS. For ANFIS and its variant models [11–13], the number of 

fuzzy rules is usually fixed so that the number of rules can be very large for data with high 

characteristic dimensions. 

To alleviate “rule explosion”, some examples from the literature [14,15] transfer input 

variables to a new feature space in advance by feature dimension reduction, such as the 

principal component analysis (PCA), and then carry out the structure and parameter iden-

tifications in this new space. For example, [15] restricts the maximum feature dimension 

to five and utilizes the PCA if the feature number exceeds five. Some studies [16–20] use 

methods based on clustering, such as fuzzy c-means (FCM) [21], Gustafson–Kessel clus-

tering [22], and k-nearest neighbor clustering (KNN), to obtain a small number of fuzzy 

rules and then use local search methods, such as the gradient descent method, linear least 

square method (LLS), Levenberg–Marquardt (LM) method, extreme learning machine 

(ELM), and so on, to adjust the parameters. For example, [17] proposes a fuzzification 

method for the FNN based on Bayesian clustering. In that paper, a fuzzification technique 

based on the concepts of FCM is used, but with a Bayesian approach to optimize the as-

signment processing. For methods based on clustering, the clustering number often needs 

to be determined in advance. Considering that the clustering number has a great impact 

on the performance and interpretability of the model, some studies [23–25] utilize cross-

validation or clustering validity indicators to determine it, but this is limited in effective-

ness [26]. How to interpret the obtained clustering is also an essential problem. It has been 

pointed out that the fuzzy partitions obtained through clustering may overlap and lack 

semantics [27]. Some studies [28,29] remove redundant and unnecessary rules through 

rule reduction and rule pruning to reduce the number of rules to a certain extent. For 

example, a growing-and-pruning algorithm (GP) is proposed in the literature [29]. In GP, 

new rules are added, and useless rules are eliminated through a sensitivity analysis of the 

model output. Some works [30,31] alleviate the problem of rule explosion by using a hi-

erarchical structure. For example, [30] proposes a novel hierarchical hybrid FNN to rep-

resent systems with mixed-input variables. Several fuzzy sub-systems on the lower level 

randomly aggregate several discrete input variables into intermediate outputs, and a neu-

ral network whose input variables consist of continuous input variables and intermediate 

variables is the higher layer, thereby reducing the input dimension and the number of 

fuzzy rules. However, there is no general approach to selecting suitable discrete features 

for combination. 

In the studies of FNNs, structure and parameter identifications are usually carried 

out separately, that is, the numbers of fuzzy rules and fuzzy partitions are determined 

first, and then the parameters of the rules are adjusted. Parameter identification is gener-

ally divided into two stages: the adjustment of antecedent parameters and the adjustment 

of consequent parameters, and different methods are selected according to the character-

istics of these two parameters. This learning strategy has the advantage of low time com-

plexity, but it cannot capture the internal correlation of various parameters and so it is 

difficult to find the optimal solution in the whole parameter space. To coordinate structure 

identification and parameter identification, meta-heuristic search methods such as particle 

swarm optimization algorithms and evolutionary algorithms are considered in some of 

the literature [32–34]. In these algorithms, all parameters to be learned, such as the number 

of rules and parameters of membership functions (MFs), are simultaneously encoded into 

a long and complex chromosome for joint optimization. For example, a self-organizing 

FNN based on the genetic algorithm is proposed in the literature [33], and a hybrid algo-

rithm based on genetic algorithms, backpropagation, and recursive least square estima-

tion is adopted to adjust all parameters, including the number of fuzzy rules. Moreover, 

the multi-objective evolutionary algorithm is regarded as a cooperative method for struc-

ture identification and parameter identification, and it has been used to construct FNNs 
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with high prediction accuracy and a simple structure [35,36]. However, these meta-heu-

ristic search methods have high requirements for memory and computing resources. 

Based on the previous study [37], a fuzzy neural network regression method (FNNR) 

with high precision and a compact structure is proposed. Compared with traditional 

FNNs, the proposed FNNR changes the structure and training mode of the network so 

that the number of fuzzy rules and the number of fuzzy partitions can be limited effec-

tively by the gradient descent method, thereby alleviating the problem of rule explosion. 

In the FNNR, the optimization of all parameters, including the fuzzy partition number, 

the fuzzy rule number, parameters of antecedents, and consequent parameters, is incor-

porated into the training process, and these parameters are adjusted synergistically by the 

gradient descent method. On this basis, the alternate training strategy is designed and 

utilized for different types of parameters to help the algorithm converge to the global op-

timal solution. To further enhance the interpretability, regularization terms are designed 

from fuzzy rule level and fuzzy partition level to guide the model to realize high precision 

with a simple structure and clear semantics. By comparisons with some representative 

regression models based on fuzzy rules and the classical regression method, it is proven 

that the proposed FNNR can achieve high prediction accuracy with high interpretability. 

The main contributions are as follows: 

1. A new structure and training mode of the FNN is designed for regression problems, 

and thus the numbers of fuzzy rules and fuzzy partitions can be learned automati-

cally by the gradient descent method, thereby eliminating the implicit relationship 

between the number of rules and the number of features and fuzzy partitions, mean-

while effectively alleviating the problem of rule explosion. 

2. The structure and parameter identifications of the FNN are considered as a whole, 

which means that the number of fuzzy partitions, the number of fuzzy rules, the MF 

parameters of antecedents, and the parameters of the consequent are adjusted and 

tuned at the same time. On this basis, an alternate training strategy is designed to 

help with the algorithm convergence and find the optimal solution in the whole pa-

rameter space without any pre-processing or post-processing. 

3. The interpretability of the model is measured from both the fuzzy rule level and 

fuzzy partition level, and the measurement is introduced to the training process in 

terms of regularization. Therefore, the trained model has high precision with a simple 

structure and clear semantics. 

The remainder of this paper is organized as follows. The TSK fuzzy rules and the 

definition of the fuzzy neural network classifier (FNNC) that we studied earlier are intro-

duced in Section 2. In Section 3, the methodology of the FNNR is proposed. Section 4 

discusses the experimental results of the comparisons of the proposed FNNR with other 

benchmark methods. Conclusions and future works are offered in Section 5. 

2. Preliminaries 

2.1. The TSK Fuzzy Rules 

The Takagi–Sugeno–Kang (TSK) fuzzy system proposed by Takagi, Sugeno, and 

Kang [2] is one of the most famous fuzzy systems with a simple structure and a good 

nonlinear approximation ability. For a TSK fuzzy system with multiple inputs and a single 

output, the form of fuzzy rules is shown in Equation (1): 

1 1 0 1 1Rule : if is and... and is , then ...k k k k k k k
M M M MR x A x A p p x p xy     (1)

where kR  denotes the kth rule, and 1,...,k K . mx  represents the mth input fuzzy variable 

(feature), and 1,...,m M . { , ( ) | }k
m

k
m A

A x x x U     is the fuzzy set of mx , and [0,1]U  . 

:[0,1] [0,1]k
mA

    denotes the MF of 
k
mA  , 

ky   is the consequent output of kR  , and 
k
mp  

represents the linear function coefficients of the consequent. The “and” is the connective 
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of the rule. The antecedents of the fuzzy rule can also be connected by the connective “or”, 

which can be realized by simply replacing the “and” with the “or” in Equation (1). 

