
Citation: Seikh, M.R.; Mandal, U.

q-Rung Orthopair Fuzzy

Archimedean Aggregation Operators:

Application in the Site Selection for

Software Operating Units. Symmetry

2023, 15, 1680. https://doi.org/

10.3390/sym15091680

Academic Editors: Muhammad Riaz

and Hsien-Chung Wu

Received: 21 July 2023

Revised: 26 August 2023

Accepted: 29 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

q-Rung Orthopair Fuzzy Archimedean Aggregation Operators:
Application in the Site Selection for Software Operating Units
Mijanur Rahaman Seikh *,† and Utpal Mandal *,†

Department of Mathematics, Kazi Nazrul University, Asansol 713340, India
* Correspondence: mrseikh@ymail.com or mijanur.seikh@knu.ac.in (M.R.S.);

utpalmandal2204@gmail.com (U.M.)
† These authors contributed equally to this work.

Abstract: The q-rung orthopair fuzzy (q-ROF) set is an efficient tool for dealing with uncertain and
inaccurate data in real-world multi-attribute decision-making (MADM). In MADM, aggregation
operators play a significant role. The majority of well-known aggregation operators are formed using
algebraic, Einstein, Hamacher, Frank, and Yager t-conorms and t-norms. These existing t-conorms and
t-norms are some special cases of Archimedean t-conorms (ATCNs) and Archimedean t-norms (ATNs).
Therefore, this article aims to extend the ATCN and ATN operations under the q-ROF environment.
In this paper, firstly, we present some new operations for q-ROF sets based on ATCN and ATN. After
that, we explore a few desirable characteristics of the suggested operational laws. Then, using these
operational laws, we develop q-ROF Archimedean weighted averaging (geometric) operators, q-ROF
Archimedean order weighted averaging (geometric) operators, and q-ROF Archimedean hybrid
averaging (geometric) operators. Next, we develop a model based on the proposed aggregation
operators to handle MADM issues. Finally, we elaborate on a numerical problem about site selection
for software operating units to highlight the adaptability and dependability of the developed model.

Keywords: archimedean t-conorm and t-norm; q-rung orthopair fuzzy set; aggregation operator;
MADM

1. Introduction

We have plenty of options today for every single decision we make in our daily
lives. However, choosing the best option from the available alternatives is extremely
difficult if each option satisfies a different viewpoint. Multi-attribute decision-making
(MADM) is a modern procedure to identify the most desirable alternative that maximizes
our profit according to the attribute values. The theory and methods of MADM are used
to make several important decisions, such as personnel selection, industrialization, waste
management, site selection, and so on. Three critical steps comprise the MADM procedure.
The first step is to collect information about alternatives based on various attributes. The
second step is to aggregate the collected information to produce the overall decision value
of the target. The best option must be chosen in the final step after ranking the alternatives
in order of preference. The ambiguity and uncertainty of real-life scenarios emanate from
an absence of appropriate knowledge and information.

The most significant aspect of decision-making problems is displaying attribute values
more efficiently and precisely. In the real world, we frequently have to make decisions.
However, it can be challenging to fully prepare for the task. In everyday life, it is more
appropriate to elicit attribute values by fuzzy numbers [1] rather than exact values because
of insufficient information and the complexity of the MADM issues. However, the fuzzy
set is only defined by the membership degree (MD), which is insufficient for making
several real-life decisions. The decision-makers also provide the nonmembership degree
(NMD) to assess the attribute values. Attansov [2] initiated the intuitionistic fuzzy set
(IFS) associated with MD and NMD, whose sum is constrained to 1. Many studies have
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been recently developed to address various MADM issues with IFSs [3,4]. Seikh and
Mandal [5] established Dombi aggregation operators (AOs) for fusing job information and
selecting the most preferable job using intuitionistic fuzzy (IF) data. Senapati et al. [6]
developed IF Aczel-Alsina operators and applied them to choose sustainable transportation-
sharing practices. Gohain, Chutia, and Dutta [7] introduced a symmetric distance in the IF
environment and applied it to solving pattern recognition and clustering problems. Ke et
al. [8] developed a ranking method for IFSs and applied it in selecting sites for photovoltaic
poverty alleviation projects. Wan and Yi [9] proposed the power average operators of
trapezoidal intuitionistic fuzzy numbers using strict t-norms and t-conorms.

However, IFS is insufficient to handle situations when the sum of the MD and NMD
values is greater than 1. To address this issue, Yager [10] introduced the Pythagorean fuzzy
set (PyFS). The total value of the squares of MD and NMD in PyFS is limited to 1. The
PyFSs have been utilized to solve several complex MADM problems [11,12]. Combining
SWARA and CODAS methods, Ayyildiz [13] established a decision-making approach and
applied it to select e-scooter charging station locations. Ertemel et al. [14] presented an
integrated MADM methodology based on PyFSs by combining the CRITIC and TOPSIS
methods and using them to assess adolescents’ smartphone addiction levels. Giri, Molla,
and Biswas [15] presented the DEMATEL method using PyFSs and utilized it for supplier
selection problems.

Later, Yager [16] introduced q-ROFSs as an expansion of IFSs and PyFSs. The q-ROFSs
is an effective approach to modeling ambiguity and uncertainty. In q-ROFSs, the total value
of the qth power of the MD and NMD is constrained to 1. The concept of q-ROFSs has
been implemented effectively for a variety of MADM problems. Mandal and Seikh [17]
proposed an improved score function for the ROFSs and developed the EDAS method
with q-rung orthopair fuzzy data to select a vacant post of a company. Peng and Liu [18]
introduced some novel formulae for information measures of q-ROFSs and applied them
to several decision-making problems. Wang et al. [19] introduced a q-ROF environment-
based MABAC model and utilized it in solving MADM problems. Seikh and Mandal [20]
developed q-ROF Frank AOs and utilized them in solving MADM problems. Wang et al.
[21] introduced Muirhead mean AOs for fusing q-ROF information. Wang et al. [22] defined
q-ROF Hamy mean operators and used them in their work on enterprise resource planning
systems. Kausar et al. [23] expanded the CODAS approach to the q-ROF framework and
applied it to assess cancer risk.

The second step of the MADM method requires integrating the evaluation information
of the attributes to select the most promising one. We are accustomed to two methods
for obtaining the best option. The first is a traditional evaluation method that can only
determine the ranking of alternatives. The second approach involves an information aggre-
gation approach which supplies comprehensive evaluation values for all the alternatives.
AOs are mathematical tools to aggregate or combine information. AOs can combine some
finite numerical values into a single datum. Therefore, to enhance feasibility while dealing
with MADM problems, the second approach shows more efficiency, which motivates us to
research further. As a result, the second approach provides greater efficiency in dealing
with MADM problems, motivating us to conduct additional research.

Generally, the AOs under various fuzzy environments are established with the help of
algebraic, Einstein, Hamacher, and Frank t-norm (TN) and t-conorm (TCN) methods. How-
ever, these existing TCNs and TNs are some particular cases of ATCNs and ATNs [24,25].
By changing the value of the additive generator, the ATCN, and ATN can be converted
into different forms. As a result, the ATCN and ATN are more adaptable, powerful, and
generalized. Many scholars have proposed AOs in a variety of fuzzy environments using
ATCN and ATN for integrating ambiguous data, for example, complex IF environment
[26], interval type-2 fuzzy environment [27], Pythagorean hesitant fuzzy [28], dual hesitant
fuzzy linguistic [29], hesitant trapezoidal fuzzy environment [30], interval-valued dual
hesitant fuzzy [31], and t-spherical fuzzy environment [32]. According to the above litera-
ture review, many authors have developed AOs based on ATCN and ATN in several fuzzy
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environments. However, no authors have utilized ATCN and ATN to construct AOs under
the q-ROF environment. Therefore, this paper aims to present AOs utilizing ATCN and
ATN to combine q-ROF information. Inspired by the ATCN and ATN-based AOs under an
intuitionistic fuzzy environment [33], in this paper, our goals are:

• To develop q-ROF Archimedean weighted averaging (q-ROFAWA), q-ROF Archimedean
order weighted averaging (q-ROFAOWA) and q-ROF Archimedean hybrid averaging
(q-ROFAHA) AOs.

• To develop q-ROF Archimedean weighted geometric (q-ROFAWG), q-ROF Archimedean
order weighted geometric (q-ROFAOWG) and q-ROF Archimedean hybrid geometric
(q-ROFAHG) AOs.

• To discuss some desirable characteristics of the suggested operators and to show our
proposed operators are the generalizations of algebraic, Einstein, Hamacher, Frank,
Yager TCN, and TN-based AO.

• To present a model for dealing with MADM problems that depend on the suggested
q-ROFAWA and q-ROFAWG operators.

• To illustrate the potency and supremacy of the suggested model by emphasizing a
numerical problem about site selection for software operating units.

The remaining portions of this article proceed as follows: several fundamental pre-
liminaries are described in Section 2. We define a few novel operational rules for q-ROFNs
based on ATCN and ATN in Section 3. In Section 4, some new AOs are established under
a q-ROF environment, and their desirable characteristics are discussed based on ATCN
and ATN. In Section 5, we utilize the q-ROFAWA and q-ROFAWG operators to develop
some approaches for handling MADM problems. In Section 6, we elaborate on a numerical
problem about site selection for software operating units to illustrate the adaptability and
viability of our suggested approach. Then in Section 7, our model is compared with some
well-known methods. Finally, Section 8 presents the conclusions of the paper.

2. Preliminaries

Here, we will have a look at some basic preliminaries.

Definition 1 ([16]). The q-ROFS σ over the universal set P is interpreted as

σ = {< `, µσ(`), νσ(`) > |` ∈ P}.

Here, µσ : P→ [0, 1] and νσ : P→ [0, 1] are identified as the MD and the NMD to the
set σ, respectively, where (µσ(`))q + (νσ(`))q ≤ 1, q ≥ 1 for every ` ∈ P. For clarity, Liu
and Wang [34] defined σ = (µσ, νσ) a q-ROF number (q-ROFN).

Definition 2 ([34]). The score and the accuracy functions of the q-ROFN σ = (µσ, νσ) can be
illustrated as

Φ(σ) = µ
q
σ − ν

q
σ (1)

and

Ψ(σ) = µ
q
σ + ν

q
σ, (2)

respectively. Here, Φ(σ) ∈ [0, 1], and Ψ(σ) ∈ [0, 1].

