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Abstract: Generalized progressive hybrid censoring approaches have been developed to reduce test
time and cost. This paper investigates the difficulties associated with estimating the unobserved
model parameters and the reliability time functions of the Kavya Manoharan Kumaraswamy (KMKu)
distribution based on generalized type-II progressive hybrid censoring using classical and Bayesian
estimation techniques. The frequentist estimators’ normal approximations are also used to construct
the appropriate estimated confidence intervals for the unknown parameter model. Under symmet-
rical squared error loss, independent gamma conjugate priors are used to produce the Bayesian
estimators. The Bayesian estimators and associated highest posterior density intervals cannot be
derived analytically since the joint likelihood function is provided in a complicated form. However,
they may be evaluated using Monte Carlo Markov chain (MCMC) techniques. Out of all the censoring
choices, the best one is selected using four optimality criteria.

Keywords: Kavya Manoharan Kumaraswamy distribution; progressive hybrid generalized type-II
censoring; Bayesian and classical estimators; Metropolis–Hastings algorithm; MCMC techniques;
optimal plan for progressive censoring

1. Introduction

The progressive type-II censoring (PCS-T2) method is the most popular scheme in
reliability and survival analysis. Compared with the traditional type-II censoring method,
it is better. Progressive censoring is advantageous in a variety of real-world applications,
including business, medical research, and therapeutic settings. Up until the test’s conclu-
sion, it permits the removal of any remaining experimental units. Assume that n units are
used in a life test and that it is not desirable to record every failure because of financial and
time constraints. Consequently, only a portion of unit failures are seen. A sample like this
is known as a censored sample. Assume that one of the units was accidentally damaged
after the test started but before they all burned out. This unit needs to be taken out of the
life test if the experiment is still going on. In this situation, a framework for analyzing this
kind of data is provided by the progressive censoring scheme. A few examples of primary
references are [1,2].

PCS-T2 has drawn a lot of attention in the literature as a very flexible censoring system
(see [3] for further details). When testing n independent units at a time T = 0, the failure
number to be noticed s and the progressive censored samples, R = (R1, R2, . . . , Rs ), where
n = ∑s

i=1 Ri + s, are specified. When the initial failure is seen (suppose that Y1:s:n), the other
surviving units n− 1 are chosen at random, and R1 of those units is disqualified from the
test. Similarly, at the moment of the second failure (suppose that Y2:s:n), R2 of n− R1 − 2
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are selected at random and deleted from the test, and so on. At the time of the s− th failure
(suppose that Ys:s:n), every survivor unit still present Rs = n− s−∑s−1

j=1 Rj is removed from
the experiment.

Whenever the test units are particularly reliable, the major drawback of this censoring
is that it could take longer to finish the progressively type-II hybrid censored samples
(PHCS-T2). The authors of [4] proposed a progressive type-I hybrid censored strategy
(PHCS-T1) as a remedy for this issue. This method combines PCS-T2 with conventional
type-I censoring. Under PHCS-T1, the trial period is stopped at T, maximum likelihood
estimators (MLEs) were not always available due to the fact that relatively a few failures
might occur before time T in PHCS-T1. To resolve this issue, [5] presented the PHCS-T2
scheme. At T∗ = max(Ys:s:n, T), the experiment comes to an end under PHCS-T2. It can
take some time until such s− th failures are really observed, despite the fact that PHCS-T2
promises a fixed number of failures.

It could take a while to gather the needed failures, even though the PHCS-T2 ensures
an effective number of observable failures. Thus, [6] devised the generalized progressive
type-II hybrid censoring (GPHC-T2). Assume that the thresholds Ti, i = 1, and 2, as well as
the integer s, are preassigned in such a way that 0 < T1 < T2 < ∞ and 1 < s < n. c1 and
c2 represent the overall number of failures up to periods T1 and T2, respectively. Then, at
Y1:s:n, R1 of n− 1 are arbitrarily excluded from the test, followed by R2 of n− R1 − 2, and
so on.

The experiment is over, and all remaining units are deleted at T∗ = max(T1, min(Ys:s:n, T2)).
If Ys:n < T1, failures are observed without any further withdrawals up until time T1 (Case-
I); if T1 < Ys:s:n < T2, the test is terminated at time Ys:s:n (Case-II); or, if not, the test is
terminated at time T2 (Case-III). Keep in mind that the GPHCS-T2 modifies the PHCS-T2
by guaranteeing that the test is completed at the scheduled time T2. T2 demonstrates the
longest period of time the researcher is willing to let the experiment continue. As a result,
one of the following three data types will be visible to the experimenter:

(
Y
_
,R

_

)
=


Case I;{[Y1:n,R1],. . .,[Ys−1:s:n,Rs−1],[Ys:s:n,0],. . .,[Yc1:n,0]}

Case II;{[Y1:s:n,R1],. . .,[Yc1:n,Rc1 ],[Ys−1:s:n,Rs−1],. . .,[Ys:s:n,Rs]}
Case III;{[Y1:s:n,R1],. . .,[Yc1:n,Rc1 ],[Yc2−1:n,Rc2−1],. . .,[Yc2:n,Rc2 ]}.

Figure 1 indicates the cases of generalized type-II progressive hybrid sample as follows:Symmetry 2023, 15, x FOR PEER REVIEW 3 of 21 
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Assume that in a distribution with a cumulative distribution function (cdf) F(.), and
probability density function (pdf) f (.), the variables Y and R represent the respective
lifetimes. As a result, the GPHCS-T2 likelihood function is expressed as follows:

Lϕ

(
θ, β|y

)
= Cϕ∏Dϕ

j=1 f
(
Yj:s:n; θ, β

)[
1− F

(
Yj:s:n; θ, β

)]Rj ψϕ(Tτ ; θ, β), (1)

where τ = 1, 2, ϕ = 1, 2, 3, stand in for Case-I, Case-II, and Case-III, respectively, and ψϕ(.)
is a combination form of dependability functions. Table 1 displays the GPHCS-T2 notations
from Equation (1). Many censoring techniques can also be inferred as particular examples
from Equation (1), including

Table 1. The notations of the GPHCS-T2.

ϕ Cϕ Dϕ ψϕ(Tτ ; β) R*
cτ+1

1
c1

∏
j=1

s
∑
i=j

(Ri + 1) c1 [1− F(T1)]
R∗c1+1 n− c1 −

s−1
∑

i=1
Ri

2
s

∏
j=1

s
∑
i=j

(Ri + 1) s 1 0

3
c2

∏
j=1

s
∑
i=j

(Ri + 1) c2 [1− F(T2)]
R∗c2+1 n− c2 −

c2

∑
i=1

Ri

1. With T1 setting to 0, use PHCS-T1.
2. T2 → ∞ . by setting PHCS-T2.
3. You may do hybrid type-I censoring by setting T1 → 0, Rj = 0, j = 1, 2, . . . , s− 1,

Rs = n− s .
4. T2 → ∞, Rj = 0, j = 1, 2, . . . , s− 1 , Rs = n − s can be used to do hybrid type-II

censoring.
5. To do type-I censoring, set T1 = 0, s = 1, Rj = 0, j = 1, 2, . . . , s− 1, Rs = n− s.
6. A type-II censored sample is produced by setting T1 = 0, T2 → ∞, s = 1,

Rj = 0, j = 1, 2, . . . , s− 1, Rs = n− s.