For the sample data ( , )yd x , the fuzzy reasoning method of the TSK fuzzy system 

is shown below: 

(1) Calculate the firing strength. The firing strength 
kf  of the feature vector x  on kR  

shown in Equation (1) is calculated as follows: 

1
1( ) ... ( )k k

M

k
MA A

f x x     (2)

where   represents the fuzzy intersection operator (T-norm operator). If the connective 

is “or”, you just need to change the fuzzy intersection operator of Equation (2) to the fuzzy 

union operator (S-norm operator), which is expressed by  . 

(2) Calculate the normalized firing strength. The normalized firing strength kf  of the 

feature vector x  on kR  is calculated as follows: 

1

K
k k k

k

f f f


   (3)

(3) Calculate the output. The output y  of the feature vector x  on K fuzzy rules is cal-

culated as follows: 

1

K
k k

k

y f y


   (4)

2.2. The FNNC 

The FNNC consists of three different layers: the fuzzification layer, the fuzzy logic 

layer, and the classification layer. 

 The fuzzification layer is utilized to translate crisp input features into fuzzy variables. 

Gaussian MFs are utilized. The parameters of Gaussian MFs are determined based 

on experience before the training and remain unchanged during the training. 

 The fuzzy logic layers are used to represent fuzzy rules. Let {0,1}ijr   denote the 

parameter of fuzzy logic layers, where j is the jth node of the fuzzy logic layer, and i 

is the ith node of the previous layer (the same below). The nodes of fuzzy logic layers 

represent “and” and “or” connectives in fuzzy rules through fuzzy intersection op-

erators and fuzzy union operators. Through the connecting and stacking of multiple 

fuzzy logic layers, complex fuzzy rules can be represented. 

 The classification layer is for integrating the outputs of fuzzy logic layers and giving 

the final classification. The number of nodes in the classification layer is the same as 

the number of class labels. 

To perform structure and parameter identifications through the iterative algorithm 

of the neural network, the FNNC-d, the symmetrical structure of the FNNC is designed. 

The difference between the two lies in the parameters of fuzzy logic layers. In the FNNC-

d, the parameters of fuzzy logic layers denoted by îjr  are continuous real numbers, i.e., 

ˆ [0,1]ijr  . The two parameters can be converted by the function :[0,1] {0,1}q  : 

ˆ 0.5
ˆ( )

ˆ1 0.5

0 ij

ij ij
ij

r
q r r

r


  


 (5)

On this basis, a parameter conversion method during the training process is designed. 

The FNNC can be utilized for training, testing, and interpreting, while the FNNC-d is only 

used for training. The gradient-updating formula of the FNNC is shown in Equation (6): 

1
ˆ( ) ( )t t

t

Y Y

Y
  


  
  

 


 (6)
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where t  represents the parameter of the FNNC-d at step t,   is the learning rate, and 

( )  is the loss function. Y  and Ŷ  refer to the outputs of the FNNC and the FNNC-d, 

respectively. 

3. The FNNR 

In this chapter, a novel regression method of FNN named FNNR is proposed. In the 

FNNR, the structure identification and parameter identification are completed coopera-

tively, which gives the model high prediction accuracy with a simple structure and clear 

semantics. 

3.1. The Structure of the FNNR 

The structure of the FNNR is shown in Figure 1. The model consists of five different lay-

ers: the fuzzification layer, fuzzy logic layers, normalization layers, consequent layers, and the 

sum layer. Each layer contains several neurons, and the neurons are connected by edges. 

 

Figure 1. The structure of the FNNR. 

Let L  denote the layer number of the FNNR, where 1 1L G G G     . G  is the 

layer number of fuzzy logic layers and 1G  . The first layer is the fuzzification layer for 

translating crisp input features into fuzzy variables. The middle G layers are fuzzy logic 

layers (same as the fuzzy logic layers in the FNNC). The nodes “  ” and “ ” refer to the 

fuzzy intersection operator and the fuzzy union operator, respectively, and the output of 

each node is the firing strength 
kf  of the corresponding rule. The first fuzzy logic layer 

accepts the outputs of the fuzzification layer as the inputs, and the multiple fuzzy logic 

layers represent complex fuzzy rules by connecting with each other. The number of nodes 

“  ” and “ ” in each fuzzy logic layer and the layer number (G) can be determined ac-

cording to the complexity of the task. Skip connections are added between fuzzy logic 

layers to conveniently express concise rules. The subsequent G layers are normalization 

layers for normalizing the firing strength 
kf  output by the node in fuzzy logic layers. 

The next G layers are consequent layers for representing and calculating the consequent 

outputs of TSK rules. The last layer is the sum layer, which is used to calculate the final 

prediction. The normalization layers, consequent layers, and the sum layer are collectively 

called output layers. 

The FNNR is a novel FNN model. In terms of form, like the neural network, the 

FNNR is composed of multi-layer neurons. The knowledge is acquired from the sample 

data and parameters are adjusted through training. In terms of the calculation process, the 

FNNR equals a TSK fuzzy system that can learn automatically. By designing the functions 

of different nodes, the superpositions of neurons between layers are transformed into the 

fuzzy logic operation, the fuzzy rule combination, and the fuzzy reasoning. Therefore, the 
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training process of the FNNR is the process of structure and parameter identifications of 

the TSK fuzzy system. The key details of the FNNR are introduced in detail below. 

3.1.1. The Fuzzification Layer 

The fuzzification layer is utilized to translate the crisp input feature vector 

1( ,..., )Mx xx  into fuzzy linguistic variable values (fuzzy sets). Let H denote the number 

of MFs of each feature, then there are M H  nodes in the fuzzification layer. The node 

of the fuzzification layer is represented by mhA , which refers to the hth fuzzy set of mx , 

1,...,m M , and 1,...,h H . The Gaussian MFs are used to represent the fuzzy sets. To 

improve the prediction accuracy, the parameters of Gaussian MFs are adjusted during the 

training. In addition, considering that different features may use different fuzzy parti-

tions, an additional fuzzy partition parameter, {0,1}mhe  , is introduced, which refers to 

whether the hth fuzzy set of mx  is retained: 1mhe   means keeping the hth fuzzy set, oth-

erwise, the hth fuzzy set is discarded. Therefore, the output of the node mhA  is shown in 

Equation (7): 

2

2

( )
( ) exp( )

2mh

m mh
m mh

h

A

m

x c
x e




   (7)

where ( ) [0,1]
mh mA x   refers to the fuzzy value of mx  on the fuzzy set mhA , and mhc  and 

mh  are the mean and standard deviation of the Gaussian MF, respectively. The parame-

ters of the fuzzification layer are shown in Figure 2. 

 

Figure 2. The parameters of the fuzzification layer of the FNNR. 

It should be noted that the introduction of the fuzzy partition parameter mhe  can not 

only control the number of fuzzy sets used for each feature but can also indirectly control 

the number of input variables. Specifically, when the fuzzy partition parameters corre-

sponding to mx   are all zeros, that is, 1 ,..., =0 0m mHe e  , then mx   is equivalent to being 

discarded and has no contribution to the prediction result. 