According to Definition 2, if σ1 = (µσ1 , νσ1) and σ2 = (µσ2 , νσ2) be any two q-ROFNs then

• σ1 > σ2 if Φ(σ1) > Φ(σ2),
• σ1 < σ2 if Φ(σ1) < Φ(σ2),
• If Φ(σ1) = Φ(σ2), and

1. If Ψ(σ1) > Ψ(σ2), then σ1 > σ2,
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2. If Ψ(σ1) = Ψ(σ2), then σ1 = σ2.

ATCN and ATN

Here, we recall some basic properties of ATCN and ATN which will be utilized later.

Definition 3 ([28]). Let f , g : [0, 1] → R be strictly decreasing and increasing continuous
functions, respectively, with f (1) = 0 and g(0) = 0, then f and g are called decreasing generator
and increasing generator, respectively.

Definition 4 ([35]). With the assistance of a decreasing generator f , strict ATN and strict ATCN
are elicited as T(h1, h2) = f−1( f (h1)+ f (h2)) and S(h1, h2) = g−1(g(h1)+ g(h2)), respectively
with g(v) = f (1− v) , ∀h1, h2, v ∈ [0, 1].

In Table 1, we exhibit some renowned classes of TCN and TN as a special case of
ATCN and ATN by considering different forms f .

Table 1. Several TCN and TN with their additive generators.

Class f t-Norms t-Conorms

Algebraic −log(t) h1h2 h1 + h2 − h1h2
Einstein log( 2−t

t ) h1h2
(1−h1)(1−h2)

h1+h2
1+h1h2

Hamacher (ϑ > 0) log( ϑ+(1−ϑ)t
t ) h1h2

ϑ+(1−ϑ)(h1+h2−h1h2)
h1+h2−h1h2−(1−ϑ)h1h2

1−(1−ϑ)h1h2

Frank(β > 1) logβ(
β−1
βt−1 ) logβ(1 +

(βh1−1)(βh2−1)
β−1 ) logβ(1 +

(β1−h1−1)(β1−h2−1)
β−1 )

Yager (β > 0) (1− t)β 1− ((1− h1)
β +(1− h2)

β)
1
β (h1

β + h2
β)

1
β

3. ATCN and ATN Operations for q-ROFNs

Here, we develop a couple of fundamental set operations of q-ROFNs using ATCN
and ATN.

Definition 5. If σc = (µσc , νσc)(c = 1, 2) are two q-ROFNs then we have

1. σ1 ⊕ σ2 =
(

q
√

g−1(g(µq
σ1) + g(µq

σ2)),
q
√

f−1( f (νq
σ1) + f (νq

σ2))
)

.

2. σ1 ⊗ σ2 =
(

q
√

f−1( f (µq
σ1) + f (µq

σ2)),
q
√

g−1(g(νq
σ1) + g(νq

σ2))
)

.

3. ξσ1 =
(

q
√

g−1(ξg(µq
σ1)),

q
√

f−1(ξ f (νq
σ1))

)
, ξ > 0.

4. σ
ξ
1 =

(
q
√

f−1(ξ f (νq
σ1)),

q
√

g−1(ξg(µq
σ1))

)
, ξ > 0.

Now, we define some specific relations among the operational laws in the following
portion.

Proposition 1. The following operations for two q-ROFNs σc = (µσc , νσc)(c = 1, 2) and
ξ, ξ1, ξ2 > 0 are valid.

1. σ1 ⊕ σ2 = σ2 ⊕ σ1.
2. σ1 ⊗ σ2 = σ2 ⊗ σ1.
3. ξ(σ1 ⊕ σ2) = ξσ1 ⊕ ξσ2.
4. ξ1σ1 ⊕ ξ2σ1 = (ξ1 + ξ2)σ1.

5. σ
ξ
1 ⊗ σ

ξ
2 = (σ1 ⊗ σ2)

ξ .

6. σ
ξ1
1 ⊗ σ

ξ2
1 = σ

ξ1+ξ2
1 .
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Proof.

1. σ1 ⊕ σ2 =
(

q
√

g−1(g(µq
σ1) + g(µq

σ2)),
q
√

f−1( f (νq
σ1) + f (νq

σ2))
)

=
(

q
√

g−1(g(µq
σ2) + g(µq

σ1)),
q
√

f−1( f (νq
σ2) + f (νq

σ1))
)
= σ2 ⊕ σ1.

2. σ1 ⊗ σ2 =
(

q
√

f−1( f (νq
σ1) + f (νq

σ2)),
q
√

g−1(g(µq
σ1) + g(µq

σ2))
)

=
(

q
√

f−1( f (νq
σ2) + f (νq

σ1)),
q
√

g−1(g(µq
σ2) + g(µq

σ1))
)
= σ2 ⊗ σ1.

3. ξ(σ1 ⊕ σ2) = ξ
(

q
√

g−1(g(µq
σ1) + g(µq

σ2)),
q
√

f−1( f (νq
σ1) + f (νq

σ2))
)

=
(

q
√

g−1(ξ(g(µq
σ1) + g(µq

σ2))),
q
√

f−1(ξ( f (νq
σ1) + f (νq

σ2)))
)

ξσ1⊕ ξσ2 =
(

q
√

g−1(ξg(µq
σ1)),

q
√

f−1(ξ f (νq
σ1))

)
⊕
(

q
√

g−1(ξg(µq
σ2)),

q
√

f−1(ξ f (νq
σ2))

)
=
(

q
√

g−1(ξ(g(µq
σ1) + g(µq

σ2))),
q
√

f−1(ξ( f (νq
σ1) + f (νq

σ2)))
)

Therefore, ξ(σ1 ⊕ σ2) = ξσ1 ⊕ ξσ2.
4. ξ1σ1 ⊕ ξ2σ1 =

(
q
√

g−1(ξ1g(µq
σ1)),

q
√

f−1(ξ1 f (νq
σ1))

)
⊕
(

q
√

g−1(ξ2g(µq
σ1)),

q
√

f−1(ξ2 f (νq
σ1))

)
=
(

q
√

g−1((ξ1 + ξ2)g(µq
σ1)),

q
√

f−1((ξ1 + ξ2) f (νq
σ1))

)
= (ξ1 + ξ2)σ1.

5. σ
ξ
1 ⊗ σ

ξ
2 =

(
q
√

f−1(ξ f (νq
σ1)),

q
√

g−1(ξg(µq
σ1))

)
⊗
(

q
√

f−1(ξ f (νq
σ2)),

q
√

g−1(ξg(µq
σ2))

)
=
(

q
√

f−1(ξ( f (µq
σ1) + f (µq

σ2))),
q
√

g−1(ξ(g(νq
σ1) + g(νq

σ2)))
)

(σ1 ⊗ σ2)
ξ = ξ

(
q
√

f−1( f (µq
σ1) + f (µq

σ2)),
q
√

g−1(g(νq
σ1) + g(νq

σ2))
)

=
(

q
√

f−1(ξ( f (µq
σ1) + f (µq

σ2))),
q
√

g−1(ξ(g(νq
σ1) + g(νq

σ2)))
)

Therefore, σ
ξ
1 ⊗ σ

ξ
2 = (σ1 ⊗ σ2)

ξ .

6. σ
ξ1
1 ⊗ σ

ξ2
1 =

(
q
√

f−1(ξ1 f (νq
σ1)),

q
√

g−1(ξ1g(µq
σ1))

)
⊗
(

q
√

f−1(ξ2 f (νq
σ1)),

q
√

g−1(ξ2g(µq
σ1))

)
=
(

q
√

f−1((ξ1 + ξ2) f (νq
σ1)),

q
√

g−1((ξ1 + ξ2)g(µq
σ1))

)
= σ

ξ1+ξ2
1 .

Proposition 2. Let h1 = σ1 ⊕ σ2, h2 = σ1 ⊗ σ2, h3 = ξσ1, h4 = (σ1)
ξ for two q-ROFNs

σc = (µσc , νσc)(c = 1, 2) where ξ(∈ R) > 0. Then h1, h2, h3 and h4 are also q-ROFNs.

Proof. Since g(v) = f (1− v), and f : [0, 1]→ [0, ∞] is a strictly decreasing function, then
g(v) is a strictly increasing function, which implies that 0 ≤ f−1( f (µσ1) + f (µσ2)) ≤ 1 and
0 ≤ g−1(g(µσ1) + g(µσ2)) ≤ 1. Additionally,(

q
√

g−1(g(µq
σ1) + g(µq

σ2))
)q

+
(

q
√

f−1( f (νq
σ1) + f (νq

σ2))
)q

=
(

g−1(g(µq
σ1) + g(µq

σ2))
)
+
(

f−1( f (νq
σ1) + f (νq

σ2))
)

≤
(

f−1( f (νq
σ1) + f (νq

σ2))
)
+
(

g−1(g(1− ν
q
σ1) + g(1− ν

q
σ2))

)
[∵ µ

q
σi ≤ 1− ν

q
σi ]

=
(

f−1( f (νq
σ1) + f (νq

σ2))
)
+
(

g−1( f (νq
σ1) + f (νq

σ2))
)
[∵ g(v) = f (1− v)]

= f−1( f (νq
σ1) + f (νq

σ2)) + 1− f−1( f (νq
σ1) + f (νq

σ2))[∵ g−1(v) = 1− f−1(v)]
= 1.

Therefore, h1 = σ1 ⊕ σ2 and h2 = σ1 ⊗ σ2 are q-ROFNs.
Proceeding similarly we obtain h3 = ξσ1 and h4 = (σ1)

ξ which are also q-ROFNs.
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4. ATCN and ATN Based q-ROF AOs

Here, we develop the q-ROFAWA, q-ROFAOWA, q-ROFAHA, q-ROFAWG,
q-ROFAOWG and q-ROFAHG AOs based on ATCN and ATN to aggregate q-ROF in-
formation.

4.1. q-ROFAWA and q-ROFAWG Operators

Definition 6. Let σc = (µσc , νσc)(c = 1(1)u) be the q-ROFNs with their associated weight vector

δ = (δ1, δ2, . . . , δu)T , where δc ∈ [0, 1] and
u
∑

c=1
δc = 1. Based on ATCN and ATN the q-ROFAWA

operator and q-ROFAWG operator are mappings from σu to σ and are given by

q-ROFAWA(σ1, σ2, . . . , σu) =
u⊕

c=1

δcσc

and

q-ROFAWG(σ1, σ2, . . . , σu) =
u⊗

c=1

δcσc,

respectively.

