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Abstract: The Ulam stability of various equations (e.g., differential, difference, integral, and func-
tional) concerns the following issue: how much does an approximate solution of an equation differ from
its exact solutions? This paper presents methods that allow to easily obtain numerous general Ulam
stability results with respect to the 2-norms. In four examples, we show how to deduce them from
the already known outcomes obtained for classical normed spaces. We also provide some simple
consequences of our results. Thus, we demonstrate that there is a significant symmetry between such
results in classical normed spaces and in 2-normed spaces.
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1. Introduction

The Ulam stability is a quite popular subject of investigations, which mainly concerns
various equations (e.g., difference, differential, integral, and functional). Very roughly
speaking, it deals with the following issue:

How much an approximate solution to an equation differs from the exact solutions of it?

It is motivated by a problem that was raised by Ulam in 1940 for the equation of group
homomorphism and the first solution to it provided by Hyers [1] for Banach spaces. For
more details and the historical background, we refer to [2], which is the first monograph
on the subject (see also [3]). An ample discussion on various possible definitions of such
stability is provided in [4]. Numerous examples of recent Ulam stability results as well as
further related information and references are also given in [5–9].

Problems of such types are quite natural for difference, differential, functional and
integral equations (see, for example, [10–14] and the references therein), and they are
closely related to the issues considered in the theories of approximation, optimization and
shadowing (see [15]).

We should mention here that, soon after Hyers’ publication, a new wider approach
was proposed by T. Aoki [16] (see also, for example, ref. [17]). This approach was later
complemented in [8,9,18], and the main result that thus arose can be considered to be very
representative of Ulam stability. It can be stated as follows (see, for example, ref. [19]
[Theorem 1]).

Theorem 1. Let X be a Banach space, V be a normed space, and V0 := V \ {0}. Let ξ ≥ 0 and
s 6= 1 be real numbers and g : V → X be such that

‖g(x + y)− g(x)− g(y)‖ ≤ ξ(‖x‖s + ‖y‖s), ∀x, y ∈ V0 . (1)

Then there is exactly one additive mapping h : V → X such that

‖h(x)− g(x)‖ ≤ ξ‖x‖s

|1− 2s−1| , ∀x ∈ V0. (2)
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Let us remind here that h : V → X is additive if, for every x, y ∈ V,

h(x + y) = h(x) + h(y). (3)

In [18], an example was given that for s = 1, a result analogous to Theorem 2 is not
true. Moreover, estimate (2) is optimal (see, for example, ref. [3]) and, in the situation
where s < 0, each mapping h : V → X satisfying inequality (1) must be additive and
the completeness of space B is not necessary in this case (see, for example, refs. [6,19] for
suitable references and further information on this subject).

The next definition (cf. [19] [Definition 1]) is quite abstract, but makes the notion of
Ulam stability more precise (here R+ stands for the real interval [0, ∞) and CD denotes the
family of all mappings from a nonempty set D into a nonempty set C).

Definition 1. Let m be a positive integer, (F, d) be a metric space, U 6= ∅ be a set, D0 ⊂ D ⊂ FU

and T ⊂ RUm
+ be nonempty, S : T → RU

+, and F1,F2 : D → EUm
. The equation

(F1α)(r1, . . . , rm) = (F2α)(r1, . . . , rm) (4)

is said to be S-stable in D0 if, for any φ ∈ D0 and δ ∈ T with

d((F1φ)(r1, . . . , rm), (F2φ)(r1, . . . , rm)) ≤ δ(r1, . . . , rm), ∀r1, . . . , rm ∈ U,

there is a mapping α ∈ D such that (4) holds for all r1, . . . , rm ∈ U and

d(α(r), φ(r)) ≤ (Sδ)(r), ∀r ∈ U.

If (Sδ)(r) = 0 for δ ∈ T and r ∈ U, then we say that the equation is hyperstable in D0.