To enable mhe , a discrete parameter, to be trained by the gradient descent and the 

back propagation algorithm, the FNNR-d is designed as the symmetrical model of the 

FNNR, and the fuzzy partition parameter of the FNNR-d, ˆ
mhe , is set to the continuous 

value of the real-value range of [0, 1]. The same as Equation (5), ˆ
mhe   and mhe   can be 

transformed by the function ( )q  : 

ˆ0
ˆ

ˆ

0.5
( )

1 0.5
mh

mh mh

mh

eq
e

e
e


  


 (8)

The FNNR and the FNNR-d share the parameters of Gaussian MFs in the fuzzifica-

tion layer. 
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3.1.2. The Output Layers 

The output layers consist of normalization layers, consequent layers, and one sum 

layer. They are used to integrate the outputs of nodes in fuzzy logic layers and give the 

final prediction result. Let K donate the number of nodes in the fuzzy logic layers. 

The normalization layer is used to normalize the firing strengths. As shown in Figure 

1, normalization layers accept the firing strength 
kf  output by the node in fuzzy logic 

layers and get the normalized firing strength kf , which corresponds to Equation (3), and 

1,...,k K . From Figure 1, the number of nodes in normalization layers is the same as that 

in the fuzzy logic layers, and there is a corresponding relationship between the normali-

zation node and the fuzzy logic node. 

The consequent layer is for computing the consequent output 
ky  of each rule. As 

can be seen from Figure 1, the layer number of consequent layers is the same as that of the 

fuzzy logic layers, and their nodes correspond one by one. Each node of consequent layers 

accepts the feature vector 1,..., Mx x  as the input (see the arrow at the bottom of Figure 1) and 

calculates the consequent output 
ky  of the corresponding rule according to Equation (9): 

0 1 1 ...k k k k
M My p p x p x     (9)

Therefore, the parameters of consequent layers are the linear function coefficients of 

TSK rules, which are denoted by PW . 

The sum layer is used to integrate the normalized firing strength kf  and the conse-

quent output 
ky  of each rule to obtain the final prediction. The normalization layers pass 

kf  to consequent layers (see the gray arrow in Figure 1). Then, consequent layers take 
kf  together with the output 

ky  as the inputs of the sum layer and, finally, the summa-

tion operation is complete in the sum layer, which corresponds to Equation (4). It should 

be noted that the normalization layers and the sum layer have no trainable parameters, 

and they only complete the normalization operation and the summation operation, re-

spectively. Therefore, the parameter scale of output layers is M K , where M is the num-

ber of input features, and K is the number of nodes in fuzzy logical layers. 

Since the trainable parameters ( PW ) of output layers are values of the continuous 

interval, the FNNR and the FNNR-d share the output layers. 

3.2. Training 

3.2.1. The Design of the Loss Function 

Similarly to the FNNC, the FNNR needs to find the gradient direction with the help 

of its symmetrical model, FNNR-d, thus the updating of parameters is similar to Equation 

(6), except that the loss function is different. For the FNNR, since the structure identifica-

tion and parameter identification are coordinated, there are altogether four kinds of pa-

rameters that need to be trained through gradient descent algorithm, which are the pa-

rameters of Gaussian MFs, ( , )GW c  , the fuzzy partition parameters, ( )EW e , the param-

eters of fuzzy logic layers, ( )RW r , and the consequent parameters, ( )PW p . The change in 

these parameters will not only influence the prediction accuracy of the model but also 

greatly affect its interpretability. Therefore, the loss function is divided into two parts: 

( )acc   and ( )inter  , which are utilized to calculate the loss of prediction accuracy and in-

terpretability, respectively. 

The loss function of the prediction accuracy ( )acc   is calculated as shown in Equa-

tion (10): 

( ) MSE( , ( , ))acc Y Y Y X W  (10)

where the mean square error (MSE) function is used. ( , , , )G P E RW W W W W  represents the 

parameters of the FNNR, including parameters of Gaussian MFs ( GW  ), consequent 
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parameters ( PW ), discrete parameters of fuzzy partitions ( EW ), and discrete parameters 

of fuzzy logic layers ( RW ). Y  is the output of the FNNR, which is the final prediction, 

and Y is the label. 

The measure of the model’s interpretability is considered from two levels: the inter-

pretability at the fuzzy rule level and the interpretability at the fuzzy partition level as 

shown in Table 1. Among them, the fewer rules extracted from the model and the fewer 

antecedents of the rule, the more concise and explainable fuzzy rules are. The fewer input 

variables and MFs the model uses and the more complementary the fuzzy partition is, the 

clearer the fuzzy partition is and the more interpretable the model is. Here, the comple-

mentarity [38] refers to the fact that the sum of the fuzzy values of input features on all 

fuzzy partitions is close to one. 

Table 1. Interpretability measures of the FNNR. 

Fuzzy Rule Level Fuzzy Partition Level 

Number of Rules Number of MFs 

Number of Antecedents Number of Input Features 

 Complementarity 

Therefore, the loss function ( )inter   that measures the interpretability of the FNNR 

is revealed in Equation (11): 

2 2
21 2 3 21 || || ||ˆ ˆ ˆ( ) ( ) ||Einter G RW W W W      (11)

where ( , ,ˆ ˆ , ˆ )G P E RW WW WW   are parameters of the symmetrical model FNNR-d. 1  , 2  , 

and 3  are the regularization coefficients for parameters of Gaussian MFs ( GW ), parameters 

of fuzzy partitions ( ˆ
EW ), and parameters of fuzzy logic layers ( ˆ

RW ), respectively. 1( )   is the 

function that measures the complementarity of fuzzy sets as shown in Equation (12): 

2
1 1
( )= ( ( ) 1)

h

H

G Ax h
W x 


   (12)

where x is the value of the input feature, hA  refers to the hth fuzzy set of x, and H is the 

fuzzy set number of x. 

It can be observed from Equation (11) that the first item of ( )inter   can help to en-

hance the complementarity of fuzzy partitions during the training, the second item can 

help the model to reduce the number of input variables and MFs in the training process, 

and the third item can help to reduce the number of fuzzy rules and antecedents in the 

training process. 

In conclusion, the formula of parameter updating is shown in Equation (13): 

1
ˆ ˆ( ) ( )( )

ˆ ˆ ( )
ˆ ˆ

t
t t acc inter

t t

Y wY
w w

Y w w
  

   
  

 
 (13)

where ˆŵ W  represents the parameter of the symmetrical model FNNR-d. Y  and Ŷ  

are the outputs of the FNNR and the FNNR-d, respectively. 

3.2.2. The Alternate Training Strategy 

As mentioned above, the FNNR and its symmetrical model FNNR-d contain four 

types of trainable parameters, where parameters of Gaussian MFs GW  and consequent 

parameters PW  are shared, while parameters of fuzzy partitions and fuzzy logic layers 

are different, which can interchangeable by ( )q   (see Equations (5) and (8)). According to 

( )q  , when the values of fuzzy partition parameters ˆ
EW  and fuzzy logic layer parameters 

ˆ
RW  in the FNNR-d cross 0.5, the corresponding discrete fuzzy partition parameters EW  

and fuzzy logic layer parameters RW  in the FNNR will jump from 0 to 1 (or from 1 to 0), 
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and then the parameters of Gaussian MFs GW  and the consequent parameters PW  will 

change dramatically. Therefore, when the above four kinds of parameters are trained to-

gether, we find that the model is difficult to converge during the training process: ˆ
EW  

and ˆ
RW   oscillate around 0.5, which leads to the constant oscillation of GW   and PW  , 

making it difficult to find the optimal solution. To solve this problem, an alternate training 

strategy is designed and adopted in training as shown in Algorithm 1. 