Theorem 1. The aggregated result of the q-ROFNs σc = (µσc , νσc)(c = 1(1)u) using q-ROFAWA
and q-ROFAWG operators are also q-ROFNs and are defined as follows

q-ROFAWA(σ1, σ2, . . . , σu) =
u⊕

c=1

δcσc =

(
q

√
g−1

( u

∑
c=1

δcg(µq
σc)
)

, q

√
f−1
( u

∑
c=1

δc f (νq
σc)
))

(3)

and

q-ROFAWG(σ1, σ2, . . . , σu) =
u⊗

c=1

δcσc =

(
q

√
f−1
( u

∑
c=1

δc f (µq
σc)
)

, q

√
g−1

( u

∑
c=1

δcg(νq
σc)
))

. (4)

Here, f is an additive generator of continuous ATN.

Proof. We have established the above theorem by applying the mathematical induction
principle.

For two q-ROFNs σ1 and σ2, we obtain

q-ROFAWA(σ1, σ2) =
2⊕

c=1
δcσc = δ1σ1

⊕
δ2σ2

=

(
q

√
g−1

(
δ1g(µq

σ1)
)

, q

√
f−1
(

δ1 f (νq
σ1)
))⊕(

q

√
g−1

(
δ2g(µq

σ2)
)

, q

√
f−1
(

δ2 f (νq
σ2)
))

=

(
q

√
g−1

( 2
∑

c=1
δcg(µq

σc)
)

, q

√
f−1
( 2

∑
c=1

δc f (νq
σc)
))

.

As a result, the outcome exists for u = 2.
We presume that the outcome is effective when u = x.

Therefore q-ROFAWA(σ1, σ2, . . . , σx) =

(
q

√
g−1

( x
∑

c=1
δcg(µq

σc)
)

, q

√
f−1
( x

∑
c=1

δc f (νq
σc)
))

.
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Now, q-ROFAWA(σ1, σ2, . . . , σx, σx+1)=
x+1⊕
c=1

δcσc=
x⊕

c=1
δcσc

⊕
δx+1σx+1

=

(
q

√
g−1

( x
∑

c=1
δcg(µq

σc)
)

, q

√
f−1
( x

∑
c=1

δc f (νq
σc)
))⊕

(
q

√
g−1

(
δx+1g(µq

σx+1)
)

, q

√
f−1
(

δx+1 f (νq
σx+1)

))

=

(
q

√
g−1

( x+1
∑

c=1
δcg(µq

σc)
)

, q

√
f−1
( x+1

∑
c=1

δc f (νq
σc)
))

.

As a result, the result is valid when u = x + 1.
Hence, the outcome is effective for all natural numbers u.

The other part of this theorem can be proved similarly.
Next, we show that our proposed q-ROFAWA and q-ROFAWG operators met the

subsequent characteristics:

Theorem 2. (Idempotency property). If the collection of q-ROFNs σc = (µσc , νσc)(c = 1(1)u) are
equal, i.e., if σc = σ = (µσ, νσ), ∀c, then

q-ROFAWA(σ1, σ2, . . . , σu) = σ and q-ROFAWG(σ1, σ2, . . . , σu) = σ.

Proof. Let σc = σ, ∀c = 1, 2 . . . u. Then µσc = µσ and νσc = νσ, ∀c = 1(1)u.

q-ROFAWA(σ1, σ2, . . . , σu) =

(
q

√
g−1

( u
∑

c=1
δcg(µq

σc)
)

, q

√
f−1
( u

∑
c=1

δc f (νq
σc)
))

=

(
q

√
g−1

( u
∑

c=1
δcg(µq

σ)
)

, q

√
f−1
( u

∑
c=1

δc f (νq
σ)
))

=

(
q

√
g−1

(
g(µq

σ)
)

, q

√
f−1
(

f (νq
σ)
))

= (µσ, νσ) = σ.

The other part can be proven in a similar manner.

Theorem 3. (Monotonicity property). Let {σ1, σ2, . . . , σu} and {σ̂1, σ̂2, . . . , σ̂u} be two sets of
q-ROFNs, where σc = (µσc , νσc) and σ̂c = (µσ̂c , νσ̂c) for c = 1, 2, . . . , u. If µσc ≤ µσ̂c and
νσc ≥ νσ̂c for all c, then, q-ROFAWA(σ1, σ2, . . . , σu) ≤ q-ROFAWA(σ̂1, σ̂2, . . . , σ̂u) and q-
ROFAWG(σ1, σ2, . . . , σu) ≤ q-ROFAWG(σ̂1, σ̂2, . . . , σ̂u).

Proof. Since µσc ≤ µσ̂c and νσc ≥ νσ̂c for all c = 1, 2, . . . , u, then, µσc ≤ µσ̂c ⇒ µ
q
σc

≤ µ
q
σ̂c
⇒ g(µq

σc) ≤ g(µq
σ̂c
) ⇒ δcg(µq

σc) ≤ δcg(µq
σ̂c
) ⇒

u
∑

c=1
δcg(µq

σc) ≤
u
∑

c=1
δcg(µq

σ̂c
) ⇒

q

√
g−1

( u
∑

c=1
δcg(µq

σc)
)
≤ q

√
g−1

( u
∑

c=1
δcg(µq

σ̂c
)
)

.

Similarly, it can be shown that q

√
f−1
( u

∑
c=1

δc f (νq
σc)
)
≥ q

√
f−1
( u

∑
c=1

δc f (νq
σ̂c
)
)

.

Thus, (
q

√
g−1

( u
∑

c=1
δcg(µq

σc)
))q

−
(

q

√
f−1
( u

∑
c=1

δc f (νq
σc)
))q

≤(
q

√
g−1

( u
∑

c=1
δcg(µq

σ̂c
)
))q

−
(

q

√
f−1
( u

∑
c=1

δc f (νq
σ̂c
)
))q

.



Symmetry 2023, 15, 1680 8 of 28

Let σ = q-ROFAWA(σ1, σ2, . . . , σu) and σ̂ = q-ROFAWA(σ̂′1, σ̂′2, . . . , σ̂′u). Then by
Definition 2, we have, Φ(σ) ≤ Φ(σ̂).

(I) If Φ(σ) < Φ(σ̂) then we have,
σ < σ̂ i.e.,q-ROFAWA(σ1, σ2, . . . , σu) < q-ROFAWA(σ′1, σ′2, . . . , σ′u).

(II) If Φ(σ) = Φ(σ̂) then, we obtain(
q

√
g−1

( u
∑

c=1
δcg(µq

σc)
))q

−
(

q

√
f−1
( u

∑
c=1

δc f (νq
σc)
))q

=(
q

√
g−1

( u
∑

c=1
δcg(µq

σ̂c
)
))q

−
(

q

√
f−1
( u

∑
c=1

δc f (νq
σ̂c
)
))q

,

then, by the condition µσc ≤ µσ̂c and νσc ≥ νσ̂c for all c = 1(1)u, we have(
q

√
g−1

( u
∑

c=1
δcg(µq

σc)
))q

=

(
q

√
g−1

( u
∑

c=1
δcg(µq

σ̂c
)
))q

and(
q

√
f−1
( u

∑
c=1

δc f (νq
σc)
))q

=

(
q

√
f−1
( u

∑
c=1

δc f (νq
σ̂c
)
))q

.

So, from Definition 2, we have

Ψ(σ) =

(
q

√
g−1

( u
∑

c=1
δcg(µq

σc)
))q

+

(
q

√
f−1
( u

∑
c=1

δc f (νq
σc)
))q

=

(
q

√
g−1

( u
∑

c=1
δcg(µq

σ̂c
)
))q

+

(
q

√
f−1
( u

∑
c=1

δc f (νq
σ̂c
)
))q

= Ψ(σ̂).

Therefore, from (I) and (II), q-ROFAWA(σ1, σ2, . . . , σu) ≤ q-ROFAWA(σ̂1, σ̂2, . . . , σ̂u).

The other part can be proven in a similar fashion.

Theorem 4. (Boundedness property). For a number of q-ROFNs σc = (µσc , νσc)(c = 1, 2, . . . , u),
let σ− = (min

c
µσc , max

c
νσc), σ+ = (max

c
µσc , min

c
νσc). Then

σ− ≤ q-ROFAWA(σ1, σ2, . . . , σu) ≤ σ+ and σ− ≤ q-ROFAWG(σ1, σ2, . . . , σu) ≤ σ+.

Proof. For every c(c = 1, 2, . . . , u), we have min
c

µσc ≤ µσc ≤ max
c

µσc and min
c

νσc ≤ νσc ≤
max

c
νσc which implies that

q

√
g−1

( u
∑

c=1
δcg((min

c
µσc)

q)
)
≤ q

√
g−1

( u
∑

c=1
δcg(µq

σc)
)
≤ q

√
g−1

( u
∑

c=1
δcg((max

c
µσc)

q)
)

and

q

√
f−1
( u

∑
c=1

δc f ((min
c

µσc)
q)
)
≤ q

√
f−1
( u

∑
c=1

δc f (µq
σc)
)
≤ q

√
f−1
( u

∑
c=1

δc f ((max
c

µσc)
q)
)

.

Therefore, σ− ≤ q-ROFAWA(σ1, σ2, . . . , σu) ≤ σ+.

The rest of the theorem can be proved similarly.