On the basis of GPHCS-T2, more studies have been conducted. For instance, Ref. [7]
investigated the prediction issue of forthcoming Burr-XII distribution failure rates. The
authors of [8] created the Weibull distribution with little data with an objective Bayesian
analysis. The authors of [9] addressed the competing risks from exponential data, and [10]
more recently examined both the point and interval estimations of the Burr-XII parameters.
Last but not least, [11] addressed the Fréchet distribution’s optimality under generalized
censoring schemes. In this paper, the KMKu model under generalized censoring samples is
studied. Where the KMKu model was initially proposed by [11]. Also, they found that the
Kumaraswamy model’s and KMKu shape forms in the pdf for different parameter values
are comparable. It may be asymmetric, unimodal, increasing, or decreasing. In addition,
the bathtub, U-shape, J-shape, or increasing shapes of the hazard rate function (hrf) for
the KMKu model are all possible. But suppose that Y is the lifespan random variable of a
test item adheres to the KMKu distribution, denoted by the notation KMKu(θ, β), where
θ > 0, β > 0 are the shape parameters. Therefore, it is supplied by its pdf, cdf, reliability
function (RF), R(.), and hrf, all represented by the letters f (.), F(.), and h(.) accordingly:

f (y; θ, β) =
θβyθ−1

e− 1

(
1− yθ

)β−1
e(1−yθ)

β

, 0 < y < 1; θβ > 0, (2)

F(y; θ, β) =
e

e− 1

(
1− e−1e(1−yθ)

β
)

, (3)

R(y; θ, β) = 1− e
e− 1

(
1− e−1e(1−yθ)

β
)

, (4)
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and

h(y; θ, β) =

θβyθ−1

e−1
(
1− yθ

)β−1

1− e(1−yθ)
β

. (5)

Although the KMKu model has a lot of flexibility because of its different shapes of hrf
and pdf, to our knowledge, no studies have yet been done under censorship. Particularly,
the generalized type-II progressively hybrid censoring scheme has not produced any data
for the new KMKu lifetime model’s survival traits and model parameters. To fill this gap,
the following are the objectives of this study: Firstly, the probability inference for any
function of the unknown KMKu parameters, such as R(t) or h(t), is derived. The second
objective is to derive independent gamma priors from the squared error (SE) loss and
produce Bayes estimates for the same unknown parameters, employing the provided esti-
mation procedures, such as classical and Bayesian approaches. The unknown parameters
of the KMKu distribution are discovered using the approximation confidence intervals
(ACIs) and highest posterior density (HPD) interval estimators. The acquired estimates are
computed using the R programming language’s “maxLik” and “coda” packages because
the theoretical findings of θ and β obtained by the suggested estimation techniques cannot
be represented in closed form. [12,13] offered these packages. Using four optimality criteria,
the ultimate aim is to develop the most efficient progressively censored sample technique.
The effectiveness of the different estimators is investigated using a Monte Carlo simulation
with the entire sample size, which can be combined in a variety of ways, effective sample
size, threshold timings, and progressively censored samples. We compare the average con-
fidence lengths (ACLs), mean relative absolute biases (MRABs), and simulated root mean
squared errors (RMSEs) of the derived estimators. The optimal censoring tactic should
be chosen after evaluating how effectively the given techniques will function in practice.
The remaining portions of this study are structured as follows: The maximum likelihood,
Bayes inferences, and reliability functions of the unknown parameters are presented in
Sections 2 and 3, respectively. The credible and asymptotic intervals are built into Section 4.
Section 5 goes into depth about the results of the Monte Carlo simulation. The optimal
methods for progressive censoring are discussed in Section 6. Two actual data sets are
indicated in Section 7. Finally, the conclusion and discussion are given in Section 8.

2. Likelihood Estimation

Assume that the representation of a GPHCS-T2 sample of size c2 taken from KMKu(θ, β)
is Y = ((Y1:s:n, R1), . . . , (Yc1:n, Rc1), . . . , (Yc2:n, Rc2)). The probability function of GPHCS-
T2 may be represented by substituting yj for yj:s:n in Equation (1) and adding
Equations (2) and (3); for more information, see [14].

Lϕ( θ, β|Y) ∝
Dϕ

∏
j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β), (6)

where

ψ1(T1; θ, β) =

(
1− e

e−1

(
1− e−1e(1−Tθ

1 )
β
))R∗c1+1

, ψ2(Tτ ; θ, β) = 1 and ψ3(T2; θ, β) =(
1− e

e−1

(
1− e−1e(1−Tθ

2 )
β
))R∗c2+1

.

The proper log-likelihood function for Equation (6) is `ϕ(.) ∝ ln Lϕ(.) as follows:

`ϕ( θ, β|Y) ∝ Dϕln(θβ) + (θ − 1)∑
Dϕ

j=1 ln
(
yj
)
− Dϕln(e− 1) + (β− 1)∑

Dϕ

j=1 ln
(

1− yθ
j

)
+ β∑

Dϕ

j=1 (1−

yθ
j ) + Ri∑

Dϕ

j=1 ln
[

1− e
e−1 + e−1e(1−yθ

j )
β
]
+ γϕ(Tτ ; θ, β),

(7)

where
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γϕ(T1; θ, β) =
(

R∗c1+1

)
ln
[

1− e
e−1

(
1− e−1e(1−Tθ

1 )
β
)]

, γ2(Tτ ; θ, β) = 1, and

γ3(T2; θ, β) =
(

R∗c2+1

)
ln
[

1− e
e−1

(
1− e−1e(1−Tθ

2 )
β
)]

.

By partially differentiating Equation (7) with reference to θ̂ and β̂, the subsequent two
findings are produced. After being equal to zero, likelihood equations must be simultane-
ously solved in order to create the MLEs.

∂`ϕ

∂θ
=

Dϕ

θ
+ ∑Dϕ

j=1 ln
(
yj
)
− (β− 1)∑Dϕ

j=1

yθ
j ln
(
yj
)(

1− yθ
j

) − β∑Dϕ

j=1 yθ
j ln
(
yj
)
− Ri∑Dϕ

j=1

e(1−yθ
j )

β

yθ
j β
(

1− yθ
j

)β−1
ln
(
yj
)

e
(

1− e
e−1 + e−1e(1−yθ

j )
β
) +

∂γϕ(Tτ ; θ, β)

∂θ
, (8)

and

∂`ϕ

∂β
=

Dϕ

β
+ 2∑Dϕ

j=1 ln
(

1− yθ
j

)
+ Ri∑Dϕ

j=1

e(1−yθ
j )

β(
1− yθ

j

)β
ln
(

1− yθ
j

)
e
(

1− e
e−1 + e−1e(1−yθ

j )
β
) +

∂γϕ(Tτ ; θ, β)

∂β
, (9)

where ϕ = 1, 3 and τ = 1, 2, respectively, we have

∂γϕ(Tτ ;θ,β)
∂θ = −

(
R∗cτ+1

)
e(1−Tθ

τ )
β

βTθ
τ ln(Tτ)[

1− e
e−1 +e−1e(1−Tθ

τ )
β
] , ∂γϕ(Tτ ;θ,β)

∂β = −
(

R∗cτ+1

) e(1−Tθ
τ )

β
βln(1−Tθ

τ )

e
[

1− e
e−1 +e−1e(1−Tθ

τ )
β
] .

According to Equations (8) and (9), it is necessary to simultaneously satisfy a system of two
nonlinear equations in order to derive the MLEs of θ and β in the KMKu model. As a result, for θ and
β, there is not, and cannot be computed, an analytical closed-form solution. Thus, it may be estimated
for each specific GPHCS-T2 data set using numerical techniques like the Newton-Raphson iterative
method. When the estimates of θ and β are derived by replacing them with θ̂ and β̂, the MLEs R̂(t)
and ĥ(t), respectively, may be easily computed.

3. Bayes Estimator
The HPD intervals for the Bayes estimators of θ , β, R(t), and h(t) are developed using the SE loss

function. To do this, it is assumed that the KMKu parameters θ and β, respectively, have independent
gamma priors of the forms ω(ν1, ν2) and ω(ν3, ν4).

The normal distribution can be a standard choice for data if the domain of that distribution
is from −∞ to ∞, and the beta distribution can be a standard choice for data if the domain of that
distribution is from 0 to 1. Similarly, the gamma distribution can be a standard choice for non-negative
continuous data if the domain of the gamma distribution is from 0 to ∞. This is one of the most
important reasons, but there are other reasons as follows:

• We believe the main motivation for the gamma prior is usually to constrain the random variables
to positive values.

• The gamma distribution is considered one of the most important and well-known statistical
distributions because it is compatible with many engineering, mathematical, statistical, and
medical applications.