It is easily seen that Equation (4) becomes Equation (3) when m = 2, (F1α)(r1, r2) =
α(r1 + r2) and (F2α)(r1, r2) = α(r1) + α(r2) for α ∈ D and r1, r2 ∈ U. So, Theorem 2
says that, for every s 6= 1, Equation (3) is S-stable in D0 = D = BU with U = V0 and
S : T → RU

+ defined by

(Sδξ)(x) =
η‖x‖s

|1− 2s−1| , ∀δξ ∈ T , x ∈ U,

where
δξ(x, y) = ξ(‖x‖s + ‖y‖s), ∀x, y ∈ U, ξ ∈ R+,

and
T = {δξ ∈ RU×U

+ : ξ ∈ R+}.

However, if s < 0, then (as we have already mentioned) a stronger property is valid.
Namely, functional Equation (3) is hyperstable in D0 = BU , which actually means that each
h : V → X fulfilling inequality (1) must be additive, i.e., (3) holds for every x, y ∈ V.

Clearly, inequality (1) can be replaced by various other conditions of the form

‖g(x + y)− g(x)− g(y)‖ ≤ Φ(x, y), ∀x, y ∈W ⊂ V, (5)

and, for instance, the condition

‖g(x + y)− g(x)− g(y)‖ ≤ ξ‖x‖p‖y‖q, ∀x, y ∈ V0, (6)

was investigated in [20,21] for fixed real numbers p, q and ξ > 0. Also, the Ulam stability of
numerous other equations has been studied (including difference, integral and differential
equations), and we refer the readers to [2,3] for further details, references and examples. In
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particular, several authors (see, for example, refs. [22–30]) investigated the stability of some
cases of the following very general functional equation:

m

∑
i=1

Ai f
( n

∑
j=1

aijxj

)
= D(x1, . . . , xn) (7)

in the class of functions f mapping a module X over a commutative ring K into a Banach
space Y over the field F ∈ {R,C}, where D : Xn → Y is a given function satisfying some
additional conditions, A1, . . . , Am ∈ F \ {0}, and aij ∈ K for i = 1, 2, . . . , m, j = 1, 2, . . . , n.
Note that (3) is a particular case of (7). For comments on some other particular cases of this
equation, see [10,24,31–35].

Very roughly, we can say (see Definition 1) that an equation is Ulam stable if for every
mapping fulfilling the equation approximately (in some sense), there is an accurate solution
of the equation that is close to this mapping (in some way).

In mathematics and its applications, the notions of an approximate solution and of the
closeness of two mappings can be understood in various ways (see, for example, refs. [31,36–42]).
So, for Ulam stability, we should take into account also the nonstandard ways of measuring
distance. One of them can be introduced by the concept of 2-norms, and we refer the
readers to the third section for more details on this idea.

The study of Ulam stability with regard to 2-norms has recently been quite popular,
and numerous papers have been published on this subject (see [19] for a discussion of such
outcomes and suitable references).

The authors of such articles mainly use modifications of quite involved reasonings
that were applied in classical normed spaces for analogous issues (see, for example,
refs. [39,41,43–57]).

In this paper, we show how to easily obtain numerous general Ulam stability results
with respect to the 2-norms, by deriving them from the already known outcomes obtained
for normed spaces. Thus, we prove that there is significant symmetry between such results
in classical normed spaces and in 2-normed spaces.

The methods that we present are very general, but also quite simple. To show them
explicitly, we use four examples of stability results of different natures and generalities.

2. Auxiliary Results

Below, we provide four examples of Ulam stability outcomes, which we use later. First,
we recall a part of [10] [Theorem 1.2], concerning the approximate solutions of functional
Equation (8) that is connected to the branching measures of information (see [58]) (R
denotes the sets of reals and, as before, R+ := [0, ∞)).