Deduction 1. If we assign different forms of the additive generator f , then we obtain some partic-
ular forms of q-ROFAWA and q-ROFAWG operators. Table 2 illustrates these particular forms
of f .
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Table 2. Some particular forms of q-ROFAWA and q-ROFAWG operators for different f
.

f Classes of t-Norm and t-Conorm Weighted Averaging (WA)/
Weighted Geometric (WG) q-ROF Aggregation Operator Aggregating Value of a Collection of q-ROFNs σ1, σ2, . . . , σu

log(t) Algebric Class

WA Weighted averaging operator (q-ROFWA) [34]

(
q

√
1−

u
∏

c=1
(1− µ

q
σc )

δc ,
u
∏

c=1
νδc

σc

)

WG Weighted geometric operator (q-ROFWG) [34]

(
u
∏

c=1
µδc

σc , q

√
1−

u
∏

c=1
(1− ν

q
σc )

δc

)

log 2−t
t Einstein Class

WA Einstein weighted averaging operator
(q-ROFEWA) [36]

(
q

√√√√√ u
∏

c=1
(1+µ

q
σc )

δc−
u
∏

c=1
(1−µ

q
σc )

δc

u
∏

c=1
(1+µ

q
σc )

δc +
u
∏

c=1
(1−µ

q
σc )

δc
,

q√2
u
∏

c=1
νδc
σc

q
√

u
∏

c=1
(2−ν

q
σc )

δc +
u
∏

c=1
(ν

q
σc )

δc

)

WG Einstein weighted geometric operator
(q-ROFEWG) [36]

( q√2
u
∏

c=1
µδc

σc

q
√

u
∏

c=1
(2−µ

q
σc )

δc +
u
∏

c=1
(µ

q
σc )

δc
, q

√√√√√ u
∏

c=1
(1+ν

q
σc )

δc−
u
∏

c=1
(1−ν

q
σc )

δc

u
∏

c=1
(1+ν

q
σc )

δc +
u
∏

c=1
(1−ν

q
σc )

δc

)
.

log( ϑ+(1−ϑ)t
t ) Hamacher Class

WA Hamacher weighted averaging operator
(q-ROFHWG) [36]

(
q

√√√√√ u
∏

c=1
(1+(ϑ−1)µ

q
σc )

δc−
u
∏

c=1
(1−µ

q
σc )

δc

u
∏

c=1
(1+(ϑ−1)µ

q
σc )

δc +(ϑ−1)
u
∏

c=1
(1−µ

q
σc )

δc
,

q√ϑ
u
∏

c=1
νδc
σc

q
√

u
∏

c=1
[1+(ϑ−1)(1−ν

q
σc )]

δc +(ϑ−1)
u
∏

c=1
(ν

q
σc )

δc

)

WG Hamacher weighted geometric operator
(q-ROFHWG) [36]

( q√ϑ
u
∏

c=1
µδc

σc

q
√

u
∏

c=1
[1+(ϑ−1)(1−µ

q
σc )]

δc +(ϑ−1)
u
∏

c=1
(µ

q
σc )

δc
, q

√√√√√ u
∏

c=1
(1+(ϑ−1)ν

q
σc )

δc−
u
∏

c=1
(1−ν

q
σc )

δc

u
∏

c=1
(1+(ϑ−1)ν

q
σc )

δc +(ϑ−1)
u
∏

c=1
(1−ν

q
σc )

δc

)

log β−1
βt−1 Frank Class

WA Frank weighted averaging operator
(q-ROFFWA)

(
q

√
1− logβ

(
1 +

k
∏

c=1
(β1−µ

q
σc − 1)δc

)
, q

√
logβ

(
1 +

k
∏

c=1
(βν

q
σc − 1)δc

))

WG Frank weighted geometric operator
(q-ROFFWG)

(
q

√
logβ

(
1 +

k
∏

c=1
(βµ

q
σc − 1)δc

)
, q

√
1− logβ

(
1 +

k
∏

c=1
(β1−ν

q
σc − 1)δc

))

(1− t)β , β > 0 Yager Class

WA Yager weighted averaging operator
(Yq-ROFWA)

(( u
∑

c=1
δc(µ

q
σc )

β
) 1

β , 1−
( u

∑
c=1

δc(1− ν
q
σc )

β
) 1

β

)

WG Yager weighted geometric operator operator
(Yq-ROFWG)

(
1−

( u
∑

c=1
δc(1− µ

q
σc )

β
) 1

β ,
( u

∑
c=1

δc(ν
q
σc )

β
) 1

β

)
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Deduction 2. If we put different values for the parameter q, we obtain the following cases:

1. For q = 1 the q-ROFAWA and q-ROFAWG operators are transformed into intuitionistic
fuzzy Archimedian weighted averaging (IFAWA) [37] and IF Archimedian weighted geometric
(IFAWG) [37] operators, respectively. Therefore

IFAWA(σ1, σ2, . . . , σu) =
u⊕

c=1
δcσc =

(
g−1

( u
∑

c=1
δcg(µσc)

)
, f−1

( u
∑

c=1
δc f (νσc)

))

IFAWG(σ1, σ2, . . . , σu) =
u⊗

c=1
δcσc =

(
f−1
( u

∑
c=1

δc f (µσc)
)

, g−1
( u

∑
c=1

δcg(νσc)
))

.

Remark 1. For the different form of the additive generator f , we obtain some special cases
of IFAWA and IFAWG operators. For example, If f (t) = −log(t), IFAWA and IFAWG
operators are transformed into intuitionistic fuzzy weighted averaging (IFWA) [38] and
intuitionistic fuzzy weighted geometric (IFWG) [39] operators, respectively. If f (t) =
−log( 2−t

t ), IFAWA and IFAWA operators are transformed into Einstein intuitionistic fuzzy
weighted averaging (EIFWA) [37,40] and Einstein intuitionistic fuzzy weighted geometric
(EIFWG) [41] operators, respectively, etc.

2. If q = 2, then q-ROFAWA and q-ROFAWG operators are transformed into Pythagorean fuzzy
Archimedian weighted averaging (PFAWA) operators and Pythagorean fuzzy Archimedian
weighted geometric (PFAWG) operators, respectively, and they are given by

PFAWA(σ1, σ2, . . . , σu) =
u⊕

c=1
δcσc =

(√
g−1

( u
∑

c=1
δcg(µ2

σc)
)

,

√
f−1
( u

∑
c=1

δc f (ν2
σc)
))

PFAWG(σ1, σ2, . . . , σu) =
u⊗

c=1
δcσc =

(√
f−1
( u

∑
c=1

δc f (µ2
σc)
)

,

√
g−1

( u
∑

c=1
δcg(ν2

σc)
))

,

respectively.

Remark 2. If the additive generator f is taken in different forms, then we obtain some special
cases of PFAWA operator. For example, If f (t) = −log(t), PFAWA and PFAWG operators
are transformed into Pythagorean fuzzy weighted averaging (PFWA) [42] and Pythagorean
fuzzy weighted geometric (PFWG) [42] operators. If f (t) = −log( 2−t

t ), PFAWA and
PFAWA operators are transformed into Pythagorean fuzzy Einstein weighted averaging
(PFEWA) operator [43] and Pythagorean fuzzy Einstein weighted geometric (PFEWA) opera-
tor [43], respectively, etc.

Next, we define the q-ROFAOWA and q-ROFAOWG operators as follows:

4.2. q-ROFAOWA and q-ROFAOWG Operators

Definition 7. Let σc = (µσc , νσc)(c = 1(1)u) be the q-ROFNs with their associated weight

vector δ = (δ1, δ2, . . . , δu)T , where δc ∈ [0, 1] and
u
∑

c=1
δc = 1. Based on ATCN and ATN the

q-ROFAOWA and q-ROFAOWG operators are mappings from σu to σ and are given by

q-ROFAOWA(σ1, σ2, . . . , σu) =
u⊕

c=1

δcσφ(c)

q-ROFAOWG(σ1, σ2, . . . , σu) =
u⊗

c=1

δcσφ(c),

respectively, where (φ(1), φ(2), . . . , φ(u)) is a permutation of (1, 2, . . . , u) with φ(c) > φ(c +
1), c = 1, 2, . . . , u.
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Theorem 5. For the collection of q-ROFNs σc = (µσc , νσc)(c = 1(1)u) the aggregated results
using q-ROFAOWA and q-ROFAOWG operators are also q-ROFNs and are defined as follows

q-ROFAOWA(σ1, σ2, . . . , σu) =
u⊕

c=1
δcσφ(c) =

(
q

√
g−1

( u
∑

c=1
δcg(µq

σφ(c)
)
)

, q

√
f−1
( u

∑
c=1

δc f (νq
σφ(c)

)
))

q-ROFAOWG(σ1, σ2, . . . , σu) =
u⊗

c=1
δcσφ(c) =

(
q

√
f−1
( u

∑
c=1

δc f (µq
σφ(c)

)
)

, q

√
g−1

( u
∑

c=1
δcg(νq

σφ(c)
)
))

.

Here, f is the additive generator of continuous ATN.

Theorem 6. (Idempotency property). If the collection of q-ROFNs σc = (µσc , νσc)(c = 1(1)u)
are the same, i.e., if σc = σ = (µσ, νσ), ∀c, then q-ROFAOWA(σ1, σ2, . . . , σu) = σ and
q-ROFAOWG(σ1, σ2, . . . , σu) = σ.

Theorem 7. (Monotonicity property). Let {σ1, σ2, . . . , σu} and {σ̂1, σ̂2, . . . , σ̂u} be two sets of
q-ROFNs, where σc = (µσc , νσc) and σ̂c = (µσ̂c , νσ̂c) for c = 1, 2, . . . , u. If µσφ(c) ≤ µσ̄φ(c)

and νσφ(c) ≥ νσ̄φ(c) ∀c, then, q-ROFAOWA(σ1, σ2, . . . , σu) ≤ q-ROFAOWA(σ̂1, σ̂2, . . . , σ̂u) and
q-ROFAOWG(σ1, σ2, . . . , σu) ≤ q-ROFAOWG(σ̂1, σ̂2, . . . , σ̂u).

Theorem 8. (Boundedness property). Let σc = (µσc , νσc)(c = 1, 2, . . . , u) be the q-ROFNs. If
σ− = (min

c
µσc , max

c
νσc), σ+ = (max

c
µσc , min

c
νσc), then σ− ≤ q-ROFAOWA(σ1, σ2, . . . , σu) ≤

σ+ and σ− ≤ q-ROFAOWG(σ1, σ2, . . . , σu) ≤ σ+.