• The gamma distribution is one of the most famous distributions that is used in mathematical
solutions (integrations), especially when the data are from 0 to ∞.

• In previous studies, the gamma distribution was the most popular prior distribution and was
associated with the best statistical results.

Gamma priors should be considered for a variety of reasons, including the fact that they are
(1) adjustable, (2) offer diverse shapes based on parameter values, and (3) fairly basic and brief and
might not generate a solution to a challenging estimation problem. Then, the combined previous
density of θ and β is determined; for more details on this topic, see [15,16].

π(θ, β) ∝ θν1−1βν3−1e−(θν2+βν4) (10)

If it is anticipated that for i = 1, 2, 3, 4, νi > 0 are known. The joint posterior pdf of θ and β,
Equations (6) and (10), when combined, results.
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πϕ

(
θ, β|y

)
∝ θDϕ+ν1−1βDϕ+ν3−1e−(θν2+βν4)∏Dϕ

j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β) (11)

The Bayes estimate,
∼
η(θ, β), of θ and β respectively, under SE loss, η(θ, β) is what is meant by

the posterior expectation of Equation (11), which is given.

∼
η(θ, β) =

∫ ∞

0

∫ ∞

0
η(θ, β)πϕ

(
θ, β|y

)
dθdβ.

It is clear from Equation (11), that it is impossible to explicitly express the marginal pdfs of
θ and β. In order to accomplish this, we recommend creating samples from Equation (11) utilizing
Bayes MCMC methods to calculate the joint Bayes estimates and supplying their HPD intervals.
The complete conditional pdfs of θ and β are provided for the MCMC sampler from Equation (11)
to be performed as intended.

πθ
ϕ

(
θ|β, y

)
∝ θDϕ+ν1−1e−θν2 ∏Dϕ

j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β), (12)

and

π
β
ϕ

(
β|θ, y

)
∝ βDϕ+ν3−1e−βν4 ∏Dϕ

j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β). (13)

The Metropolis-Hastings (M-H) approach is considered to be the best solution to this problem
because no analytical method exists to reduce the posterior pdfs of θ and β in Equations (12) and (13),
respectively, to any known distribution (for further information, see [17,18]. The sampling method of
the M-H algorithm is implemented according to:

First, establish the starting points, θ(0) = θ̂ and β(0) = β̂.
Set S = 1 after that.
Thirdly, from N(µ̂1, σ̂1) and N(µ̂2, σ̂2), respectively, create θ∗ and β∗.

The fourth step: Obtaining $θ = min
{

1,
πθ

ϕ( θ∗ |β(s−1) ;y)
πθ

ϕ( θ(s−1)|β(s−1) ;y)

}
and

$β = min
{

1,
π

β
ϕ( β∗ |θ(s) ;y)

π
β
ϕ( β(s−1)|θ(s) ;y)

}
.

Fifth, use the uniform U(0, 1) distribution to generate the samples u1 and u2.
Sixth: Set θ(S) = θ∗ and β(S) = β∗, respectively, if u1 and u2 are both smaller than $θ and $β,

respectively. Set θ(S) = θ(S−1) and β(S) = β(S−1), correspondingly, if not.
Seventh: Establish that S equals S + 1.
Eighth: Repeating steps three through seven a number of times B will give you the values for

θ(S) and β(S) for S = 1, 2, . . . , B.
Ninth: To calculate the RF in Equation (4) and hrf in Equation (5), use θ(S) and β(S) for

S = 1, 2, . . . , B, respectively, for a given mission period t > 0.

R(S)(t) = 1− e
e− 1

(
1− e−1e(1−yθ(S) )

β(S)
)

, y > 0,

and

h(S)(t) =

θ(S)β(S)yθ(S)−1

e−1

(
1− yθ(S)

)β(S)−1

1− e(1−yθ(S) )
θ(S)

, y > 0.

The convergence of the MCMC sampler must be ensured, and starting, θ(0) and β(0) values
must be eliminated. The first simulated variants, let us say B0, are removed as burn-ins. Therefore,
using the remaining B− B0 samples of θ, β, R(t), or h(t), (let us suppose η), the Bayesian estimates
are computed. On the basis of the SE loss function, the Bayes MCMC estimates of η are shown.

∼
η =

1
B− B0

B

∑
S=B0+1

η(S)
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4. Interval Estimators
The HPD interval estimators in this section are based on acquired MCMC-simulated variations,

as opposed to the approximative confidence estimators of θ, β, R(t), or h(t) that are based on observed
Fisher information.

4.1. Asymptotic Intervals
To compute the ACIs for θ and β, the Fisher information matrix must first be inverted to produce

the asymptotic variance-covariance (AVC) matrix. According to certain regularity criteria,
(
θ̂, β̂
)

is nearly normal with a mean (θ, β) and variance I −1 (θ, β). In agreement with [19], we estimate
I −1 (θ, β) by I −1 (θ̂, β̂

)
, replacing θ̂ and β̂ for θ and β.

I −1 (θ̂, β̂
)
= −

[
a11 a12
a21 a22

]−1

(14)

where

a11 =
∂2`ϕ

∂θ2 = −Dρ

θ2 − (β− 1)∑
Dϕ

j=1
yθ

j ln(yj)
(

1+ln(yj)
(

1−yθ
j

))
(

1−yθ
j

)2 − β∑
Dϕ

j=1 yθ
j

[
ln
(

yj

)]2
+

Ri∑
Dϕ

j=1

βyθ
j (ln(yj))

2
e
(1−yθ

j )
β(

1−yθ
j

)β−1

1+βyθ
j

(
1−yθ

j

)β
+

yθ
j (β−1)(
1−yθ

j

)


e

(
1− e

e−1 +e−1e
(1−yθ

j )
β
)2 +

∂2γϕ(Tτ ;θ,β)
∂θ2

(15)

a12 = a21 =
∂2`ϕ

∂θ∂β = −∑
Dϕ

j=1
yθ

j ln(yj)(
1−yθ

j

) −∑
Dϕ

j=1 yθ
j ln
(

yj

)
−

Ri∑
Dϕ

j=1

yθ
j ln(yj)e

(1−yθ
j )

β(
1−yθ

j

)β−1

1+β
(

1−yθ
j

)β(
ln
(

1−yθ
j

))
+

βln
(

1−yθ
j

)
(

1−yθ
j

)


e

(
1− e

e−1 +e−1e
(1−yθ

j )
β
)2 +

∂2γϕ(Tτ ;θ,β)
∂θ∂β ,

(16)

a22 =
∂2`ϕ

∂β2 = −
Dϕ

β2 + Ri ∑Dϕ

j=1

(
ln
(

1− yθ
j

))2
e(1−yθ

j )
β
((

1− yθ
j

)β
+
(

1− yθ
j

)2β
)

e
(

1− e
e−1 + e−1e(1−yθ

j )
β
)2 +

∂2γϕ(Tτ ; θ, β)

∂β2 , (17)

where

∂2γϕ(Tτ ; θ, β)

∂θ2 = −
(

R∗cτ+1
) βln(Tτ)Tθ

τ e(1−Tθ
τ )

β
([

1− e
e−1 + e−1e(1−Tθ

τ )
β
](

1− Tθ
τ

(
1− Tθ

τ

)β−1
)
+ T2θ

τ e−1β
(

1− Tθ
τ

)β−1
)

[
1− e

e−1 + e−1e(1−Tθ
τ )

β
]2 ,

∂2γϕ(Tτ ; θ, β)

∂θ∂β
=

(
R∗c1+1

)
e−1e(1−Tθ

1 )
β
(

1− Tθ
τ

)β
ln
(

1− Tθ
τ

)
[
1− e

e−1

(
1− e−1e(1−Tθ

τ )
β
)] ,

and

∂2γϕ(Tτ ;θ,β)
∂β2 =

−(R∗cτ+1)ln(1−Tθ
τ )e(1−Tθ

τ )
β

e
[

1− e
e−1 +e−1e(1−Tθ

τ )
β
]2

(
[
1− e

e−1 + e−1e(1−Tθ
τ )

β
](

1 + β
(

1− Tθ
τ

)β
ln
(

1− Tθ
τ

))
− βe−1

(
1− Tθ

τ

)β
ln
(

1− Tθ
τ

)
e(1−Tθ

τ )
β

).