Theorem 2. Let W and Y be normed spaces, W0 := W \ {0}, η ∈ R+, r ∈ R, r 6= 1, and
d : W2 → Y be such that the functional equation

α(x + y) = α(x) + α(y) + d(x, y), ∀x, y ∈W, (8)

has at least one solution α : W → Y. Assume that h : W → Y fulfills the inequality

‖h(x + y)− h(x)− h(y)− d(x, y)‖ ≤ η(‖x‖r + ‖y‖r), ∀x, y ∈W0.

Then the following two statements are valid:

(i) If r < 0, then h is a solution to Equation (8).

(ii) If r ≥ 0 and Y is complete, then there is a unique α : W → Y such that (8) holds and

‖h(x)− α(x)‖ ≤ η|1− 2r−1|−1‖x‖r, ∀x ∈W0.

An analogous result is not possible for r = 1 and the constant in the inequality of (ii) is
optimal in the general situation (see [10]). Let us remind that the situation depicted by
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statement (i) is called hyperstability, i.e., an approximate (in the sense that we consider)
solution of an equation must be a solution to the equation.

The next three examples of Ulam stability outcomes concern difference, differential
and integral equations.

In what follows, N, Z, Q, and C denote the sets of positive integers, integers, rational
numbers, and complex numbers, respectively. Next, Q+ := Q∩ (0, ∞), T ∈ {N,Z}, X is a
Banach space over K ∈ {R,C}, p ∈ N, a1, . . . , ap ∈ K, and r1, . . . , rp ∈ C are all the roots of
the equation

rp + a1rp−1 + . . . + ap−1r + ap = 0.

Let (bn)n∈T be a sequence in X. The subsequent Ulam stability result is a simplified
version of [12] [Theorem 3] for the difference equation

xn+p + a1xn+p−1 + . . . + apxn + bn = 0, ∀n ∈ T. (9)

Theorem 3. Let δ > 0 and

C0 :=
p

∏
i=1

∣∣1− |ri|
∣∣ 6= 0.

Let (yn)n∈T be a sequence in X with

‖yn+p + a1yn+p−1 + . . . + apyn + bn‖ ≤ δ, ∀n ∈ T. (10)

Then, there is a sequence (xn)n∈T in X such that (9) holds and

‖yn − xn‖ ≤ δ C−1
0 , ∀n ∈ T. (11)

Moreover, sequence (xn)n∈T is unique if T = Z or

|ri| > 1, ∀i ∈ {1, . . . , p}. (12)

For results related to Theorem 3, we refer to refs. [12,31,59,60],
The next theorem is a simplified version of [14] [Corollary 4.2] (cf. [61]) and concerns

the differential equation

g(p)(t) + a1gp−1(t) + . . . + ap−1g′(t) + apg(t) + G(t) = 0, ∀t ∈ I, (13)

for g ∈ Cp(I, X), where I is an open real interval, Cp(I, X) denotes the family of all
mappings from I into X that are p-times continuously differentiable, and G : I → X is
continuous (<(z) stands for the real part of a complex number z).

Theorem 4. Let δ ∈ R+ and

D0 :=
p

∏
i=1
|<(ri)| 6= 0.

If r1, . . . , rp ∈ K and h ∈ Cp(I, X) is such that

‖h(p)(t) + a1h(p−1)(t) + . . . + aph(t) + G(t)‖ ≤ δ, ∀t ∈ I,

then there is a solution g ∈ Cp(I, X) of (13) with

‖h(t)− g(t)‖ ≤ δD−1
0 , ∀t ∈ I.

The last example is a simplified version of [62] [Theorem 1] and concerns the stability
of the integral equation

ψ(x) +
∫ x

a
N(x, t, ψ(α(x, t)) dt + G(x) = 0, ∀x ∈ J, (14)
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for ψ ∈ C(J, X), where J is a real interval of the form [a, b] or [a, b) (with some real a < b),
C(J, X) means the family of all continuous mappings from J into X, G ∈ C(J, X) is fixed,

∫
denotes the Bochner integral, and N : J × J × X → X and α : J2 → J are given continuous
functions.