Deduction 3. When the additive generator f and the parameter q assign different forms, some
particular forms of q-ROFAOWA and q-ROFAOWG operators arise, which appear in Tables 3 and
4, respectively.
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Table 3. Some particular forms of q-ROFAOWA and q-ROFAOWG operators for different f .

f Classes of t-Conorm and t-Norm Order Weighted Averaging (OWA)/Order Weighted
Geometric (OWG) q-ROF OWA/OWG Aggregation Operator Aggregating Value of a Collection of q-ROFNs σ1, σ2, . . . , σu

log(t) Algebric Class

OWA Order weighted averaging operator [34]

(
q

√
1−

u
∏

c=1
(1− µ

q
σφ(c)

)δc ,
u
∏

c=1
νδc

σφ(c)

)

OWG Order weighted geometric operator [34]

(
u
∏

c=1
µδc

σφ(c)
, q

√
1−

u
∏

c=1
(1− ν

q
σφ(c)

)δc

)

log 2−t
t Einstein Class

OWA Einstein OWA operator

(
q

√√√√√ u
∏

c=1
(1+µ

q
σφ(c)

)δc−
u
∏

c=1
(1+µ

q
σφ(c)

)δc

u
∏

c=1
(1+µ

q
σφ(c)

)δc +
u
∏

c=1
(1+µ

q
σφ(c)

)δc
,

q√2
u
∏

c=1
νδc
σφ(c)

q
√

u
∏

c=1
(2−ν

q
σφ(c)

)δc +
u
∏

c=1
(ν

q
σφ(c)

)δc

)

OWG Einstein OWG operator

( q√2
u
∏

c=1
µδc

σφ(c)

q
√

u
∏

c=1
(2−µ

q
σφ(c)

)δc +
u
∏

c=1
(µ

q
σφ(c)

)δc
, q

√√√√√ u
∏

c=1
(1+ν

q
σφ(c)

)δc−
u
∏

c=1
(1+ν

q
σφ(c)

)δc

u
∏

c=1
(1+ν

q
σφ(c)

)δc +
u
∏

c=1
(1+ν

q
σφ(c)

)δc

)

log ϑ+(1−ϑ)t
t

Hamacher Class

OWA Hamacher OWA operator

(
q

√√√√√ u
∏

c=1
(1+(ϑ−1)µ

q
σc )

δφ(c)−
u
∏

c=1
(1−µ

q
σφ(c)

)δc

u
∏

c=1
(1+(ϑ−1)µ

q
σφ(c)

)δc +(ϑ−1)
u
∏

c=1
(1−µ

q
σφ(c)

)δc
,

q√ϑ
u
∏

c=1
νδc
σφ(c)

q
√

u
∏

c=1
[1+(ϑ−1)(1−ν

q
σφ(c)

)]δc +(ϑ−1)
u
∏

c=1
(ν

q
σφ(c)

)δc

)

OWG Hamacher OWG operator

( q√ϑ
u
∏

c=1
µδc

σφ(c)

q
√

u
∏

c=1
[1+(ϑ−1)(1−µ

q
σφ(c)

)]δc +(ϑ−1)
u
∏

c=1
(µ

q
σφ(c)

)δc
, q

√√√√√ u
∏

c=1
(1+(ϑ−1)ν

q
σc )

δφ(c)−
u
∏

c=1
(1−ν

q
σφ(c)

)δc

u
∏

c=1
(1+(ϑ−1)ν

q
σφ(c)

)δc +(ϑ−1)
u
∏

c=1
(1−ν

q
σφ(c)

)δc

)

log β−1
βt−1 Frank Class

OWA Frank OWA operator

(
q

√
1− logβ

(
1 +

k
∏

c=1
(β

1−µ
q
σφ(c) − 1)δc

)
, q

√
logβ

(
1 +

k
∏

c=1
(β

ν
q
σφ(c) − 1)δc

))

OWG Frank OWG operator

(
q

√
logβ

(
1 +

k
∏

c=1
(β

µ
q
σφ(c) − 1)δc

)
, q

√
1− logβ

(
1 +

k
∏

c=1
(β

1−ν
q
σφ(c) − 1)δc

))

(1− t)β , β > 0 Yager Class

OWA Yager OWA operator

(( u
∑

c=1
δc(µ

q
σφ(c)

)β
) 1

β , 1−
( u

∑
c=1

δc(1− ν
q
σφ(c)

)β
) 1

β

)

OWG Yager OWG operator

(
1−

( u
∑

c=1
δc(1− µ

q
σφ(c)

)β
) 1

β ,
( u

∑
c=1

δc(ν
q
σφ(c)

)β
) 1

β

)
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Table 4. Some particular forms of q-ROFAOWA and q-ROFAOWG operators for different q.

Different Value of q Order Weighted Averaging (OWA)/Order Weghted Geometric
(OWG) Aggregation Operator Aggregating Value of a Collection of q-ROFNs σ1, σ2, . . . , σu

q = 1

OWA Intuitionistic fuzzy Archimedian ordered weighted averaging
(IFAOWA) operator [33]

(
g−1
( u

∑
c=1

δc g(µσφ(c)
)
)

, f−1
( u

∑
c=1

δc f (νσφ(c)
)
))

OWG Intuitionistic fuzzy Archimedian ordered weighted geometric
(IFAOWG) operator [33]

(
f−1
( u

∑
c=1

δc f (µσφ(c)
)
)

, g−1
( u

∑
c=1

δc g(νσφ(c)
)
))

q = 2

OWA Pythagorean fuzzy Archimedian ordered weighted averaging
(PFAOWA) operator [42]

(√
g−1
( u

∑
c=1

δc g(µ2
σφ(c)

)
)

,

√
f−1
( u

∑
c=1

δc f (ν2
σφ(c)

)
))

OWG Pythagorean fuzzy Archimedian ordered weighted geometric
(PFAOWG) operator [42]

(√
f−1
( u

∑
c=1

δc f (µ2
σφ(c)

)
)

,

√
g−1
( u

∑
c=1

δc g(ν2
σφ(c)

)
))
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Now, we define q-ROFAHA and q-ROFAHG operators under q-ROF circumstances.

4.3. q-ROFAHA and q-ROFAHG Operators

Here, we present q-ROFAHA, q-ROFAHG operators and also show that these operators
are the generalizations of our proposed q-ROFAWA, q-ROFAOWA, q-ROFAWG and q-
ROFAOWG operators.

Definition 8. For the collection of q-ROFNs σc = (µσc , νσc)(c = 1(1)u) the q-ROFAHA and
q-ROFAHG operators of dimension u are mappings from σu to σ and are given by

q-ROFAHA(σ1, σ2, . . . , σu) =
u⊕

c=1

δ̄cσ̇φ(c) =

(
q

√
g−1

( u

∑
c=1

δ̄cg(µ̇q
σφ(c)

)
)

, q

√
f−1
( u

∑
c=1

δ̄c f (ν̇q
σφ(c)

)
))

and

q-ROFAHG(σ1, σ2, . . . , σu) =
u⊗

c=1

δ̄cσ̇φ(c) =

(
q

√
f−1
( u

∑
c=1

δ̄c f (µ̇q
σφ(c)

)
)

, q

√
g−1

( u

∑
c=1

δ̄cg(ν̇q
σφ(c)

)
))

,

respectively, where δ̄ = (δ̄1, δ̄2, . . . , δ̄u)T is the aggregation associated weight vector,
u
∑

c=1
δ̄c = 1,

δc ∈ [0, 1] is the weight of σc,
u
∑

c=1
δc = 1. σ̇φ(c) is the ith biggest weighted q-ROF values of

σ̇c(σ̇c = uδcσc, c = 1, 2, . . . , u), u is the balancing coefficient.

Deduction 4. Now we discuss the effectiveness of the additive generator f , the weight vectors δ̄, δ,
and the parameter q. In addition, we investigate the relationship among the proposed q-ROFAHA
and q-ROFAHG operators and other hybrid operators in the q-ROF environment.
Case 1: If we consider some particular forms of the weight vectors δ̄ and δ, we can access some
prominent q-ROF AOs by the following:

1. When δ = (δ1, δ2, . . . , δu) = ( 1
u , 1

u , . . . , 1
u ), then σ̇c = u× 1

u × σc = σc for c = 1, 2, . . . , u.
Thus, the q-ROFAHA and q-ROFAHG operators turn out to be q-ROFAOWA and q-
ROFAOWG operators, respectively.

2. If δ̄ = (δ̄1, δ̄2, . . . , δ̄u) = ( 1
u , 1

u , . . . , 1
u ), then q-ROFAHA and q-ROFAHG operators become

q-ROFAWA and q-ROFAWG operators, respectively.

Case 2: When the parameter q assigns different values, some particular instances of q-ROFAHA
and q-ROFAHG operators arise, which are exhibited in Table 5.
Case 3: When f appoints different forms, some particular instances of q-ROFAHA and q-ROFAHG
operators arise, which are exhibited in Table 6.

Remark 3. From the above discussion, we can see that each of our proposed q-ROFAWA, q-
ROFAOWA, q-ROFAHA, q-ROFAWG, q-ROFAOWG and q-ROFAHG operators is a general-
ization of some of the existing q-ROF AOs. According to different forms of δ and additive generator
f , we can attain a comprehensive range of q-ROF AOs. Additionally, for various values of the
parameter q, we can obtain AOs in different fuzzy environments. Therefore, our proposed operators
are more convenient as they cover a wide range containing many special cases, which strengthens
us to deal with many different decision-making situations. Additionally, utilizing our proposed
operators, we can select the best alternative that maximizes our interest.
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Table 5. Some particular forms of q-ROFHA and q-ROFHG operators for different q.

Different Value of q Hybrid Averaging (HA)/Hybrid Geometric (HG) Aggregation Operator Aggregating Value of a Collection of q-ROFNs σ1, σ2, . . . , σu

q = 1

HA Intuitionistic fuzzy Archimedian hybrid averaging (IFAHA) operator
[33]

(
g−1
( u

∑
c=1

δ̄c g(µ̇σφ(c)
)
)

, f−1
( u

∑
c=1

δ̄c f (ν̇σφ(c)
)
))

HG intuitionistic fuzzy Archimedian hybrid geometric (IFAHG) operator
[33]

(
f−1
( u

∑
c=1

δ̄c f (µ̇σφ(c)
)
)

, g−1
( u

∑
c=1

δ̄c g(ν̇σφ(c)
)
))

q = 2

HA Pythagorean fuzzy Archimedian hybrid averaging (PFAHA) operator
[42]

(
g−1
( u

∑
c=1

δ̄c g(µ̇2
σφ(c)

)
)

, f−1
( u

∑
c=1

δ̄c f (ν̇2
σφ(c)

)
))

HG Pythagorean fuzzy Archimedian hybrid geometric (PFAHG) operator
[42]

(√
f−1
( u

∑
c=1

δ̄c f (µ̇2
σφ(c)

)
)

,

√
g−1
( u

∑
c=1

δ̄c g(ν̇2
σφ(c)

)
))

Table 6. Some particular forms of q-ROFAHA and q-ROFAHG operators for different f .

f Classes of t-Conorm and t-Norm Hybrid Averaging (HA)/Hybrid Geometric (HG) q-ROF HA/HG Aggregation Operator Aggregating Value of a Collection of q-ROFNs σ1, σ2, . . . , σu

log(t) Algebraic Class

HA Hybrid averaging operator [34]
(

q

√
1−

u
∏

c=1
(1− µ̇

q
σφ(c)

)δ̄c ,
u
∏

c=1
ν̇δ̄c

σφ(c)

)
.