The two-sided 100(1− γ)% ACIs are therefore given by
θ̂ ± Z γ

2

√
σ̂1

2 and β̂± Z γ
2

√
σ̂22, for θ and β, respectively, where Z γ

2
stands for the top γ

2 percent-

age points of the standard normal distribution, σ̂1
2 and σ̂2

2 are the primary diagonal elements of
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Equation (14). Furthermore, we employ the delta method to first establish the estimated variance of
R̂(t) and ĥ(t) (see [20]) before developing the ACIs of R(t) and h(t) as

σ̂2
R̂(t) = εT

R̂ I−1(ε̂)εR̂ and σ̂2
ĥ(t) = εT

ĥ I−1(ε̂)εĥ,

where εT
R̂
=
[

∂R(t)
∂θ

∂R(t)
∂β

]
(θ̂, β̂)

, and εT
ĥ
=
[

∂h(t)
∂θ

∂h(t)
∂β

]
(θ̂, β̂)

Then, R(t) and h(t) both have two-sided 100(1− γ)% ACIs that are supplied by R̂(t)± Z γ
2

√
σ̂R̂(t)

2

and ĥ(t)± Z γ
2

√
σ̂ĥ(t)

2, respectively.

Adding bootstrapping techniques to improve estimators or create confidence intervals for θ,
β, R(t), or h(t) is easy.

4.2. HPD Intervals
The method put forward by [21] is used to create 100(1− γ)% HPD interval estimates

of θ, β, R(t), or h(t). First, we assign numerical values to the MCMC samples of ε(j) for
j = B0 + 1, B0 + 2, . . . , B as ε(B0+1), ε(B0+2), . . . , ε(B) correspondingly. The discovery is that
the 100(1− γ)% two-sided HPD interval of ε is supplied by ε(j∗), ε(j∗+(1−ε)(B−B0)) , where

j∗ = B0 + 1, B0 + 2, . . . , B is selected so that ε(j∗+(1−ε)(B−B0)) − ε(j∗) =
min

1 ≤ j ≤ γ ≤ (B− B0){
ε(j+(1−γ)(B−B0)) − ε(j)

}
ε(j∗), ε(j∗+(1−γ)(B−B0)).

5. Optimal PCS-T2 Designs
The experimenter may want to pick the “best” censoring scheme out of a collection of all

accessible censoring schemes in order to provide the most details about the unknown parameters
under investigation, especially in the context of dependability. First, [1] examined the problem of
deciding which censoring strategy is most appropriate under various circumstances. However, a
number of optimality criteria, R = (R1, R2, . . . , Rs), where ∑s

i=1 Ri have been proposed, and several
assessments of the top censoring strategies have been made. The precise values of n (total test units),
s (effective sample), and Ti, i = 1, 2 (ideal test thresholds) are picked in advance according to the
accessibility of the units, the accessibility of the experimental settings, and cost factors (see [22]). A
number of articles in the literature have addressed the topic of contrasting two (or more) different
censoring techniques. For examples, see [23,24]. To help us choose the best censoring strategy, Oi,
Table 2 offers a variety of widely used measures.

Table 2. Illustrations of numerous helpful censoring methods and best practices.

Criterion Method

O1 Maximize trace [I2×2(.)]

O2 Minimize trace [I2×2(.)]
−1

O3 Minimize det [I2×2(.)]
−1

O4 Minimize Var
[
log
(
t̂p
)]

, 0 < p < 1

It is advised that the observed Fisher information, [I2×2(.)] values for O1, be maximized. For
criterion O2 and O3, we also wish to reduce the determinant and trace of [I2×2(.)]

−1. The best
censoring strategy for multi-parameter distributions may be selected using scale-invariant criteria.
While dealing with unknown multi-parameter distributions makes it more challenging to compare
the two Fisher information matrices, dealing with single-parameter distributions allows for the use of
scale-invariant criteria to compare a variety of criteria O4. The logarithmic MLE of the p− th quantile,
log
(
t̂p
)
, tends to have a variance that is minimized by the p-dependent criterion O4. As a result, the

logarithm of the KMKu distribution for time t̂p may be calculated using

log
(
t̂p
)
=

{
1−

[
ln
(

e
(

1− p
(

e− 1
e

)))] 1
β

} 1
θ

, 0 < p < 1,
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By using the delta technique to solve for Equation (4), the estimate of the variance for the
log
(
t̂p
)

of the KMKu distribution is given as

Var
(
log
(
t̂p
))

=
[
∇log

(
t̂p
)]T I−1

2×2
(
θ̂, β̂

)[
∇log

(
t̂p
)]

,

where [
∇log

(
t̂p
)]T

=

[
∂

∂θ
log
(
t̂p
)
,

∂

∂β
log
(
t̂p
)]

(θ=θ̂,β=β̂)

P(R1 = K1) =

(
n− s
K1

)
rK1 (1− r)n−s−K1 .

while i = 2, 3, . . . , s− 1. The maximum value of the O1 criterion and the lowest value of Oi, i = 2, 3, 4,
correspond to the best censoring. On the other hand, the greatest value of the O1 criterion and the
lowest value of the Oi, i = 2, 3, 4 criterion correspond to the best censoring.

6. Simulation
Using different combinations of Ti; i = 1, 2 (threshold points), n (sample size), s (size of censored

sample), and R (censored removal), Monte-Carlo (MC) simulations were carried out to assess the
true performance of the acquired point and interval estimators of θ, β, R(T), and h(T). To establish
this goal, for KMKu(1.4, 1.5), KMKu(1.4, 0.5), and KMKu(0.4, 0.5), we replicated the GPHCS-T2
mechanism 1000 times. Taking (T1, T2) = (0.6, 0.85), two different choices of n and s were used
as (n = 30, 50, 100), and the choices of s were used as (s = 20, 25) at n = 30, (s = 35, 45) at n = 50,
and (s = 70, 90) at n = 100. At T1 = 0.6, the true values of R(T1) and h(T1) were 0.4278 and 1.4899,
respectively. At T2 = 0.85, the true values of R(T2) and h(T2) were 0.2526 and 3.3106, respectively.

Additionally, by utilizing the binomial elimination distribution and taking into account different
censoring schemes for each combination of s and n, the following is conducted: according to the
following probability mass function, the number of units removed at each failure time is expected to
follow a binomial distribution.

P(Ri = Ki|Ri−1 = Ki−1, . . . , R1 = K1 ) =

(
n− s−∑i−1

j=1 Kj

Ki

)
rKi (1− r)n−s−∑i

j=1 Kj .

Additionally, assume that for any i, Ri is independent of Xi. In light of this, the likelihood
function can be written as follows:

L(xi, β, θ, r) = L1(xi, β, θ|R = K)P(R = K) ,

where

P(R = K) = P(R1 = K1, R2 = K2, . . . , Rs−1 = Ks−1) = P(Rs−1 = Ks−1|Rs−2 = Ks−2, . . . , R1 = K1 )×
P(Rs−2 = Ks−2|Rs−3 = Ks−3, . . . , R1 = K1 ) . . . P(R2 = K2|R1 = K1)P(R1 = K1 ).

That is,

P(R = K) =
(n− s)!

(n− s−∑s−1
i=1 Ki)! ∏s−1

i=1 Ki
r∑s−1

i=1 Ki (1− r)(s−1)(n−s)−∑s−1
i=1 (s−i)Ki ,

where the GPHCS-T2-based KMKu distribution’s parameters do not affect the binomial parameter r
(Independent). We chose the binomial parameter r with varied values of 0.3 and 0.8.