Assume that there is a continuous L : J × J ×R+ → R+ such that

‖N(x, t, u1)− N(x, t, u2)‖ ≤ L(x, t, ‖u1 − u2‖), ∀x, t ∈ J, u1, u2 ∈ X,

and
L(x, t, s1) ≤ L(x, t, s2), ∀x, t ∈ J, 0 ≤ s1 ≤ s2.

We have the following result (C(J,R+) stands for the family of all mappings from J
into R+ that are continuous).

Theorem 5. Let ε ∈ C(J,R+),

σ0(x) :=
∞

∑
n=0

Λnε(x) < ∞, ∀x ∈ J,

and thus the defined σ0 : J → R+ is continuous, where

Λη(x) :=
∫ x

a
L
(

x, t, η(α(x, t))
)

dt, ∀η ∈ C(J,R+), x ∈ J.

Let ϕ ∈ C(J, X) and

Iϕ(x) := ϕ(x) +
∫ x

a
N
(
x, t, ϕ(α(x, t))

)
dt + G(x), ∀x ∈ J.

If ∥∥Iϕ(x)
∥∥ ≤ ε(x), ∀x ∈ J,

then there is a solution ψ ∈ C(J, X) of (14) with

‖ψ(x)− ϕ(x)‖ ≤ σ0(x), ∀x ∈ J.

3. Auxiliary Information on 2-Normed Spaces

Let us recall that the notion of 2-norm was introduced by Gähler [63] (cf. refs. [64,65]).
To avoid any ambiguities, we need some definitions.

Definition 2. Let Y be a linear space over K with a dimension greater than 1. We say (cf. [63,64])
that a mapping ‖·, ·‖ : Y2 → R+ is a 2-norm if, for every x1, x2, x3 ∈ Y and β ∈ K, the following
four conditions hold:

(a) ‖x1, x2‖ = 0 iff x1 and x2 are linearly dependent;
(b) ‖x1, x2‖ = ‖x2, x1‖;
(c) ‖x1, x2 + x3‖ ≤ ‖x1, x2‖+ ‖x1, x3‖;
(d) ‖βx1, x2‖ = |β|‖x1, x2‖.

Let Y be as above, ‖·, ·‖ : Y × Y → R+ be a 2-norm and (xi)i∈N be a sequence in Y.
Then (xn)n∈N is said to be a 2-Cauchy sequence if there are linearly independent z1, z2 ∈ Y
with

lim
m,n→∞

‖xm − xn, zi‖ = 0, i = 1, 2.

(xn)n∈N is 2-convergent if there is x ∈ Y with limn→∞ ‖xn − x, z‖ = 0 for every z ∈ Y;
x is unique, and it is called a limit of (xn)n∈N and denoted by limn→∞ xn. A 2-norm is
complete if every 2-Cauchy sequence is 2-convergent.
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If 〈·, ·〉 is a real inner product in Y, then a 2-norm in Y can be defined by

‖x, y‖ :=
√
‖x‖2‖y‖2 − 〈x, y〉2 , ∀x, y ∈ Y. (15)

Further, if (Y, 〈·, ·〉) is a Hilbert space, then the 2-norm given by (15) is complete (see [66]
[Proposition 2.3]). In R2 with the natural inner product (given by 〈(x1, x2), (y1, y2)〉 =
x1y1 + x2y2), the 2-norm depicted by (15) has the form

‖(x1, x2), (y1, y2)‖ := |x1y2 − x2y1|, ∀(x1, x2), (y1, y2) ∈ R2. (16)

Finally, let us mention that the following two expressions:

(a) c‖·, ·‖1 + d‖·, ·‖2;

(b) max
{

c‖·, ·‖1 , d‖·, ·‖2
}

,

define 2-norms for any two 2-norms ‖·, ·‖1 and ‖·, ·‖2 in a real linear space Y and every
c, d ∈ (0, ∞).