HG Hybrid geometric operator [34]
(

u
∏

c=1
µ̇δ̄c

σφ(c)
, q

√
1−

u
∏

c=1
(1− ν̇

q
σφ(c)

)δ̄c

)
.

log 2−t
t Einstein Class

HA Einstein HA operator
(

q

√√√√√ u
∏

c=1
(1+µ̇

q
σφ(c)

)δ̄c−
u
∏

c=1
(1+µ̇

q
σφ(c)

)δ̄c

u
∏

c=1
(1+µ̇

q
σφ(c)

)δ̄c +
u
∏

c=1
(1+µ̇

q
σφ(c)

)δ̄c
,

q√2
u
∏

c=1
ν̇δ̄c
σφ(c)

q
√

u
∏

c=1
(2−ν̇

q
σφ(c)

)δ̄c +
u
∏

c=1
(ν̇

q
σφ(c)

)δ̄c

)
.

HG Einstein HG operator
( q√2

u
∏

c=1
µ̇δ̄c

σφ(c)

q
√

u
∏

c=1
(2−µ̇

q
σφ(c)

)δ̄c +
u
∏

c=1
(µ̇

q
σφ(c)

)δ̄c
, q

√√√√√ u
∏

c=1
(1+ν̇

q
σφ(c)

)δ̄c−
u
∏

c=1
(1+ν̇

q
σφ(c)

)δ̄c

u
∏

c=1
(1+ν̇

q
σφ(c)

)δ̄c +
u
∏

c=1
(1+ν̇

q
σφ(c)

)δ̄c

)
.

log( ϑ+(1−ϑ)t
t ) Hamacher Class

HA Hamacher HA operator
(

q

√√√√√ u
∏

c=1
(1+(ϑ−1)µ̇

q
σc )

δ̄φ(c)−
u
∏

c=1
(1−µ̇

q
σφ(c)

)δ̄c

u
∏

c=1
(1+(ϑ−1)µ̇

q
σφ(c)

)δ̄c +(ϑ−1)
u
∏

c=1
(1−µ̇

q
σφ(c)

)δ̄c
,

q√ϑ
u
∏

c=1
ν̇δ̄c
σφ(c)

q
√

u
∏

c=1
[1+(ϑ−1)(1−ν̇

q
σφ(c)

)]δ̄c +(ϑ−1)
u
∏

c=1
(ν̇

q
σφ(c)

)δ̄c

)

HG Hamacher HG operator
( q√ϑ

u
∏

c=1
µ̇δ̄c

σφ(c)

q
√

u
∏

c=1
[1+(ϑ−1)(1−µ̇

q
σφ(c)

)]δ̄c +(ϑ−1)
u
∏

c=1
(µ̇

q
σφ(c)

)δ̄c
, q

√√√√√ u
∏

c=1
(1+(ϑ−1)ν̇

q
σc )

δ̄φ(c)−
u
∏

c=1
(1−ν̇

q
σφ(c)

)δ̄c

u
∏

c=1
(1+(ϑ−1)ν̇

q
σφ(c)

)δ̄c +(ϑ−1)
u
∏

c=1
(1−ν̇

q
σφ(c)

)δ̄c

)



Symmetry 2023, 15, 1680 16 of 28

Table 6. Cont.

f Classes of t-Conorm and t-Norm Hybrid Averaging (HA)/Hybrid Geometric (HG) q-ROF HA/HG Aggregation Operator Aggregating Value of a Collection of q-ROFNs σ1, σ2, . . . , σu

log β−1
βt−1 Frank Class

HA Frank HA operator
(

q

√
1− logβ

(
1 +

k
∏

c=1
(β

1−µ̇
q
σφ(c) − 1)δ̄c

)
, q

√
logβ

(
1 +

k
∏

c=1
(β

ν̇
q
σφ(c) − 1)δ̄c

))

HG Frank HG operator
(

q

√
logβ

(
1 +

k
∏

c=1
(β

µ̇
q
σφ(c) − 1)δ̄c

)
, q

√
1− logβ

(
1 +

k
∏

c=1
(β

1−ν̇
q
σφ(c) − 1)δ̄c

))

(1− t)β , β > 0 Yager Class

HA Yager HA operator
(( u

∑
c=1

δ̄c(µ̇
q
σφ(c)

)β
) 1

β , 1−
( u

∑
c=1

δ̄c(1− ν̇
q
σφ(c)

)β
) 1

β

)

HG Yager HG operator
(

1−
( u

∑
c=1

δ̄c(1− µ̇
q
σφ(c)

)β
) 1

β ,
( u

∑
c=1

δ̄c(ν̇
q
σφ(c)

)β
) 1

β

)
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5. MADM Model Based on q-ROFAWA and q-ROFAWG Operators

Here, we present a model for solving MADM issues utilizing q-ROFAWA and q-
ROFAWG operators where the attribute weights are calculated by using the entropy
method. For an MADM problem, let Υ = {Υ1, Υ2, . . . , Υm} and = = {=1,=2, . . . ,=n}
be the respective lists of m alternatives and n attributes. We postulate that some of the
attributes are cost attributes, while the remainder are benefit attributes. Let δj(> 0) ∈ R be

the weight of the jth attribute =j, where
n
∑

j=1
δj = 1. Let the q-ROFN σij = (µσij , νσij) is the

possible value for which the alternative Υi meets the attribute =j. Therefore, we can build
the q-ROF decision matrixM, whereM = (σij)m×n.

Algorithm

The q-ROFAWA and q-ROFAWG operators-based MADM model has been outlined
as follows:

Step 1: Develop the q-ROF decision matrixM = (σij)m×n = ((µσij , νσij))m×n.
Step 2: Normalize the matrixM. LetM′ = (σ′ij)m×n = ((µ′σij

, ν′σij
))m×n be the normalized

matrix ofM, where σ′ij is obtained by utilizing Equation (5).

σ′ij =

{
(µσij , νσij), if =j is of benefit type;
(νσij , µσij), if =j is of cost type.

(5)

Step 3: Utilize the q-ROF entropy method developed by Seikh and Mandal [20] to estimate
the subjective weights of the attributes. If δj is the weight of the attribute =j then

δj =

1 + 1
m

m
∑

i=1
(µ′σij

log(µ′σij
) + ν′σij

log(ν′σij
))

n
∑

j=1
(1 + 1

m

m
∑

i=1
(µ′σij

log(µ′σij
) + ν′σij

log(ν′σij
)))

(6)

Step 4: Aggregated value αc of the alternative Υc is calculated by Equation (7) or Equation
(8).

αc = q-ROFAWA(σ′i1, σ′i2, . . . , σ′in) =
n⊕

j=1

(δjσ
′
ij)

=

(
q

√√√√g−1
( n

∑
j=1

δcg((µ′σij
)q)
)

, q

√√√√ f−1
( n

∑
j=1

δc f ((ν′σij
)q)
))

(7)

or

αc = q-ROFAWG(σ′i1, σ′i2, . . . , σ′in) =
n⊗

j=1

(δjσ
′
ij)

=

(
q

√√√√ f−1
( n

∑
j=1

δc f ((µ′σij
)q)
)

, q

√√√√g−1
( n

∑
j=1

δcg((ν′σij
)q)
))

(8)

Step 5: Determine the score value Φ(αc)(c = 1(1)m) using Equation (1) for each combined
value αc(c = 1(1)m).

Step 6: If the score value for one particular alternative is bigger than that of the others, then
this is the most preferable alternative. Therefore, the most suitable alternative is Υc
if Φ(αc) = max

1≤i≤m
{Φ(αc)}.
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Step 7: If the score values for multiple alternatives are equal, we must use Equation (2) to
determine the accuracy function Ψ(αc) for those alternatives. Now,

– If Φ(αc) provides the highest value for more than one alternative, the optimal
alternative is the one with the highest Ψ−functional value.

– If Ψ−functional values for multiple alternatives remain the same, then each of
these can be selected to be a viable option.

The above steps are also exhibited in Figure 1.

Figure 1. Flowchart of the proposed method.

The advantages of the developed methodology are given in the following.

• In the proposed model, the decision-making information is provided in terms of
q-ROFNs. This allows the decision-maker to express uncertain information in a
broader space.

• Generally, decision-makers assumed the attribute weights arbitrarily, leaving no room
for uncertainty. However, in the proposed model, we utilize the entropy method for
determining the weights of the attributes. Therefore, the proposed method is more
flexible and reasonable.
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• In the proposed model, we utilize the Archimedean aggregation operators to aggregate
information about each attribute. This makes the information aggregation process
more flexible because Archimedean operators are generalized versions of several
existing operators. As a result, the decision-maker can use any of the specific forms of
Archimedean operators for data fusion based on their own preferences.

6. Numerical Illustration

We present a numerical problem about site selection for software operating units to
demonstrate the proposed model.

Consider the case of a multinational company (MNC) that wishes to expand its global
footprint. Assume the company needs to establish a software-operating unit in another
country. Suppose they have offers from four countries worldwide, namely Υ1, Υ2, Υ3, and
Υ4. So their problem is to select the best alternative country that will potentially increase
their business profit while minimizing all costs.

They need not only an economically developed country but all the necessary facilities,
and cooperation from the country is also crucial for them. In addition, they prioritize
lowering labor and transportation costs.

So according to their priorities, the decision-making committee of the company has
proposed the following attributes:

Distance from the core market (=1): The company is already well-established, so they have
their market globally. So, for better communication, the distance between the market
and the operating place is desired to be minimized. For instance, if a company’s
core market is in South Asia and its alternative countries for developing software
operating units are Canada and Japan, the company will ideally prefer Japan because
it is less distant from the company’s core market.

Regular cost (=2): To build a software operating unit and run it effectively, the company
has to estimate its regular cost of operating and maintenance, which varies from
country to country hugely. So, the company will always prefer the country where
the skilled and unskilled labor cost, instrument, and device cost, transportation cost,
energy cost, etc., are minimized.

Facilities from the government of that country (=3): Any MNC will need a large space,
good electricity supply, and good transportation, and communication facilities which
are expected to be provided by the local government. However, the availability of
these opportunities from the government of the corresponding country will vary
country-wise. For example, an economically weaker country will produce better
opportunities to attract big companies for the following reasons:

• to create job opportunities for its unemployed citizens;
• to increase its gross national product;
• to attract other investors for future industrial expansion;
• to improve international impact from an economic perspective.