The MLEs and 95% ACI estimates of θ, β, R(t), and h(t) were assessed after 1000 GPHCS-T2
samples had been gathered using R 4.2.2 programming software and the “maxLik” library. We
simulated 12,000 MCMC samples and omitted the first 2000 iterations as burn-in to obtain the
Bayes point estimates along with their HPD interval estimates of the same unknown parameters
using the “coda” library in the R 4.2.2 programming language. The estimates and their variances
were equated with the Fisher information matrix of θ and β to produce the ML estimator, which it
denoted as elective hyper-parameters, and this was contributed by [25]. This process allowed for
the extraction of the hyper-parameters of the informative priors.

Some observations from Tables 3–5 include
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Table 3. Bias, MSE, WCI, and CP for parameters and reliability measures: β = 1.4, θ = 1.5.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

30

0.3

20

β 0.3647 0.96096 3.5687 95.8% O1 0.862132 0.0495 0.03658 0.9815

θ 0.3083 0.30741 1.8074 95.3% O2 0.050431 0.0652 0.0178 0.6268

R(0.6) −1.0730 0.01021 3.5687 95.8% O3 24.39956 −1.0929 0.00159 0.9815

H(0.6) 2.6011 2.15503 1.8074 95.3% O4 0.397259 2.2794 0.15897 0.6268

R(0.85) −1.3190 0.00311 3.5687 95.8% −1.3269 0.00026 0.9815

H(0.85) 9.8905 28.98923 1.8074 95.3% 8.2579 1.30669 0.6268

25

β 0.3133 0.68518 3.0049 96.0% O1 0.603238 0.0348 0.01182 0.6606

θ 0.1931 0.20528 1.6075 95.7% O2 0.028622 0.0196 0.00163 0.4069

R(0.6) −1.0962 0.00644 3.0049 96.0% O3 29.16632 −1.1016 0.00050 0.6606

H(0.6) 2.6177 1.64301 1.6075 95.7% O4 0.637278 2.2792 0.05406 0.4069

R(0.85) −1.3278 0.00190 3.0049 96.0% −1.3295 0.00009 0.6606

H(0.85) 9.6683 20.97684 1.6075 95.7% 8.1852 0.42306 0.4069

0.8

20

β 0.4478 1.11270 3.7458 95.6% O1 0.897504 0.0686 0.04368 1.0098

θ 0.2881 0.29977 1.8260 95.3% O2 0.054545 0.0541 0.00853 0.6131

R(0.6) −1.0925 0.00827 3.7458 95.6% O3 23.77178 −1.0994 0.00147 1.0098

H(0.6) 2.7704 2.38574 1.8260 95.3% O4 0.410967 2.3269 0.17886 0.6131

R(0.85) −1.3285 0.00217 3.7458 95.6% −1.3295 0.00025 1.0098

H(0.85) 10.3764 33.31616 1.8260 95.3% 8.3746 1.53529 0.6131

25

β 0.3005 0.65995 2.9601 96.2% O1 0.588428 0.0312 0.00897 0.6494

θ 0.1892 0.20103 1.5942 95.3% O2 0.02822 0.0199 0.00162 0.4063

R(0.6) −1.0954 0.00634 2.9601 96.2% O3 28.83162 −1.1009 0.00041 0.6494

H(0.6) 2.5961 1.54340 1.5942 95.3% O4 0.290327 2.2713 0.04112 0.4063

R(0.85) −1.3273 0.00191 2.9601 96.2% −1.3293 0.00008 0.6494

H(0.85) 9.5939 20.02147 1.5942 95.3% 8.1634 0.31889 0.4063

50

0.3

35

β 0.2321 0.33855 2.0926 95.2% O1 0.3524 0.0219 0.00682 0.2936

θ 0.2206 0.16385 1.3310 94.8% O2 0.0109 0.0389 0.00404 0.1817

R(0.6) 0.0150 0.00491 0.2684 94.9% O3 40.4391 0.0044 0.00056 0.0984

H(0.6) 0.2660 0.86775 3.5013 95.4% O4 0.4010 0.0230 0.03428 0.7479

R(0.85) 0.0019 0.00151 0.1522 95.8% 0.0005 0.00010 0.0418

H(0.85) 1.2233 10.31472 11.6464 95.4% 0.1173 0.24180 1.8061

45

β 0.1009 0.17989 1.6157 95.3% O1 0.2308 0.0127 0.00185 0.1390

θ 0.0688 0.07292 1.0241 95.5% O2 0.0051 0.0080 0.00043 0.0697

R(0.6) 0.0038 0.00306 0.2163 95.2% O3 52.6779 −0.0009 0.00013 0.0468

H(0.6) 0.1237 0.55947 2.8931 95.4% O4 0.3850 0.0228 0.00944 0.3526

R(0.85) 0.0023 0.00099 0.1228 95.9% −0.0008 0.00002 0.0202

H(0.85) 0.5401 5.79962 9.2044 95.3% 0.0729 0.06640 0.8489

0.8

35

β 0.2292 0.33120 2.0704 95.7% O1 0.3413 0.0302 0.00762 0.2866

θ 0.1710 0.13353 1.2666 94.8% O2 0.0103 0.0289 0.00277 0.1549

R(0.6) 0.0043 0.00413 0.2516 94.5% O3 40.8715 0.0003 0.00049 0.0905

H(0.6) 0.2984 0.88222 3.4929 95.3% O4 0.5510 0.0472 0.03668 0.6994

R(0.85) −0.0013 0.00132 0.1424 95.8% −0.0010 0.00009 0.0382

H(0.85) 1.2328 10.27127 11.6023 95.7% 0.1697 0.26968 1.7342

45

β 0.1024 0.17088 1.6527 95.8% O1 0.2313 0.0132 0.00183 0.1361

θ 0.0614 0.07091 1.0767 95.4% O2 0.0052 0.0077 0.00047 0.0735

R(0.6) 0.0020 0.00301 0.2196 95.0% O3 52.8830 −0.0011 0.00013 0.0450

H(0.6) 0.1288 0.55691 2.9153 95.4% O4 0.3953 0.0242 0.00934 0.3352

R(0.85) 0.0018 0.00100 0.1240 95.6% −0.0009 0.00002 0.0195

H(0.85) 0.5493 5.70139 9.3735 95.9% 0.0762 0.06541 0.8280
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Table 3. Cont.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

100

0.3

70

β 0.1428 0.13884 1.3498 95.3% O1 0.1469 0.0129 0.00257 0.1755

θ 0.1269 0.06502 0.8674 95.3% O2 0.0020 0.0189 0.00121 0.1107

R(0.6) 0.0045 0.00218 0.1823 94.6% O3 80.6294 0.0016 0.00021 0.0575

H(0.6) 0.1901 0.40464 2.3807 95.0% O4 0.6115 0.0162 0.01332 0.4378

R(0.85) −0.0017 0.00065 0.0999 96.1% −0.0001 0.00004 0.0249

H(0.85) 0.7729 4.38212 7.6300 95.3% 0.0702 0.09184 1.0646

90

β 0.0668 0.07946 1.0740 95.7% O1 0.1065 0.0062 0.00054 0.0852

θ 0.0497 0.03711 0.7299 95.5% O2 0.0011 0.0045 0.00020 0.0495

R(0.6) 0.0013 0.00162 0.1577 95.0% O3 102.5854 −0.0003 0.00005 0.0275

H(0.6) 0.0898 0.25612 1.9533 94.7% O4 0.8814 0.0107 0.00299 0.2093

R(0.85) 0.0000 0.00050 0.0880 95.0% −0.0004 0.00001 0.0120

H(0.85) 0.3625 2.56087 6.1131 95.6% 0.0351 0.01967 0.5192

0.8

70

β 0.1309 0.13318 1.3361 95.4% O1 0.1442 0.0146 0.00261 0.1649

θ 0.1046 0.06010 0.8696 94.9% O2 0.0020 0.0157 0.00107 0.1047

R(0.6) 0.0020 0.00220 0.1838 94.7% O3 80.5925 0.0005 0.00021 0.0568

H(0.6) 0.1803 0.40288 2.3868 95.0% O4 0.6090 0.0220 0.01361 0.4150

R(0.85) −0.0018 0.00065 0.1001 95.9% −0.0005 0.00004 0.0241

H(0.85) 0.7125 4.25301 7.5901 95.2% 0.0816 0.09367 1.0046

90

β 0.0505 0.06859 1.0078 95.4% O1 0.1039 0.0057 0.00047 0.0761

θ 0.0318 0.03404 0.7127 94.5% O2 0.0011 0.0036 0.00019 0.0488

R(0.6) 0.0004 0.00155 0.1544 95.2% O3 103.7077 −0.0004 0.00005 0.0271

H(0.6) 0.0682 0.23049 1.8638 95.7% O4 0.7099 0.0103 0.00266 0.1933

R(0.85) 0.0003 0.00047 0.0853 95.4% −0.0004 0.00001 0.0113

H(0.85) 0.2743 2.23659 5.7659 95.4% 0.0327 0.01719 0.4665

Table 4. Bias, MSE, WCI and CP for parameters and Reliability measures: β = 1.4, θ = 0.5.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