4. Stability of Difference and Functional Equations

Now we start to present the aforementioned new methods of proving Ulam stability
results with respect to the 2-norms. In this section, Y is a linear space over K, with dimen-
sion greater than 1, ‖·, ·‖ is a 2-norm in Y, and Z ⊂ Y contains two linearly independent
vectors. We begin with an analogue of Theorem 2.

Theorem 6. Let W, W0, r 6= 1 and d be as in Theorem 2, and µ : Z → R. Let h : W → Y satisfy

‖h(x + y)− h(x)− h(y)− d(x, y), z‖ ≤ (‖x‖r + ‖y‖r)µ(z), ∀x, y ∈W0, z ∈ Z.

Then the following two statements are valid.

(i) If r < 0, then h is a solution to Equation (8).

(ii) If r ≥ 0 and ‖·, ·‖ is complete, then there is a unique solution α : W → Y of (8) with

‖h(x)− α(x), z‖ ≤ |1− 2r−1|−1‖x‖rµ(z), ∀x ∈W0, z ∈ Z. (17)

Proof. Fix z ∈ Z and k ∈ N. Take w ∈ Z such that z and w are linearly independent and
write

‖x‖k := ‖x, z‖+ 1
k
‖x, w‖, ∀x ∈ Y.

Then, it is easily seen that ‖ · ‖k is a norm in Y. Next,

‖h(x + y)− h(x)− h(y)− d(x, y)‖k ≤
(

µ(z) +
1
k

µ(w)
)
(‖x‖r + ‖y‖r), ∀x, y ∈W0.

So, in the case r < 0, by Theorem 2 with η := µ(z) + 1
k µ(w), h is a solution to (8).

Now, assume that r ≥ 0 and ‖·, ·‖ is complete. Let (yn)n∈N be a Cauchy sequence in Y
with respect to ‖ · ‖k. Then

lim
m,n→∞

‖yn − ym, v‖ = 0

for v ∈ {z, w}, whence (yn)n∈N is a 2-Cauchy sequence. So, there is y0 ∈ Y with

lim
n→∞

‖yn − y0, v‖ = 0, ∀v ∈ Y.

Hence,
lim

n→∞
‖yn − y0‖k = 0.
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In this way we have shown that the norm ‖ · ‖k is complete and consequently, by
Theorem 2, there is a unique additive αk : W → Y with

‖h(x)− αk(x)‖k ≤ µk‖x‖r, ∀x ∈W0,

where
µk := |1− 2r−1|−1

(
µ(z) +

1
k

µ(w)
)

.

Since µk ≤ µ1, the uniqueness of αk means that αk = α1 for k ∈ N, and consequently,

‖h(x)− α1(x)‖k ≤ µk‖x‖r, ∀x ∈W0.

Hence, letting k→ ∞, we obtain the inequality in (ii) with α = α1.
The uniqueness of α follows from the fact that each solution α0 : W → Y of Equation (8),

satisfying the inequality in (ii), also fulfills

‖h(x)− α0(x)‖1 ≤ (µ(z) + µ(w))|1− 2r−1|−1‖x‖r, ∀x ∈W0.

Consequently, by Theorem 2 (with η = µ(z) + µ(w)), α0 is unique.

In the next theorem, concerning the stability of difference Equation (9), we only
consider the case where T = Z or (12) holds. The remaining situation is more involved
due to the lack of uniqueness of (xn)n∈T in Theorem 3, and we omit it here to maintain the
simplicity of the presentation of the method.

Theorem 7. Let µ : Z → R,

C0 :=
p

∏
i=1

∣∣1− |ri|
∣∣ 6= 0,

and ‖·, ·‖ be complete. Let (bn)n∈T , (yn)n∈T be sequences in Y with

‖yn+p + a1yn+p−1 + . . . + apyn + bn, z‖ ≤ µ(z), ∀n ∈ T, z ∈ Z.