So, the company must prefer the country which will provide more opportunities and
cooperation from the government.

Availability of skilled and unskilled labor (=4): The company requires a large amount
of skilled and unskilled labor to run the software operating unit. As a result, the
company will seek skilled and unskilled labor at the lowest possible cost. Otherwise,
it must import the same from other countries, which is very expensive. As a result, the
company must prefer a country with skilled engineers as well as unskilled laborers.

Future possibilities (=5): The company always has a plan for future extension of their
current market. So, the company must prefer to build up its software operating
station in a country where it can expand its market in the future. Furthermore, the
company may avoid a country where another company’s successful market for the
same product as theirs already exists. In other words, the company will try to avoid
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unnecessary competition in the near future. So the company will choose a country
with more future possibilities for their market expansion.

Now, due to the presence of many conflicting attributes, a lack of information, and
an imprecise human mind, the assessment and selection of the site to develop software
operating units is a complicated uncertain decision-making problem. The q-ROFSs provide
an effective tool to deal with uncertainty in complex decision-making problems due to their
broader space. Therefore, the managing committee gives their opinion in terms of q-ROFNs
about each alternative. The ratings of the alternatives with respect to each attribute are
presented in Table 7.

Table 7. q-ROF decision matrix.

=1 =2 =3 =4 =5

Υ1 (0.80,0.50) (0.90,0.60) (0.70,0.21) (0.80,0.70) (0.70,0.66)
Υ2 (0.90,0.50) (0.20,0.80) (0.60,0.40) (0.66,0.90) (0.41,0.70)
Υ3 (0.50,0.50) (0.70,0.60) (0.80,0.80) (0.77,0.32) (0.70,0.20)
Υ4 (0.35,0.81) (0.60,0.60) (0.72,0.50) (0.79,0.31) (0.65,0.72)

In the following, we utilize the proposed MADM model to solve the above numerical
problem about site selection for software operating units.

At first, we apply the q-ROFAWA operator based method to select the most preferable
country Υc(c = 1, 2, 3, 4, 5).

Step 1: Input the q-ROF decision matrix.
Step 2: Normalizing the q-ROF decision matrix using Equation (5) we obtain:

N =


(0.8, 0.5) (0.6, 0.9) (0.7, 0.21) (0.8, 0.7) (0.66, 0.7)
(0.9, 0.5) (0.8, 0.2) (0.6, 0.4) (0.66, 0.9) (0.70, 0.41)
(0.5, 0.5) (0.6, 0.7) (0.8, 0.8) (0.77, 0.32) (0.2, 0.7)
(0.35, 0.81) (0.6, 0.6) (0.72, 0.5) (0.79, 0.31) (0.72, 0.65)


Step 3: Utilizing Equation (6) we obtain the attribute weights for the five attributes as

(0.192, 0.205, 0.192, 0.222, 0.189).
Step 4: Consider f (t) = log(t) and q = 4 in q-ROFAWA operator to compute overall

performance values αc(c = 1, 2, 3, 4) of countries Υc using Equation (7). The ag-
gregated values are given by: α1 = (0.7323, 0.5483), α2 = (0.7717, 0.4356), α3 =
(0.6786, 0.5658), and α4 = (0.6918, 0.5381).

Step 5: The score values Φ(αc)(c = 1, 2, 3, 4, 5) using Definition 2 are given by: Φ(α1) =
0.1972, Φ(α2) = 0.3188, Φ(α3) = 0.1097, and Φ(α4) = 0.1452. Therefore, using the
score values, we rank the four countries as Υ2 > Υ1 > Υ4 > Υ3.

Step 6: Therefore, the country Υ2 possesses the highest rank among those four countries.
So, the country Υ2 is the most preferable country in which the MNC should build
its new business branch.

Thereafter, we utilize q-ROFAWG operator to select the most preferable country
Υc(c = 1, 2, 3, 4, 5).

Step 1: Input the q-ROF decision matrix.
Step 2: Obtain the normalized matrix N.
Step 3: Utilizing Equation (6) the attribute weights are calculated as

(0.192, 0.205, 0.192, 0.222, 0.189).
Step 4: Consider f (t) = log(t) and q = 4 in q-ROFAWG operator to compute overall

performance values αc(c = 1, 2, 3, 4) of countries Υc using Equation (8). The ag-
gregated values are given by: α1 = (0.7088, 0.7347), α2 = (0.7234, 0.6917), α3 =
(0.5257, 0.6693), and α4 = (0.6164, 0.6435).
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Step 5: The score values Φ(αc)(c = 1, 2, 3, 4, 5) using Definition 2 are given by: Φ(α1) =
−0.0389, Φ(α2) = 0.0449, Φ(α3) = −0.1243, and Φ(α4) = −0.0271. Therefore, using
the score values, we rank the four countries as Υ2 > Υ4 > Υ1 > Υ3.

Step 6: Therefore, the country Υ2 possesses the highest rank among those four countries.
So, the country Υ2 is the most preferable country in which the MNC should build
its software operating unit.

7. Comparison Analysis

In order to establish the validity and efficacy of the proposed model, we compared the
outcomes obtained from our proposed method with those of several existing methods.

7.1. Comparison with Aggregation Operator-Based Methods

The calculation procedure for the IFWA [38] and EIFWA [38] is not very complicated,
but its application field is confined. It can only handle decision-making problems with
information expressed as an intuitionistic fuzzy number (IFN). Since our proposed MADM
problem includes an evaluation value beyond the IFN, IFWA and EIFWA operators are
insufficient to handle it. Now PFWA [42] and PFEWA [42] operators can only be used when
the evaluation information is elicited as a PyFN. However, in PyFN, the square sum of
MD and NMD is restricted to 1. As a result, the PFWA and PFEWG operators cannot be
used to solve the given MADM problem. Now q-ROFWA, q-ROFEWA, q-ROFFWA, and
Yq-ROFWA operators are most suitable to deal with the proposed model as the parameter q
makes the aggregation process more adaptable. The range of information can be extended
by increasing the parameter q. As a result, we can say that our proposed model outperforms
the models based on IFWA, EIFWA, PFWA, and PFEWG operators.

The appraisal score of every alternative is now computed using the q-ROFWA, q-
ROFEWA, q-ROFFWA, and Yq-ROFWA operators. The alternatives are then ranked in
descending order of score value. The ranking outcomes are shown in Figure 2 and Table 8.
From Figure 2 and Table 8, we observe that for the q-ROFWA, q-ROFEWA, and q-ROFFWA
AOs ranking order is always Υ2 > Υ1 > Υ4 > Υ3 and the optimal alternative is always
Υ2 although, the appraisal score for each alternative is different. Again, using Yq-ROFWA
operator we obtain the ranking order as Υ2 > Υ1 > Υ3 > Υ4 and the optimal alternative
is Υ2.

Table 8. Alternative rankings using some weighted averaging operators (q = 4).

AOs Score Values Ranking Order Best Option

IFWA [38] cannot be determined No No
EIFWA [38] cannot be determined No No
PFWA [42] cannot be determined No No

PFEWA [43] cannot be determined No No
q-ROFWA [34] Φ(α1) = 0.1972, Φ(α2) = 0.3188, Φ(α3) = 0.1097, Υ2 > Υ1 > Υ4 > Υ3 Υ2

Φ(α4) = 0.1452
q-ROFEWA Φ(α1) = 0.1834, Φ(α2) = 0.3009,Φ(α3) = 0.0939, Υ2 > Υ1 > Υ4 > Υ3 Υ2

Φ(α4) = 0.1347
q-ROFFWA Φ(α1) = 0.1858,Φ(α2) = 0.3057,Φ(α3) = 0.0986, Υ2 > Υ1 > Υ4 > Υ3 Υ2
[β = 3] Φ(α4) = 0.1377

Yq-ROFWA Φ(α1) = 0.0138,Φ(α2) = 0.0538,Φ(α3) = 0.0102, Υ2 > Υ1 > Υ3 > Υ4 Υ2
[β = 5] Φ(α4) = 0.0082
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Figure 2. Comparison with some weighted averaging operators.

Now, we shall compare our result using q-ROFAWG using different additive genera-
tors f . The ranking results using different geometric aggregation operators are displayed in
Figure 3 and Table 9.

From Table 9 and Figure 3, we see that the problem is not solvable by implementing
IFWG, EIFWG, PFWG, and PFEWG AOs as they can only cope with IF information and
Pythagorean fuzzy information. Again, utilizing q-ROFWG, q-ROFEWG, q-ROFFWG
operators, we see that while the score values for the alternatives vary, their ranking order
almost remains the same, and Υ2 is the best option. Again, using Yq-ROFWG operator,
we obtain the ranking order as Υ4 > Υ3 > Υ1 > Υ2 and the optimal alternative is Υ4. The
proposed procedure is more productive than conventional procedures for its flexibility to
elicit fuzzy data in a wider range. Moreover, the existing approaches under the q-ROF
environment are a particular case of our proposed approach. Therefore, our suggested
MADM method is more generalized and compatible with q-ROFNs.

Table 9. Alternative rankings using some weighted geometric operators (q = 4).

AOs Score Values Ranking Order Best Option

IFWG [39] cannot be determined No No
EIFWG [41] cannot be determined No No
PFWG [42] cannot be determined No No

PFEWG [44] cannot be determined No No
q-ROFWG [34] Φ(α1) = −0.0389, Φ(α2) = 0.0449, Φ(α3) = −0.1243, Υ2 > Υ4 > Υ1 > Υ3 Υ2

Φ(α4) = −0.0271
q-ROFEWG Φ(α1) = −0.0112, Φ(α2) = 0.0878,Φ(α3) = −0.1103, Υ2 > Υ1 > Υ4 > Υ3 Υ2

Φ(α4) = −0.0115
q-ROFFWG Φ(α1) = −0.0201,Φ(α2) = 0.0738,Φ(α3) = −0.1141, Υ2 > Υ4 > Υ1 > Υ3 Υ2
[β = 3] Φ(α4) = −0.0157

Yq-ROFWG Φ(α1) = −0.0491,Φ(α2) = −0.0516,Φ(α3) = −0.0079, Υ4 > Υ3 > Υ1 > Υ2 Υ4
[β = 5] Φ(α4) = −0.0083
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Figure 3. Comparison with some weighted geometric operators.