30

0.3

20

β 0.2883 0.66402 2.9892 95.1% O1 0.5529 0.0373 0.0172 0.9061

θ 0.0923 0.03017 0.5771 96.5% O2 0.0045 0.0191 0.0010 0.2005

R(0.6) −1.3142 0.00273 2.9892 95.1% O3 156.4684 −1.3223 0.0002 0.9061

H(0.6) 4.4198 3.85075 0.5771 96.5% O4 3.6685 3.8534 0.1199 0.2005

R(0.85) −1.3780 0.00051 2.9892 95.1% −1.3834 0.0000 0.9061

H(0.85) 11.2462 28.57208 0.5771 96.5% 9.6102 0.7761 0.2005

25

β 0.2330 0.41596 2.3587 95.6% O1 0.3694 0.0242 0.0044 0.6032

θ 0.0565 0.01912 0.4950 95.3% O2 0.0024 0.0058 0.0001 0.1311

R(0.6) −1.3222 0.00166 2.3587 95.6% O3 187.5492 −1.3244 0.0001 0.6032

H(0.6) 4.3140 2.50974 0.4950 95.3% O4 4.2533 3.8249 0.0314 0.1311

R(0.85) −1.3812 0.00029 2.3587 95.6% −1.3839 0.0000 0.6032

H(0.85) 10.8980 18.07372 0.4950 95.3% 9.5259 0.2003 0.1311

0.8

20

β 0.3112 0.59476 2.7674 95.4% O1 0.5183 0.0446 0.0176 0.9133

θ 0.0862 0.02909 0.5773 95.3% O2 0.0042 0.0168 0.0009 0.1972

R(0.6) −1.3207 0.00218 2.7674 95.4% O3 156.8018 −1.3236 0.0002 0.9133

H(0.6) 4.4902 3.51118 0.5773 95.3% O4 1.9839 3.8741 0.1242 0.1972

R(0.85) −1.3808 0.00036 2.7674 95.4% −1.3838 0.0000 0.9133

H(0.85) 11.4035 25.72157 0.5773 95.3% 9.6601 0.7988 0.1972

25

β 0.2760 0.46980 2.4606 94.4% O1 0.3856 0.0304 0.0058 0.6125

θ 0.0560 0.01951 0.5019 95.5% O2 0.0025 0.0054 0.0001 0.1304

R(0.6) −1.3254 0.00173 2.4606 94.4% O3 188.0939 −1.3251 0.0001 0.6125

H(0.6) 4.4269 2.85414 0.5019 95.5% O4 10.4186 3.8416 0.0413 0.1304

R(0.85) −1.3822 0.00027 2.4606 94.4% −1.3842 0.0000 0.6125

H(0.85) 11.1889 20.49050 0.5019 95.5% 9.5678 0.2637 0.1304
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Table 4. Cont.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

50

0.3

35

β 0.1928 0.26587 1.8755 95.3% O1 0.2300 0.0209 0.00625 0.2453

θ 0.0636 0.01464 0.4038 95.4% O2 0.0010 0.0111 0.00034 0.0531

R(0.6) 0.0022 0.00138 0.1454 96.0% O3 266.3510 0.0003 0.00009 0.0379

H(0.6) 0.4533 1.64429 4.7044 95.0% O4 4.7886 0.0504 0.04467 0.6665

R(0.85) 0.0017 0.00022 0.0583 95.2% −0.0001 0.00001 0.0118

H(0.85) 1.2631 11.59297 12.4008 95.4% 0.1365 0.28360 1.6561

45

β 0.1025 0.15357 1.4834 95.2% O1 0.1528 0.0111 0.00136 0.1177

θ 0.0252 0.00856 0.3492 95.8% O2 0.0005 0.0027 0.00005 0.0238

R(0.6) 0.0010 0.00090 0.1177 95.9% O3 332.8660 −0.0007 0.00002 0.0179

H(0.6) 0.2438 0.97587 3.7545 95.7% O4 9.7083 0.0284 0.00981 0.3228

R(0.85) 0.0015 0.00015 0.0473 95.2% −0.0003 0.00000 0.0057

H(0.85) 0.6769 6.72601 9.8189 95.4% 0.0737 0.06177 0.7925

0.8

35

β 0.2216 0.30042 1.9661 95.3% O1 0.2360 0.0286 0.00733 0.2601

θ 0.0591 0.01448 0.4111 95.5% O2 0.0010 0.0097 0.00031 0.0514

R(0.6) −0.0014 0.00128 0.1404 95.7% O3 264.3238 −0.0009 0.00009 0.0380

H(0.6) 0.5296 1.84331 4.9029 95.3% O4 6.8233 0.0715 0.05206 0.7134

R(0.85) 0.0005 0.00020 0.0555 94.9% −0.0004 0.00001 0.0117

H(0.85) 1.4571 13.09846 12.9931 95.3% 0.1886 0.33239 1.7468

45

β 0.1251 0.17500 1.5656 94.3% O1 0.1585 0.0147 0.00189 0.1420

θ 0.0244 0.00782 0.3334 95.3% O2 0.0005 0.0023 0.00004 0.0228

R(0.6) −0.0008 0.00097 0.1224 96.3% O3 331.8112 −0.0011 0.00003 0.0200

H(0.6) 0.3053 1.12358 3.9811 94.4% O4 3.4415 0.0380 0.01355 0.3838

R(0.85) 0.0010 0.00015 0.0485 95.8% −0.0004 0.00000 0.0064

H(0.85) 0.8313 7.71142 10.3916 94.4% 0.0977 0.08563 0.9557

100

0.3

70

β 0.1020 0.10312 1.1941 96.0% O1 0.0930 0.0071 0.00176 0.1407

θ 0.0390 0.00642 0.2745 95.2% O2 0.0002 0.0063 0.00013 0.0334

R(0.6) 0.0012 0.00065 0.0997 94.9% O3 526.4983 0.0006 0.00003 0.0220

H(0.6) 0.2402 0.65129 3.0217 95.9% O4 3.0162 0.0158 0.01276 0.3863

R(0.85) 0.0007 0.00010 0.0386 95.3% 0.0001 0.00002 0.0070

H(0.85) 0.6667 4.49884 7.8970 96.1% 0.0451 0.07991 0.9471

90

β 0.0661 0.06870 0.9948 95.5% O1 0.0688 0.0055 0.00046 0.0784

θ 0.0164 0.00369 0.2292 95.4% O2 0.0001 0.0014 0.00002 0.0160

R(0.6) −0.0005 0.00048 0.0858 95.7% O3 654.6192 −0.0003 0.00001 0.0117

H(0.6) 0.1605 0.44507 2.5397 95.2% O4 6.7361 0.0139 0.00338 0.2125

R(0.85) 0.0003 0.00007 0.0332 95.6% −0.0001 0.00001 0.0038

H(0.85) 0.4370 3.01381 6.5894 95.3% 0.0361 0.02109 0.5289

0.8

70

β 0.1036 0.10480 1.2028 95.8% O1 0.0929 0.0115 0.00204 0.1556

θ 0.0320 0.00609 0.2791 95.3% O2 0.0002 0.0050 0.00011 0.0339

R(0.6) −0.0002 0.00064 0.0994 95.7% O3 525.8864 −0.0002 0.00004 0.0232

H(0.6) 0.2484 0.66914 3.0567 95.8% O4 4.7902 0.0283 0.01472 0.4259

R(0.85) 0.0003 0.00009 0.0381 96.1% −0.0002 0.00002 0.0073

H(0.85) 0.6812 4.58927 7.9658 95.9% 0.0754 0.09250 1.0493

90

β 0.0652 0.07266 1.0258 95.7% O1 0.0689 0.0060 0.00052 0.0794

θ 0.0161 0.00373 0.2310 95.1% O2 0.0001 0.0013 0.00002 0.0161

R(0.6) −0.0001 0.00052 0.0894 94.8% O3 650.3684 −0.0004 0.00001 0.0124

H(0.6) 0.1583 0.47338 2.6260 95.6% O4 6.4073 0.0153 0.00379 0.2188

R(0.85) 0.0005 0.00008 0.0345 94.8% −0.0002 0.00001 0.0040

H(0.85) 0.4317 3.19473 6.8025 95.6% 0.0396 0.02362 0.5400
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Table 5. Bias, MSE, WCI and CP for parameters and Reliability measures: β = 0.4, θ = 0.5.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