Algorithm 1: Alternate Training Strategy 

input: The dataset, D ; the number of epoches for joint training, 1E ; the number 

of epoches for fixing fuzzy logic layers, 2E ; the number of epoches for fixing fuzzy 

partitifon parameters, 3E . 

output: A trained FNNR model, FNNR 

begin 

     initialize the parameters of model 

     for i v  do 

          training and updating all the parameters with D  for 1E  epoches\; 

          training and updating all the parameters except for ˆ
RW  with D  for 

2E  epochs; 

          training and updating all the parameters except for ˆ
EW  with D  for 

3E  epochs; 

          1i i  ; 

     end 

     return FNNR 

end 

It can be observed from Algorithm 1 that the whole training cycle is divided into v rounds 

and each round is divided into three stages: the stage of joint training, the stage of fixed fuzzy 

logic layers, and the stage of fixed fuzzy partition parameters. Utilizing three stages of alter-

nate training, the problem of the model brings difficult to converge, caused by the oscillation 

of fuzzy partition parameters and fuzzy logic layer parameters, can be alleviated. 

4. Experiments 

To verify the regression performance of the proposed method, the FNNR is com-

pared with the representative regression methods, based on fuzzy rules proposed re-

cently, and the classical regression algorithm on benchmark datasets. 

4.1. Experimental Design 

We have the following questions in mind while designing and conducting the experi-

ments: 

(1) How does the FNNR perform when compared with other state-of-the-art regression 

methods? 

(2) What roles do the training modes of the fuzzification layer, the design of the output 

layers, and the strategy of alternate training play in the FNNR? 

(3) How much do different regularization coefficients affect the final prediction of the 

FNNR? 

(4) How explainable is the FNNR? 

To answer (1), we compare the performance of the FNNR with several benchmark meth-

ods. To answer (2), we conduct some ablation studies on the proposed model. To answer (3), 

we change the regularization coefficients to make comparisons. To answer (4), the fuzzy rules 

used by the FNNR to make predictions are visually displayed on two datasets. 
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4.1.1. Datasets 

A total of 28 real regression datasets are selected from KEEL [39] repository as base-

line datasets. These datasets have different feature numbers (from two to forty) and sam-

ple numbers (from 337 to 40,768). According to the dimension of features, these 28 datasets 

are divided into two categories: 11 low-dimensional datasets and 17 high-dimensional 

datasets. Supplementary S1 shows detailed information on the two types of datasets. For 

the low-dimensional datasets, the number of features is small (all less than seven), and the 

number of samples is also relatively small, which is up to 4052, so the regression tasks on 

low-dimensional datasets are relatively simple. For high-dimensional datasets, the num-

ber of features is large, especially for the last four datasets, and the feature numbers are 

all over 20. Considering that fuzzy rules are be�er at fi�ing data with small feature di-

mensions [14], the regression performance of the model is challenged. In addition, in high-

dimensional datasets, some of them have small sample sizes, such as FOR and BAS, which 

increases the risk of overfi�ing. Finally, there are quite a few datasets with large sample 

sizes, such as CAL, MV, and HOU, which may consume a lot of computing resources. 

4.1.2. Parameter Se�ings for the FNNR 

In the FNNR, Gaussian MFs used in the fuzzification layer are set as the uniform MFs in 

the domain [0, 1], that is, the mean vector of Gaussian functions is shown in Equation (14): 

(0,1) 2

(0,1 ( 2),1) 3

(0,1 ( 2),2 ( 3) ,...,1) 3

H

H H

H H H




  
   

c  (14)

Each MF uses the same standard deviation: 
22 (1 )H   . Fuzzy partition parame-

ters are all initialized to 1 s. To enhance the model interpretability as much as possible, 

the initial number of fuzzy sets for each feature, H, is set to seven. Considering that the 

prediction task on low-dimensional datasets is relatively simple, parameters of MFs and 

fuzzy partitions in the FNNR on low-dimensional datasets are fixed and unchanged with 

 {3,5}H  . The number of fuzzy logic layers is chosen from {1,2} . Depending on the re-

gression difficulties of different datasets, the number of nodes in each fuzzy logic layer 

ranges from two to fifty. We utilize the Adam method and the MSE loss function for the 

training process. The round number v for the alternate training strategy is set to three, and 

the cycle numbers of three training stages are set to 100 in each round, i.e., 1 2 3, , 100E E E 

. The ranges of regularization coefficients in Equation (11) are as follows: 

1 {0,1e-4,1e-2,1}  , 2 {1e-3,1e-6,1}  , and 3 {1e-2,1e-4,1e-6,1e-8,1e-10}  . The min-max 

normalization is carried out on features and labels. For a fair comparison, the prediction 

results of the proposed method are inversely normalized and the MSEs with the original 

labels are calculated and recorded. 

4.1.3. Experimental Se�ings 

 Benchmark Methods 

To evaluate the regression performance of the proposed FNNR, it is compared with 

some representative regression methods based on fuzzy rules and one classical regression 

algorithm, including the following seven methods: 

a. The decision tree (DT) [40]; 

b. The training algorithm for the TSK fuzzy system based on mini-batch gradient 

descent with regularization, droprule, and adabound (MBGD-RDA) [14]; 

c. The learning algorithm of TSK fuzzy rules based on evolutionary learning 

(FRULER) [41]; 

d. The learning algorithm of the TSK fuzzy system based on multi-objective evolu-

tionary algorithms (METSK-HD) [35]; 
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e. The learning algorithm of the zero-order TSK fuzzy system based on Apriori 

and local search methods (Freq-SD-LSLS) [42]; 

f. The learning algorithm of Mamdani fuzzy rules based on multi-objective evolu-

tionary learning algorithms (MOKBL + MOMs) [36]; 

g. Disjunctive fuzzy neural network (DJFNN), a new spli�ing-based approach to 

designing a TS fuzzy model [10]. 

The experimental results of the benchmark methods are directly cited from [10]. 

 Evaluation Metrics 

In this paper, the MSE on the test dataset is adopted to evaluate the regression per-

formances of different methods, which is shown in Equation (15): 

2

1

1
( )

2

test

n n

t

N

n
est

MSE y y
N 

   (15)

where testN  is the sample size of the test data. ny  and ny  refer to the prediction and the 

label of the nth sample, respectively. In this paper, all the experiments are repeated 10 times 

on each dataset, and the average MSEs are reported. 

 The Significance Testing 

To further explore whether the observed differences are statistically significant, the 

Friedman test [43] for multiple comparisons and the Bonferroni–Dunn post hoc test [44] 

to identify pairwise differences are applied. 

4.2. Result Analysis 

The average ranks (AvgR) and average MSEs of the proposed FNNR and the other 

four regression methods on low-dimensional test data are reported in Table 2, where the 

results of ELE1, DELAIL, and DELELV should be multiplied by 510 , 810 , and 610  (the 

same below). The minimum MSE on each dataset is highlighted in bold. 