7.2. Comparison with q-ROF TOPSIS Method

In the literature, Alkan and Kahraman [45] extended the TOPSIS method based on
a distance measure under the q-ROF environment. We call this approach Alkan and
Kahraman’s method. This method is an effective model for solving MADM problems. Here,
we apply the remaining steps of Alkan and Kahraman’s method to the normalized matrix
N mentioned in Section 6.

At first, we determine the q-ROF weighted aggregated matrix by using the entropy
weights. Let P be the weighted aggregated matrix. Then

P =


(0.557, 0.875) (0.409, 0.709) (0.476, 0.741) (0.576, 0.924) (0.444, 0.935)
(0.656, 0.875) (0.566, 0.719) (0.403, 0.839) (0.462, 0.977) (0.474, 0.845)
(0.333, 0.875) (0.409, 0.929) (0.557, 0.958) (0.550, 0.777) (0.132, 0.935)
(0.232, 0.960) (0.409, 0.901) (0.491, 0.875) (0.568, 0.771) (0.490, 0.922)


At first, we determine the q-ROF positive ideal solution (q-ROFPIS) and the IVSF

negative ideal solution (q-ROFNIS). Let X∗ be the q-ROFPIS and X− be the q-ROFNIS. So,
X∗ = {(0.656, 0.875), (0.5660.719), (0.476, 0.741), (0.568, 0.771), (0.474, 0.845)} and
X− = {(0.232, 0.960), (0.409, 0.979), (0.557, 0.958), (0.462, 0.977), (0.132, 0.935)}. Next, we
compute the normalized Euclidean distance between the aggregated performance of alter-
native from the q-ROFPIS and q-ROFNIS which are denoted as D+

i (Υi, X∗) and D−i (Υi, X−),
respectively. The values of D+

i (Υi, X∗) and D−i (Υi, X∗−) are exhibited in Table 10.
Finally, we calculate the relative closeness coefficient CCi(Υi) for each alternative Υi

where CCi(Υi) =
D−i (Υi ,X−)

D−i (Υi ,X−)+D+
i (Υi ,X∗)

. The values of CRi(Υi) are displayed in Table 10. We

exhibit the values of CCi(Υi) in Table 10.
According to Table 10, Υ2 � Υ4 � Υ1 � Υ3 is the ranking order of the four available

alternatives. Therefore, Υ2 is the best alternative obtained from Alkan and Kahraman’s
method.
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Table 10. Outcomes of Alkan and Kahraman’s method.

Alternatives D+
i (Υi , X∗) D−i (Υi , X∗) CCi(Υi) Ranking

Υ1 0.434 0.333 0.434 3
Υ2 0.239 0.502 0.677 1
Υ3 0.466 0.311 0.400 4
Υ4 0.384 0.363 0.485 2

Therefore, the ranking of the alternatives using the proposed method and q-ROF
TOPSIS method is almost the same. In both of the methods, the optimal alternative is
always Υ2. The only difference is the ranking between Υ1 and Υ4. In the q-ROF TOPSIS
method Υ4 � Υ1, where in the proposed method Υ1 � Υ4. Therefore, the proposed method
is highly reliable.

7.3. Comparison with q-ROF MULTIMOORA Method

Here, we compare the results of the developed method with the existing full multi-
plicative form (FMF) approach, the reference point (RP) approach, and the ratio system (RS)
approach for the MULTIMOORA method [46] under the q-ROF environment. For this, the
same numerical example is solved with the existing q-ROF environment MULTIMOORA
method [46].

7.3.1. Comparison with RS Approach for q-ROF MULTIMOORA Method

Here, we apply the remaining steps of the RP approach for the MULTIMOORA method
to the normalized matrix N mentioned in Section 6.

Then, we calculate the relative significance (Y+
i ) for each alternative Υi using q-

ROFEWA operator [36]. The values of Y+
i are exhibited in Table 11.

Next, we defuzzify the Y+
i based on the score function given in Equation (1). Finally,

we rank the alternatives based on Φ(Y+
i ) values in descending order.

Table 11. Outcomes of RS approach for q-ROF-MULTIMOORA method.

Alternatives Y+
i Φ(Y+

i ) Ranking

Υ1 (0.7289, 0.5607) 0.1834 2
Υ2 (0.7635, 0.4444) 0.3009 1
Υ3 (0.6698, 0.5724) 0.0939 4
Υ4 (0.6864, 0.5435) 0.1347 3

According to Table 11, we obtain the ranking outcome as Υ2 � Υ1 � Υ4 � Υ3 There-
fore, Υ2 is the best alternative obtained from the RS approach for the q-ROF-MULTIMOORA
method.

7.3.2. Comparison with FMF Approach for q-ROF MULTIMOORA Method

Here, we apply the remaining steps of the FMF approach for the MULTIMOORA
method to the normalized matrix N mentioned in Section 6.

We calculate the total utility of the alternatives (Z+
i ) for each alternative Υi using the

q-ROFEWGA operator [36]. The values of Z+
i are exhibited in Table 12.

Next, we defuzzify the Z+
i based on the score function given in Equation (1). The

score values of Z+
i are exhibited in Table 12. Finally, we rank the alternatives based on

Φ(Z+
i ) values in descending order.
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Table 12. Outcomes of FMF approach for the q-ROF-MULTIMOORA method.

Alternatives Y+
i Φ(Y+

i ) Ranking

Υ1 (0.7114, 0.7191) −0.0112 2
Υ2 (0.7289, 0.6641) 0.0878 1
Υ3 (0.5344, 0.6619) −0.1103 4
Υ4 (0.6226, 0.6342) −0.0115 3

According to Table 12, we obtain the ranking outcome as Υ2 � Υ1 � Υ4 � Υ3. There-
fore, Υ2 is the best alternative obtained from the FMF approach for the IVSF-MULTIMOORA
method.

From Tables 11 and 12, we can observe that the ranking of the four alternatives is
Υ2 � Υ1 � Υ4 � Υ3, which is identical with the ranking obtained from the proposed
methods. Therefore, our proposed model is highly reliable.

7.4. Validity Test

The same decision-making problem can produce different results for different MADM
approaches. To illustrate the efficacy of our MADM approach, we check whether it satisfies
the requirements set forth by Wang and Triantaphyllou [47] as:

Criterion 1: If any non-optimal alternatives are replaced with worse alternatives while
maintaining the level of significance of each attribute, the MADM approach
remains efficient and the optimal alternative remains the same.

Criterion 2: The transitivity law must be followed by an efficient MADM method.
Criterion 3: If a MADM problem is divided into sub-problems, the given MADM problem

can be used to rank the alternatives to those sub-problems. The joint ranking
of the alternative remains unchanged from the previous ranking order.

Now, we testify in the following if our proposed method satisfies these criteria or not.

Test with Criterion 1

Here, a worse alternative Υ3 is chosen arbitrarily and replaced by a new worse al-
ternative Υ′3, where the q-ROF data for which the alternative Υ′3 satisfies the attributes
=1,=2,=3,=4,=5 are (0.30, 0.79), (0.55, 0.49), (0.78, 0.60), (0.70, 0.40) and (0.29, 0.75), re-
spectively. Depending on the modified information, the score values using the q-ROFEWA
operator are obtained as Φ(α1) = 0.2412, Φ(α2) = 0.2726, Φ(α′3) = 0.0086, and Φ(α4) =
0.1302. The optimal ranking order is Υ2 � Υ1 � Υ4 � Υ′3. This gives that still, Υ2 is the
optimal alternative. Again the score values using the q-ROFEWG operator are obtained
as Φ(α1) = 0.0868, Φ(α2) = 0.1049, Φ(α′3) = −0.1464, and Φ(α4) = −0.0086. Which
tells that still Υ2 is the most suitable alternative. Hence, the proposed model meets this
criterion. Similarly, if we implement other proposed operators, the proposed model meets
this criterion.

7.5. Test with Other Criteria

If the MADM problem is divided into smaller sub-problems which consist of
{Υ1, Υ2, Υ3}, {Υ2, Υ3, Υ4}, {Υ3, Υ4, Υ1} and {Υ4, Υ1, Υ2} alternatives. By solving each sub-
problem with our suggested procedure, we acquire the alternatives’ ranking as Υ2 � Υ1 �
Υ3, Υ2 � Υ3 � Υ4, Υ3 � Υ4 � Υ1, and Υ4 � Υ1 � Υ2,, respectively. In this manner, by
combining them, we obtain Υ2 � Υ1 � Υ4 � Υ3 which is similar to the original one. As a
result, our method also meets the second and third requirements.

8. Conclusions

The q-ROFSs are more flexible for expressing ambiguous information because of the
presence of the parameter q. The Archimedean TCNs and TNs are generalizations of several
TCNs and TNs. In this article, we have implemented the concepts of ATCN and ATN to
develop AOs using q-ROF information. We have defined some novel operational rules for
q-ROFNs utilizing ATCN and ATN. Thereafter, utilizing these operational laws, we propose
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q-ROFAWA, q-ROFAOWA, q-ROFAHA, q-ROFAWG, q-ROFAOWG, and q-ROFAHG opera-
tors. Afterward, the properties of these operators are thoroughly investigated. Next, we
have shown that the AOs based on several existing TCNs and TNs (e.g., Frank, Hamacher,
etc.) are particular cases of our proposed q-ROF AOs based on ATCN and ATN. Fur-
thermore, we have presented a novel method to solve the MADM problem using the
q-ROFAWA and q-ROFAWG operators. Finally, a numerical example of site selection of
software operating units was used to show the feasibility, viability, and supremacy of the
suggested approaches over other available methods.

There are some limitations to the current study. The primary limitation of this study is
that the proposed model can only address the MADM issue. It can, however, be expanded
to address MAGDM issues. Another shortcoming of this study is the computational
complexity of the proposed model. However, this issue can be fixed by developing a
computer program following the proposed approach, which will save decision-makers
time and energy. Furthermore, the proposed MADM model is limited to the site selection
problem. However, it is able to address other decision-making issues, e.g., sustainable
development programs [48], plastic waste management process [49], job selection problems
[5], bio-medical waste management [50], emergency assistance area selection [51], etc.
Furthermore, the current study develops the Archimedean aggregation operators within
the q-ROF context. However, the Archimedean aggregation operators can also be used in
other fuzzy environments, e.g., the quasirung fuzzy environment [52,53], spherical fuzzy
environment [54], etc.
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