30

0.3

20

β 0.0477 0.03572 0.7173 96.0% O1 0.0822 0.0069 0.0009 0.2488

θ 0.1693 0.10228 1.0642 95.4% O2 0.0011 0.0454 0.0066 0.3352

R(0.6) 0.0653 0.01134 0.7173 96.0% O3 0.0822 0.0392 0.0014 0.2488

H(0.6) 1.0736 0.26208 1.0642 95.4% O4 0.0011 1.0039 0.0089 0.3352

R(0.85) −0.1242 0.00977 0.7173 96.0% −0.1418 0.0008 0.2488

H(0.85) 3.1086 1.57995 1.0642 95.4% 2.8625 0.0409 0.3352

25

β 0.0420 0.02739 0.6279 95.8% O1 0.0591 0.0051 0.0003 0.1640

θ 0.0938 0.05590 0.8511 94.9% O2 0.0006 0.0139 0.0009 0.2075

R(0.6) 0.0413 0.00854 0.6279 95.8% O3 170.1243 0.0291 0.0003 0.1640

H(0.6) 1.0797 0.21444 0.8511 94.9% O4 5.0156 1.0038 0.0029 0.2075

R(0.85) −0.1395 0.00729 0.6279 95.8% −0.1478 0.0002 0.1640

H(0.85) 3.0747 1.22571 0.8511 94.9% 2.8470 0.0134 0.2075

0.8

20

β 0.0747 0.04126 0.7408 96.2% O1 0.0818 0.0116 0.0012 0.2625

θ 0.1633 0.09437 1.0204 96.1% O2 0.0011 0.0378 0.0051 0.3251

R(0.6) 0.0443 0.01003 0.7408 96.2% O3 131.1160 0.0330 0.0012 0.2625

H(0.6) 1.1578 0.29506 1.0204 96.1% O4 3.2292 1.0197 0.0110 0.3251

R(0.85) −0.1436 0.00864 0.7408 96.2% −0.1467 0.0007 0.2625

H(0.85) 3.2918 1.79718 1.0204 96.1% 2.8933 0.0527 0.3251

25

β 0.0589 0.02782 0.6120 95.7% O1 0.0592 0.0065 0.0003 0.1698

θ 0.0991 0.04971 0.7834 95.8% O2 0.0006 0.0125 0.0006 0.2058

R(0.6) 0.0296 0.00743 0.6120 95.7% O3 159.3168 0.0275 0.0003 0.1698

H(0.6) 1.1330 0.21505 0.7834 95.8% O4 2.2242 1.0084 0.0034 0.2058

R(0.85) −0.1517 0.00618 0.6120 95.7% −0.1491 0.0002 0.1698

H(0.85) 3.1924 1.23457 0.7834 95.8% 2.8564 0.0157 0.2058

50

0.3

35

β 0.0369 0.01839 0.5118 95.6% O1 0.0387 0.0044 0.00032 0.0627

θ 0.1055 0.04398 0.7108 95.9% O2 0.0002 0.0229 0.00165 0.1006

R(0.6) 0.0183 0.00581 0.2903 95.5% O3 230.4277 0.0052 0.00044 0.0790

H(0.6) 0.0795 0.14627 1.4672 95.2% O4 2.9344 0.0102 0.00326 0.2111

R(0.85) 0.0086 0.00523 0.2817 95.6% 0.0021 0.00026 0.0627

H(0.85) 0.2401 0.84128 3.4719 95.8% 0.0328 0.01498 0.4164

45

β 0.0292 0.01287 0.4300 95.8% O1 0.0284 0.0031 0.00009 0.0311

θ 0.0523 0.02265 0.5534 95.8% O2 0.0001 0.0065 0.00019 0.0406

R(0.6) 0.0030 0.00414 0.2520 94.7% O3 287.7103 0.0000 0.00010 0.0390

H(0.6) 0.0702 0.10813 1.2599 95.7% O4 3.0968 0.0088 0.00092 0.1034

R(0.85) −0.0003 0.00374 0.2397 94.6% −0.0008 0.00006 0.0317

H(0.85) 0.1885 0.59457 2.9324 95.7% 0.0220 0.00423 0.2099

0.8

35

β 0.0451 0.01827 0.4997 95.6% O1 0.0375 0.0065 0.00039 0.0608

θ 0.0916 0.03438 0.6323 95.2% O2 0.0002 0.0181 0.00104 0.0866

R(0.6) 0.0071 0.00524 0.2826 95.7% O3 223.9769 0.0018 0.00038 0.0752

H(0.6) 0.1093 0.14684 1.4405 95.6% O4 1.6721 0.0177 0.00378 0.2016

R(0.85) −0.0004 0.00484 0.2727 95.5% −0.0005 0.00024 0.0604

H(0.85) 0.2965 0.83295 3.3853 95.6% 0.0468 0.01780 0.4059

45

β 0.0295 0.01341 0.4392 95.7% O1 0.0280 0.0034 0.00010 0.0323

θ 0.0448 0.02086 0.5386 96.2% O2 0.0001 0.0054 0.00016 0.0383

R(0.6) 0.0003 0.00415 0.2525 93.7% O3 288.9783 −0.0006 0.00009 0.0395

H(0.6) 0.0723 0.11132 1.2774 96.0% O4 3.5188 0.0098 0.00097 0.1069

R(0.85) −0.0018 0.00383 0.2426 94.8% −0.0012 0.00006 0.0328

H(0.85) 0.1896 0.61493 2.9842 95.8% 0.0236 0.00451 0.2164
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Table 5. Cont.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