Table 2. The average test MSEs of FNNR, DT, MBGD-RDA, FRULER, and DJFNN on low-dimen-

sional datasets. 

Datasets DT MBGD-RDA FRULER DJFNN FNNR (Ours) 

ELE1 2.495 2.082 2.012 2.242 1.504 

PLA 3.708 1.176 1.219 1.116 1.095 

QUA 0.0178 0.0180 0.0181 0.0179 0.0180 

ELE2 1.1×105 13,677 6729 4107 3922 

FRIE 5.486 3.654 0.731 0.788 0.605 

MPG6 6.258 4.416 3.727 4.083 3.696 

DELAIL 1.735 1.502 1.458 1.362 1.456 

DEE 0.119 0.085 0.080 0.082 0.080 

DELELV 1.216 1.059 1.045 1.008 1.015 

ANA 0.003 0.086 0.008 0.004 0.004 

MPG8 6.652 4.325 4.084 4.315 3.095 

AvgR 4.273 3.909 2.727 2.364 1.455 

We can conclude from Table 2 that: 

1. The proposed FNNR achieves the minimum average MSEs on seven of eleven da-

tasets among the models involved. On three of the remaining four datasets, FNNR 

still exhibits the second-best performance. It proves that the proposed FNNR method 

has a significant performance advantage on low-dimensional and simple tasks. Con-

sidering that parameters of MFs and fuzzy partitions in the fuzzification layer are not 

adjusted during the training process on low-dimensional datasets, there is still a lot 

of room for performance improvement of the FNNR. 
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2. The FNNR shows great improvement over the other four approaches in terms of regres-

sion performance. On some datasets, such as ELE1, FRIE, and MPG8, the FNNR reduces 

the MSEs by over 20% compared with the recently proposed DJFNN. Moreover, the av-

erage MSEs are more than 4% lower than the DJFNN on datasets ELE2 and MPG6. 

3. The significance tests are conducted on the results shown in Table 2. The Friedman 

test suggests rejecting the 0H  hypothesis ( 5.825>2.091FF  ) for a significance level 

of 0.1 with (4,40) degrees of freedom. This suggests that on low-dimensional datasets, 

there are significant differences between at least two methods across the benchmark. 

The Bonferroni–Dunn post hoc test suggests that the regression performance of the 

FNNR is significantly different from that of DT, MBGD-RDA, and FRULER, while 

the performance of the FNNR and the DJFNN are equivalent. 

The average ranks and average test MSEs of the proposed FNNR and all of the seven 

regression methods on high-dimensional datasets are reported in Table 3, where the results of 

CAL, BAS, HOU, ELV, PUM, and AIL should be multiplied by 910 , 510 , 810 , 610 , 410 , 

and 810  (the same below). The minimum MSE on each dataset is highlighted in bold. 

Table 3. The average test MSEs of FNNR, DT, MBGD-RDA, FRULER, DJFNN, METSK-HD, Freq-

SD-LSLS, and MOKBL + MOMs on high-dimensional datasets. 

Datasets DT 
MBGD-

RDA 
FRULER DJFNN 

METSK-

HD 

Freq-SD-

LSLS 

MOKBL 

+MOMs 

FNNR 

(Ours) 

ABA 2.957 2.518 2.393 2.253 2.392 2.476 2.401 2.035 

CAL 3.303 2.449 2.110 2.050 1.710 2.385 2.660 1.674 

CON 51.27 55.13 20.60 18.26 23.89 17.04 27.42 13.27 

STP 1.764 2.733 0.353 0.392 0.387 0.725 0.660 0.199 

WAN 6.835 1.258 0.888 0.728 1.189 1.025 1.600 0.741 

WIZ 4.713 0.814 0.663 0.755 0.944 0.955 1.580 0.641 

MV 4.071 10.18 0.083 0.006 0.061 0.273 0.093 0.003 

FOR 3209 2009 2214 2908 5587 2317 2006 2249 

MOR 0.160 0.013 0.007 0.003 0.013 0.026 0.015 0.002 

TRE 0.167 0.032 0.027 0.023 0.038 0.054 0.041 0.023 

BAS 2.876 2.638 3.0e5 3.309 3.688 3.120 2.570 2.627 

HOU 9.121 11.49 8.005 6.755 8.640 6.847 9.110 6.535 

ELV 11.52 34.45 2.934 2.360 7.020 10.00 10.70 2.399 

CA 9.972 48.85 4.634 2.815 4.949 61.97 4.670 2.089 

POLE 149.6 471.8 110.9 119.7 61.02 541.8 93.96 19.79 

PUM 1.501 3.636 0.367 0.223 0.287 1.520 0.270 0.198 

AIL 2.976 6.9e8 1.404 1.309 1.510 4.581 1.821 1.302 

AvgR 6.941 6.294 3.647 2.765 4.353 5.706 4.824 1.353 

We can conclude from Table 3 that: 

1. The FNNR also shows great improvement over other approaches in terms of regres-

sion performance on high-dimensional tasks. On some datasets, such as STP, MV, 

and POLE, the FNNR reduces the errors by about 50% compared with the DJFNN. 

Moreover, the average MSEs are more than 20% lower than the DJFNN on datasets 

CON, MOR, and CA. 

2. The proposed FNNR obtained the minimum MSEs on the last four datasets with high 

feature dimensions, which indicates that the selection of features and antecedents is 

completed flexibly through trainable parameters of fuzzy partitions and fuzzy logic 

layers in the FNNR. For datasets BAS and FOR, which are easy to overfit, although 

the FNNR does not get the optimal performance among all the methods, there is no 

significant difference between the average error of the FNNR and the best one, with 

increases of 2% and 10.8%, respectively. It indicates that the proposed method can 
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avoid overfi�ing to a certain extent. On datasets with large sample sizes like MV, 

CAL, and HOU, the FNNR achieves the minimum MSEs, showing that the FNNR 

also has good performance in handling regression tasks with large samples. 

The Friedman test suggests rejecting the 0H  hypothesis ( 20.024>1.771FF  ) for a 

significance level of 0.1 with (7112) degrees of freedom. This suggests that there are sig-

nificant differences between at least two methods across the benchmark. The Bonferroni–

Dunn post hoc test suggests that the regression performance of the FNNR is significantly 

different from that of the DJFNN ( =1.1881.412 CD ). 

4.3. Ablation Study 

To illustrate the functions and effects of some key technologies in the FNNR, such as the 

training modes of the fuzzification layer, the design of the output layers, and the alternate 

training strategy, ablation studies are carried out. For fairness, the rest of the parts remain 

unchanged and the hyperparameters remain the same during ablation experiments. 

4.3.1. The Ablation of Training Modes of the Fuzzification Layer 

To illustrate the influence of training modes of parameters in the fuzzification layer 

on the regression performance, the following three different training modes are adopted: 

a. The parameters of the fuzzification layer are fixed during the training. 

b. Only the parameters of Gaussian MFs in the fuzzification layer are trained. 

c. The parameters of Gaussian MFs and fuzzy partitions in the fuzzification layer are 

trained together. 

On high-dimensional datasets, the average prediction MSEs of the FNNR using the 

above three training modes are shown in Figure 3. The FNNR achieves the minimum er-

rors on 14 of 17 high-dimensional datasets using training mode c. Compared with training 

mode b, the regression performance of the FNNR with training mode c is slightly im-

proved, for example, the MSEs on datasets ABA, CON, STP, FOR, and BAS are reduced 

by 4% to 22%. Compared with training mode a, the performance with training mode c is 

greatly improved, and the MSEs on datasets CON, STP, MV, FOR, MOR, CA, and POLE 

are reduced by 10% to 85%. 

 

Figure 3. The average MSEs of the FNNR using different training methods on high-dimensional 

datasets. 

Figure 4 reveals the fuzzy sets of each feature obtained by the above three training 

modes on the MOR dataset. Since the parameters of MFs are not modified and the same 
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parameters of fuzzy partitions and MFs are used for all the features when using training 

mode a, the fuzzy sets of only one feature are displayed, and the fuzzy sets of the other 

features are the same. 

 

Figure 4. Fuzzy sets of each feature obtained by using three training modes on the MOR dataset. 

As can be observed from Figures 3 and 4, training mode b enhances the fi�ing ability 

and improves the performance of the model by fine-tuning the parameters of MFs, and 

training mode c further reduces the test error of the model by discarding unimportant 

fuzzy partitions. 

4.3.2. The Ablation of the Rule Type Represented by the Output Layers 

The output layers of the FNNR consist of normalization layers, consequent layers, 

and the sum layer, which complete the representation of consequents in the TSK rules and 

the inference of prediction together. To verify the validity and rationality of the data fi�ing 

ability using TSK fuzzy rules, an ablation study is conducted on the rule type. In this 

study, the TSK fuzzy rules are replaced by Mamdani fuzzy rules [3] and the fuzzy rules 

for using nonlinear calculations in the consequents. 

(1) The FNNR model with Mamdani fuzzy rules 

Like TSK fuzzy rules, Mamdani rules are also a kind of fuzzy rule that are common 

and widely used. Different from the former, the antecedents and consequents of Mamdani 

rules are interpretable linguistic variables, so their interpretability is stronger. For conven-

ience of representation, the original FNNR model is called FNNR-T, and the FNNR using 

Mamdani fuzzy rules is called FNNR-M. 

The function of output layers in the FNNR-M is as the center average defuzzifier [45]. 

The output layers of the FNNR-M consist of one consequent layer and one sum layer, 

where the nodes of the consequent layer represent the fuzzy set of the output variable and 

the number of nodes is the fuzzy partitions number of the output variable, which is set to 

MH . The parameters of the consequent layer are continuous real values in the interval [0, 

1] that represents the rule weights. The consequent layer is fully connected with the fuzzy 

logic layers, and the output of each consequent node is the weighted sum of firing 

strengths of the rules whose consequent is the corresponding fuzzy set. For the FNNR-M, 

the parameter scale in the output layers is MH K , where K is the number of nodes in 

fuzzy logic layers. Supplementary S2 shows more details on the FNNR-M. 

(2) The FNNR model with rules whose consequents use nonlinear calculations 

Considering that the fully connected network has high prediction accuracies in re-

gression tasks, the consequent layers of the FNNR are replaced by fully connected layers, 

which is called the FNNR-F. In the FNNR-F, the output layers are composed of fully 
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connected layers and one sum layer. The layer number of fully connected layers is set as 

( 1)F FI I  , and the number of nodes for each layer is set as Fn . The ReLU function is uti-

lized as the activation function. Of course, for the FNNR-F, the prediction is the result of 

a complex weighted sum and nonlinear activation of the firing strengths, which reduces 

the model interpretability to a certain extent. The parameter scale of the output layers is 

( 1)F F FI n + +n K  . Supplementary S3 shows more details on the FNNR-F. 

Table 4 shows the average MSEs of FNNR-M, FNNR-F, and FNNR-T on 28 datasets, 

where MH  is set as five, FI  is set as two, and Fn  is set as twenty. The minimum error 

on each dataset is highlighted in bold. 

Table 4. The average MSEs of EFNR-M, EFNR-F, and EFNR-T on 28 datasets. 

Datasets FNNR-M FNNR-F FNNR-T 

ELE1 1.712 1.361 1.504 

PLA 1.104 1.062 1.095 

QUA 0.0180 0.0184 0.0180 

ELE2 5882 2585 3922 

FRIE 0.655 0.692 0.605 

MPG6 3.618 3.669 3.696 

DELAIL 1.513 1.396 1.456 

DEE 0.077 0.076 0.080 

DELELV 1.019 0.928 1.015 

ANA 0.003 0.003 0.004 

MPG8 3.402 2.700 3.095 

ABA 2.033 1.973 2.035 

CAL 1.750 1.582 1.674 

CON 17.08 16.738 13.27 

STP 0.299 0.321 0.199 

WAN 0.729 0.834 0.741 

WIZ 0.697 0.669 0.641 

MV 0.031 0.221 0.003 

FOR 3018 2198 2249 

MOR 0.009 0.004 0.002 

TRE 0.032 0.025 0.023 

BAS 2.827 2.521 2.627 

HOU 6.990 6.861 6.535 

ELV 2.554 1.987 2.399 

CA 3.769 3.491 2.089 

POLE 36.16 8.788 19.79 

PUM 0.326 0.157 0.198 

AIL 1.354 1.317 1.302 

As can be seen from Table 4, the regression performance of the FNNR-M is the worst: 

it can only achieve the minimum test errors on four of twenty-eight datasets. The FNNR-

F has the best regression performance and can obtain the minimum test errors on 15 datasets. 

The performance of FNNR-T is middle-ranking with the minimum MSEs on 11 datasets. An 

analysis of the time complexity of the three models is given in Supplementary S4. 

To improve the prediction accuracy of the FNNR-M and reduce the complexity of 

FNNR-F to enhance its interpretability, ablation analyses are performed on hyperparam-

eters MH  and FI , where {3,5,7}MH  , and {1,2,3,4}FI  . Table 5 illustrates the aver-

age MSEs of the above two models under each specified hyperparameter. The minimum 

error of each model on each dataset is highlighted in bold. 
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Table 5. The average prediction error of FNNR-M and FNNR-F on each dataset using different hy-

perparameters of MH  and FI , respectively. 