100

0.3

70

β 0.0267 0.00855 0.3473 95.7% O1 0.0171 0.0024 0.00012 0.0376

θ 0.0690 0.01783 0.4484 95.0% O2 0.0000 0.0117 0.00043 0.0568

R(0.6) 0.0090 0.00284 0.2061 95.8% O3 442.4535 0.0026 0.00016 0.0489

H(0.6) 0.0645 0.07290 1.0283 95.1% O4 2.9947 0.0057 0.00125 0.1240

R(0.85) 0.0020 0.00263 0.2008 95.7% 0.0010 0.00010 0.0387

H(0.85) 0.1797 0.40180 2.3841 95.5% 0.0177 0.00568 0.2530

90

β 0.0129 0.00536 0.2827 94.7% O1 0.0128 0.0013 0.00003 0.0181

θ 0.0256 0.00907 0.3597 95.0% O2 0.0000 0.0029 0.00006 0.0233

R(0.6) 0.0024 0.00205 0.1771 95.8% O3 572.9885 0.0000 0.00003 0.0222

H(0.6) 0.0310 0.04803 0.8508 94.7% O4 2.3973 0.0038 0.00031 0.0595

R(0.85) 0.0007 0.00187 0.1696 94.9% −0.0003 0.00002 0.0179

H(0.85) 0.0838 0.25437 1.9506 94.9% 0.0096 0.00137 0.1225

0.8

70

β 0.0274 0.00795 0.3328 95.3% O1 0.0168 0.0034 0.00013 0.0392

θ 0.0565 0.01500 0.4261 95.1% O2 0.0000 0.0098 0.00034 0.0558

R(0.6) 0.0035 0.00280 0.2070 94.8% O3 441.2820 0.0011 0.00015 0.0484

H(0.6) 0.0693 0.06869 0.9913 94.9% O4 3.2956 0.0092 0.00133 0.1304

R(0.85) −0.0016 0.00254 0.1976 95.5% −0.0002 0.00010 0.0390

H(0.85) 0.1834 0.37293 2.2845 94.9% 0.0243 0.00610 0.2614

90

β 0.0109 0.00515 0.2782 95.1% O1 0.0127 0.0013 0.00003 0.0183

θ 0.0212 0.00904 0.3635 95.5% O2 0.0000 0.0026 0.00005 0.0248

R(0.6) 0.0022 0.00212 0.1802 95.2% O3 577.1218 0.0000 0.00003 0.0236

H(0.6) 0.0253 0.04644 0.8393 94.9% O4 2.5652 0.0037 0.00028 0.0612

R(0.85) 0.0011 0.00191 0.1712 94.9% −0.0004 0.00002 0.0190

H(0.85) 0.0693 0.24508 1.9224 94.9% 0.0092 0.00125 0.1231

• The key general finding is that the suggested values for θ, β, R(t), and h(t) performed well.
• All estimations of θ, β, R(t), and h(t) functioned satisfactorily as n(or s) grew.
• In most cases, the MSE, Bias, and WCI of all unknown parameters fell while their CPs grew as

(T1, T2) increased.
• Due to the gamma information, the Bayes estimates of θ, β, R(t), and h(t) behaved more

predictably than the other estimates. Regarding credible HPD intervals, the same statement
might be made.

• When the parameter of binomial r was increased, the proposed estimates of θ, β, R(t), and h(t)
performed better in most cases.

7. Application
The data set, which has been examined by [11], had 30 assessments of the tensile strength of

polyester fibers. The following details are included in the data set: “0.023, 0.032, 0.054, 0.069, 0.081,
0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481,
0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926”. For data on the strength of polyester fibers,
where the Kolmogorov-Smirnov distance is 0.0569 with a p-value of 0.9999, [11] explores the MLE of
this model using several measures of goodness-of-fit. The Kolmogorov-Smirnov test findings showed
that the KMKu distribution fits the data on polyester fiber strength.

Two GPHCS-T2 samples with s = 20 and 25 were produced from the tensile strength of polyester
fibers data in order to explain the proposed estimation methodology. The binomial removal has
been used to obtain the GPHCS-T2 samples with different parameters of p = 0.2, 0.5, and 0.8. Table 6
lists the computed R(t) and h(t) at t = 0.6 and 0.85 by maximum likelihood estimates (MLE) and
Bayesian estimation, respectively, along with their standard error (SE). By repeating the MCMC
sampler 12,000 times and disregarding the first 2000 times as burn-in, the Bayes estimates (with their
SE) were evaluated using incorrect gamma priors and are also provided in Table 4 because there was
no prior knowledge about the unknown KMKu parameters θ, and β from the given data set. In order
to estimate unknown hyperparameters for the computational logic, elective hyperparameters were
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employed. In terms of the minimum standard error and interval width values, it is evident from
Table 6 that the MCMC estimates of θ, β, R(t), and h(t)performed better than the others.

Table 6. MLE and Bayesian estimation.

MLE Bayesian

Estimates SE
R(0.6) R(0.85)

Estimates SE
R(0.6) R(0.85)

s p H(0.6) H(0.85) H(0.6) H(0.85)

20

0.2
β 0.8884 0.5264 0.3253 0.1189 0.9884 0.3296 0.3047 0.1017

θ 1.0033 0.2514 2.7480 6.4884 1.0556 0.2365 2.9811 7.1010

0.5
β 1.5376 0.5760 0.2111 0.0436 1.3577 0.3243 0.2505 0.0608

θ 1.2293 0.2692 4.1919 10.4235 1.2399 0.1761 3.7759 9.3192

0.8
β 1.5404 0.5751 0.2091 0.0431 1.6921 0.3877 0.1800 0.0324

θ 1.2231 0.2677 4.2022 10.4439 1.2090 0.1681 4.5521 11.3874

25

0.2
β 1.4928 0.4925 0.1858 0.0392 1.5520 0.3081 0.1795 0.0360

θ 1.0776 0.2203 4.1819 10.2139 1.0966 0.1464 4.3074 10.5745

0.5
β 1.5231 0.5001 0.1884 0.0389 1.5572 0.3157 0.1811 0.0362

θ 1.1143 0.2294 4.2299 10.3859 1.1085 0.1507 4.3121 10.6013

0.8
β 1.5221 0.4996 0.1883 0.0389 1.4511 0.3053 0.2044 0.0451

θ 1.1129 0.2293 4.2285 10.3804 1.1252 0.1523 4.0571 9.9345

Figures 2–4 were created to examine the maximum values of the estimators by profile likelihood
as well as the existence and uniqueness of the log-likelihood function by contour plot with regard
to different d and q options based on GPHCS-T2 samples with s = 20 and distinct p = 0.2, 0.5, and
0.8, respectively. Figure 5 clearly shows that the MCMC technique converged favorably and that
the recommended size of the burn-in sample was adequate to completely nullify the impact of the
recommended beginning values. Figure 5 demonstrates that the estimated estimates of θ and β were
roughly symmetrical for each sample when s = 20.

Figures 6–8 were created to examine the maximum values of the estimators by profile likelihood
as well as the existence and uniqueness of the log-likelihood function by contour plot with regard
to different d and q options based on GPHCS-T2 samples with s = 25 and distinct p = 0.2, 0.5, and
0.8, respectively. Figure 9 clearly shows that the MCMC technique converged favorably and that
the recommended size of the burn-in sample was adequate to completely nullify the impact of the
recommended beginning values. Figure 9 demonstrates that the estimated estimates of θ and β were
roughly symmetrical for each sample when s = 25.
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8. Conclusions and Discussion
This paper examines the reliability analysis of the unknown parameters, reliability, and hazard

rate functions for the generalized type-II progressive hybrid censoring-based KMKu model. The
“maxLik” package of the R programming language was used to compute the frequentist estimates
with their asymptotic confidence intervals for the unknown parameters and any function of them.
Since the likelihood function was produced in complex form, the posterior density function was
obtained in nonlinear form. Consequently, the Bayesian estimates and the related HPD intervals were
created using the Metropolis-Hastings technique and accounting for the squared error loss function.
Numerous simulation experiments were run utilizing various total test unit choices, observed failure
data, threshold times, and progressive censoring schemes in order to compare the behavior of
the collected estimates. The outcomes demonstrated that the Bayes–MCMC strategy performed
substantially better than the frequentist approach. Under generalized type-II progressive hybrid
censoring, it was suggested to estimate the KMKu distribution’s parameters, reliability, and hazard
functions using the Bayesian MCMC paradigm. We believe that the technique and results described
here will be helpful to reliability practitioners and that they will be used to inform future censoring
tactics. The 30 assessments of the tensile strength of polyester fibers are used to demonstrate how the
recommended strategies may be applied in real-world circumstances. The most important results can
be summarized in the following points:

• The key general finding is that the suggested values for θ, β, R(t), and h(t) performed well.
• All estimations of θ, β, R(t), and h(t) functioned satisfactorily as n (or s) grew.
• In most cases, the MSE, Bias, and WCI of all unknown parameters fell while their CPs grew as

(T1, T2) increased.
• Due to the gamma information, the Bayes estimates of θ, β, R(t), and h(t) behaved more pre-

dictably than the other estimates. Regarding credible HPD intervals, the same statement might
be made.

• In most cases, the proposed estimates of θ, β, R(t), and h(t) performed better when the parameter
of binomial r was increased.

• The MLE has a unique solution and a maximum value of log-likelihood.
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