Datasets 

FNNR-M FNNR-F 

3 5 7 1 2 3 4 

Train Test Train Test Train Test Train Test Train Test Train Test Train Test 

ELE1 2.833 1.622 1.917 1.712 2.514 1.690 1.767 1.527 1.098 1.361 1.517 1.528 1.375 1.397 

PLA 1.116 1.080 1.113 1.104 1.105 1.087 1.106 1.076 1.089 1.062 1.086 1.077 1.103 1.069 

QUA 0.016 0.019 0.017 0.018 0.017 0.019 0.017 0.018 0.017 0.018 0.017 0.019 0.017 0.019 

ELE2 8523 8570 7207 5882 10,864 11,186 8603 9499 2600 2585 4478 4522 2904 3379 

FRIE 0.600 0.608 0.629 0.655 0.601 0.621 0.596 0.725 0.609 0.692 0.606 0.682 0.606 0.704 

MPG6 2.128 3.635 2.702 3.618 2.406 3.680 1.827 3.657 2.213 3.669 2.550 3.623 2.272 3.638 

DELAIL 1.397 1.535 1.369 1.513 1.392 1.519 1.299 1.559 1.638 1.396 1.088 1.399 1.071 1.876 

DEE 0.084 0.083 0.077 0.077 0.070 0.084 0.071 0.086 0.065 0.077 0.053 0.086 0.033 0.082 

DELELV 1.018 1.017 1.008 1.019 1.008 1.021 0.991 1.006 0.883 0.928 0.954 0.997 0.948 0.995 

ANA 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.003 

MPG8 3.103 3.720 2.146 3.402 2.726 3.619 1.747 2.980 2.070 2.700 1.961 2.929 2.170 3.306 

ABA 2.224 2.080 2.202 2.033 2.205 2.052 2.162 1.991 2.169 1.973 2.099 2.020 2.054 1.987 

CAL 1.825 1.868 1.738 1.750 1.713 1.714 1.735 1.783 1.781 1.582 1.717 1.745 1.530 1.816 

CON 20.50 24.76 12.00 17.08 14.64 21.95 7.639 16.38 7.480 16.74 16.77 25.93 9.897 19.67 

STP 0.330 0.371 0.263 0.299 0.298 0.360 0.247 0.295 0.270 0.321 0.206 0.279 0.197 0.290 

WAN 1.166 0.835 0.984 0.729 0.656 0.850 0.900 0.900 0.363 0.834 0.431 0.895 0.483 0.951 

WIZ 0.675 0.724 0.637 0.697 0.661 0.709 0.595 0.700 0.506 0.669 0.658 0.746 0.615 0.677 

MV 0.082 0.082 0.031 0.031 0.054 0.054 0.223 0.223 0.213 0.221 0.052 0.052 0.049 0.048 

FOR 1095 4066 974.45 3018 1201 4021 1156 4053 1036 2198 1174 4079 1185 4080 

MOR 0.010 0.012 0.008 0.009 0.010 0.010 0.013 0.010 0.004 0.004 0.007 0.008 0.008 0.008 

TRE 0.022 0.036 0.022 0.032 0.024 0.036 0.019 0.033 0.015 0.025 0.016 0.029 0.017 0.028 

BAS 1.568 2.796 1.578 2.827 2.349 2.804 1.684 2.748 1.790 2.521 1.832 2.755 1.510 2.828 

HOU 7.954 8.279 6.421 6.990 8.145 8.211 6.741 6.987 6.197 6.861 5.979 6.729 5.677 6.803 

ELV 2.457 2.519 2.452 2.554 2.568 2.706 2.136 2.220 1.957 1.987 2.213 2.341 2.292 2.327 

CA 3.641 3.804 3.600 3.769 3.743 3.964 3.578 3.752 3.307 3.491 3.273 3.510 3.354 3.432 

POLE 45.96 47.51 34.79 36.16 47.94 49.65 9.459 9.873 7.587 8.788 13.03 16.90 9.53 12.46 

PUM 0.357 0.344 0.339 0.326 0.377 0.372 0.214 0.202 0.217 0.157 0.152 0.215 0.339 0.302 

AIL 1.281 1.342 1.307 1.354 1.291 1.342 1.252 1.309 1.258 1.317 1.273 1.324 1.297 1.359 

As can be observed from Table 5, when increasing the complexity of the FNNR-M 

(increasing the number of nodes in the consequent layer), the regression performance can-

not be significantly improved. When the number of nodes in the consequent layer is in-

creased to seven, the minimum error can only be achieved on CAL dataset. For the FNNR-

F, when the complexity is reduced (reducing the number of fully connected layers), the 

regression performance of the model is greatly affected. When the number of fully con-

nected layers is reduced to one, the model can only achieve the minimum MSEs on three 

datasets. It is worth noting that when the complexity of the FNNR-F is increased, the per-

formance does not get be�er. On the one hand, this is related to the phenomenon of van-

ishing gradient; when the number of fully connected layers increases, the gradient at the 

back of the network has difficulty being transmi�ed to the front layers, resulting in low 

learning efficiency of the parameters of the fuzzification layer and fuzzy logic layers. On 

the other hand, the conclusion can be drawn by the comparison of MSEs on training sets 

and test sets that when the number of fully connected layers increases, the risk of overfit-

ting gradually increases. 

By conducting ablation experiments on the rule type represented by the output lay-

ers, it can be concluded that neither FNNR-M nor FNNR-T can properly balance 
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prediction accuracy and interpretability. Therefore, it is most appropriate to adopt TSK 

fuzzy rules in the FNNR model. 

4.3.3. The Ablation of Alternate Training Strategy 

As mentioned above, to avoid the problem that the model has difficulty converging 

due to the oscillation of fuzzy partition parameters and fuzzy logic layer parameters in 

the training process, a three-stage alternate training strategy is designed. To demonstrate 

the effectiveness of this strategy, an ablation analysis is performed. 

The FNNR-T is trained using the alternate training strategy and normal training 

method on all 28 datasets, and the average test errors are recorded. To highlight the role 

of alternate training strategy, parameters of MFs and fuzzy partitions are fixed during the 

training, and the whole training process is only divided into two stages: the stage of joint 

training and the stage of the fixed fuzzy logic layer. It is found that for 24 of the 28 datasets, 

the average MSEs are lower when using the alternate training strategy. This indicates that 

the alternate training strategy can help to improve the prediction accuracy of the model. 

Experiments are also conducted on the other two models, and relevant experimental data 

and analyses are shown in Supplementary S5. 

Figure 5 reveals the training loss of the FNNR-T on low-dimensional datasets MPG6 

and DEE and high-dimensional datasets PUM and ELV when the alternate training strat-

egy and normal training method are adopted. For intuition, 5000 cycles are trained on 

low-dimensional datasets and 10,000 cycles are trained on high-dimensional datasets. It 

can be observed that the loss gradually diverges in the later training period and cannot 

converge when adopting the normal training method, while the alternate training strategy 

can help the loss gradually stabilize and finally converge. 

 

Figure 5. The training loss of the FNNR-T on MPG6, DEE, ELV, and PUM datasets. 

4.4. Parameter Analysis 

To understand the influence of regularization coefficients on the training and regression 

performance of the model, parameter analyses on 1  and 2  are carried out in this chapter. 

4.4.1. The Parameter Analysis on the Regularization Coefficient 
1  

Firstly, the regularization coefficient 1  is analyzed. As mentioned above, 1  is the 

regularization coefficient to measure the complementarity of fuzzy sets. The larger 1  is, 

the stronger the complementarity of fuzzy sets will be, the clearer the semantics of fuzzy 

sets will be, and the stronger the interpretability will be. Figure 6 illustrates the average 

prediction errors of the FNNR-T under different values of 1   in high-dimensional 
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datasets. Similarly, to clearly show the influence of regularization coefficients, fuzzy par-

tition parameters are fixed in the training process. 

 

Figure 6. The average MSE of the model under different values of 1  on high-dimensional datasets. 

As can be observed from Figure 6, when 1 0   and 1 1 4e   , the model gets the 

minimum MSEs on eight datasets; under the circumstances of 1 1   and 1 1 2e   , the 

model achieves the minimum error on only one dataset. This indicates that with the in-

crease of 1 , when it rises to a threshold, the regression accuracy of the model will de-

crease gradually. This is also in line with our subjective feelings: with the increase of the 

regularization coefficient, the model pays too much a�ention to the complementarity of 

fuzzy sets during training, which leads to a decrease in accuracy. 

Figure 7 shows the fuzzy sets that the model eventually learns under the four values 

of 1   in the CON dataset, respectively. It can be observed that the interpretability of 

fuzzy sets is poor when 1 0  . Some areas are covered repeatedly by a few fuzzy sets at 

the same time, so the semantics is peculiarly fuzzy. For example, when 1x  is near 0.8 with 

1 0  , the firing strengths of three fuzzy sets are very high, which is not intuitive. In ad-

dition, there are several fuzzy sets whose shapes are “sharp”, such as the second fuzzy set 

of 2x  when 1 0  , which is also poorly interpretable. With the increase of 1 , the fuzzy 

sets tend to be uniform, and the interpretability is enhanced gradually. 

 

Figure 7. The fuzzy sets of each feature under different values of 
1  in the CON dataset. 
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4.4.2. The Parameter Analysis on the Regularization Coefficient 
2  

The regularization coefficient 2  is analyzed below. 2  is the regularization coeffi-

cient to control the number of fuzzy sets of features. The larger 2  is, the fewer fuzzy sets 

there are, and the more explainable the model is. Figure 8 reveals the average prediction 

errors of the FNNR-T under different values of 2  on high-dimensional datasets. For the 

sake of fairness, 1  is set to 1 × 10-4. 

 

Figure 8. The average MSE of the model under different values of 2  on high-dimensional datasets. 

As can be seen from Figure 8, when 2 1 6e   , the model has the best regression 

performance, and it can reach the minimum errors on 13 of 17 datasets. When 2 1  , the 

regression performance of the model is poor, and it can only reach the minimum MSE on 

one dataset. Compared with 2 1 6e    , the average errors under 2 1    increase by 

more than 20% on 11 datasets. When 2 1 3e   , the regression performance of the model 

is middle-ranking, and the prediction errors are minimized on two datasets. Compared 

with 2 1 6e    , the errors increase by more than 20% on seven datasets under 

2 1 3e   . The results observed above are in line with our subjective feelings: With the 

increase of 2 , the number of fuzzy partitions decreases continuously. Therefore, the re-

maining fuzzy sets are hard to reasonably divide in the input space, and the accuracy of 

the model is seriously affected. 

Figure 9 illustrates the fuzzy sets finally learned by the model using different values 

of 2  on the STP dataset. From the figure, when the regularization coefficient is moder-

ate, inappropriate fuzzy sets will be discarded, and the number of fuzzy sets used for each 

feature is well optimized. When the regularization coefficient is too large, many fuzzy sets 

are discarded, and the remaining fuzzy sets are difficult to partition in the input space 

reasonably and efficiently. 
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Figure 9. The fuzzy sets of each feature under different values of 2  in the STP dataset. 

4.5. The Interpretability of the FNNR 

The proposed FNNR has good interpretability, and TSK fuzzy rules can be directly 

extracted from the trained FNNR. The course of rule extraction is very simple: one fuzzy 

rule can be extracted if the node in the fuzzy logic layers whose parameter is one is found. 

To visually illustrate the interpretability of the model, Figure 10 and Table 6 show the 

fuzzy rules extracted from the model in datasets ELE1 and MPG8, respectively, where L, 

M, and H are the names of fuzzy sets when the fuzzy partition number is three, and L, 

ML, M, MM, and H are the names of fuzzy sets when the fuzzy partition number is five. 

b is the constant coefficient of the consequent. As can be seen, whether the feature number 

is small or large, the model can achieve low regression error with a small number of rules. 

 

Figure 10. The fuzzy rules used by the FNNR on the dataset ELE1. 

Table 6. The fuzzy rules used by the FNNR on the dataset MPG8. 

No. Rules 

1 
Antecedent 1 3 3 4 6 6 7( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )x L x M x MM x M x L x MM x M  

Consequent  0.02,0.23, 0.24, 0.67, 0.15, 0.3, 0.14,0.51     

2 
Antecedent 3 6 7( ) | ( ) | ( )x M x MM x M  

Consequent  0.14,0.02, 0.86, 1.15, 0.12,0.60,0.33,0.93   

3 Antecedent 4 3 6 7( ) &[ ( ) | ( ) | ( )]x L x M x MM x M  
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Consequent  0.23, 0.10, 0.12, 0.08,0.57,0.21,0.04, 0.05   

4 
Antecedent 2 4( ) | ( )x ML x H  

Consequent  0.36 ,0.56 ,0.45 ,0.25 ,0.21,0.37,0.20, 0.23  

5 
Antecedent 4 ( )x L  

Consequent  0.37,0.14,0.50,0.46,0.28,0.22, 0.17,0.29  

6 
Antecedent 2 4 1 3 4 6[ ( )& ( )]&[ ( ) | ( ) | ( ) | ( )]x ML x H x H x MM x M x L  

Consequent  0.35, 0.04, 0.17, 0.41,0.16,0.39 0.16,0.10    ,  

7 
Antecedent 1 3 4 6( ) | ( ) | ( ) | ( )x H x MM x M x L  

Consequent  0.01,0.22, 0.19, 0.16,0.01, 0.01,0.37,0.31    

5. Conclusions and Future Work 

A novel explainable fuzzy neural network regression method (FNNR) is proposed in 

this paper. To solve the problem of rule explosion on high-dimensional datasets, the sym-

metrical structure and corresponding parameter transformation method are used to learn 

the number of fuzzy rules and fuzzy partitions automatically. In addition, the structure 

identification and parameter identification of the model are considered. The number of 

fuzzy rules, the number of fuzzy partitions, the parameters of Gaussian MFs, and the 

consequent parameters are trained synergistically. On this basis, an alternate training 

strategy is designed to train different types of parameters to promote convergence. To 

further enhance the interpretability of the model, the regularized items are designed from 

fuzzy rule level and fuzzy partition level to guide the model to learn fuzzy rules with a 

simple structure and clear semantics. Experimental results on datasets with low and high 

dimensions show that the proposed model can achieve high test accuracy with good in-

terpretability by comparing with some representative regression methods based on fuzzy 

rules and the classical regression models. 

First, various uncertainties that may exist in the datasets, such as missing values, error 

values, noises, abnormal values, and so on, are not considered in this study. Future research 

could combine rough sets [46] and other technologies with fuzzy sets to deal with the above 

uncertainties. In addition, the type-I fuzzy sets used in this paper can also be extended to type-

II fuzzy sets or interval fuzzy sets [47,48] to better deal with the uncertainty in the data. Sec-

ondly, in this study, Gaussian MFs are utilized to represent the fuzzy sets of all features. Con-

sidering different MFs and their combinations or using the shape of MFs as a learnable pa-

rameter is another possible future research direction. Finally, the gradient-based method is 

adopted in this study to train all parameters together as a whole. This method requires no 

intervention, but it is time-consuming in large datasets. Learning from some fast training 

methods, such as pseudoinverse [49] and heuristic greedy search [10], to conduct collaborative 

training for various parameters is also a potential future research topic. 
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