Assume that T = Z or (12) is fulfilled. Then, there exists a unique sequence (xn)n∈T in Y
such that (9) holds and

‖yn − xn, z‖ ≤ C−1
0 µ(z), ∀n ∈ T, z ∈ Z.

Proof. It is enough to argue analogously as in the proof of Theorem 6 (ii), with Theorem 2
replaced by Theorem 3.

5. Stability of Differential and Integral Equations

In the case of Equations (13) and (14), the situation is more involved because the
Bochner integral and the derivative depend on the norm. So, in this section, we are only
confined to the case where Y is a real Hilbert space with a real inner product 〈·, ·〉, and the
2-norm in Y is given by (15). We start with the stability of (14), where J, G, N, α, L and
C(J, X) are as depicted before in Theorem 5.

Theorem 8. Let s ∈ R, Z ⊂ Y \ {0}, ε ∈ C(J,R+), and ϕ ∈ C(J, X). Let σ0 and Iϕ be as in
Theorem 5. Assume that

‖Iϕ(x), z‖ ≤ ‖z‖sε(x), ∀x ∈ J, z ∈ Z.

Then, the following two statements are valid:

(A) If s 6= 1 and Z = Y, then ϕ is a solution of Equation (14).
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(B) If SY := {z ∈ Y : ‖z‖ = 1} ⊂ Z, then there is a solution ψ ∈ C(J, X) of (14) with

‖ϕ(x)− ψ(x), z‖ ≤ σ0(x)‖z‖, ∀x ∈ Y, z ∈ Y.

Proof. Let s 6= 1 and Z = Y. Then,

‖Iϕ(x), z‖ = inf
q∈Q+

q−1‖Iϕ(x), qz‖

≤ inf
q∈Q+

q−1ε(x)‖qz‖s

= ε(x)‖z‖s inf
q∈Q+

qs−1 = 0, ∀x ∈ J, z ∈ Y,

whence ϕ fulfills (14) (see condition (a) of Definition 2).
If SY ⊂ Z, then for each x ∈ J there is zx ∈ SY with zx ⊥ Iϕ(x), whence (15) implies

‖Iϕ(x)‖ = ‖Iϕ(x), zx‖ ≤ ε(x).

So, by Theorem 5, there is a solution ψ ∈ C(J, X) of (14) with

‖ψ(x)− ϕ(x)‖ ≤ σ0(x), ∀x ∈ J.

Since, by (15), ‖y, z‖ ≤ ‖y‖‖z‖ for y, z ∈ Y, this yields the inequality in (B).

Theorem 9. Let SY ⊂ Z ⊂ Y, G : I → X be continuous,

D0 :=
p

∏
i=1
|<(ri)| 6= 0,

and χ : R+ → R+. If r1, . . . , rp ∈ K (this simply means that in the case K = R, r1, . . . , rp are
real numbers) and h ∈ Cp(I, X) satisfies the inequality

‖h(p)(t) + a1hp−1(t) + . . . + aph(t) + G(t), z‖ ≤ χ(‖z‖), ∀t ∈ I, z ∈ Z,

then there exists a solution g ∈ Cp(I, X) of Equation (13) such that

‖h(t)− g(t), z‖ ≤ D−1
0 χ(1)‖z‖, ∀t ∈ I, z ∈ Y.

Proof. It is enough to argue analogously as in the proof of Theorem 8 (ii), with Theorem 5
replaced by Theorem 4 (with δ = χ(1)).

6. Some Consequences

In this section, we show three simple consequences of Theorems 6 and 7. As before,
Y is a linear space over K, with dimension greater than 1, and ‖·, ·‖ is a 2-norm in Y. We
begin with a corollary resulting from Theorem 6.

Corollary 1. Let W, W0, and d be as in Theorem 2, and h : W → Y. Assume that there exist a
real number r 6= 1 and two linearly independent vectors z1, z2 ∈ Y such that

µi := sup
x,y∈W0

‖h(x + y)− h(x)− h(y)− d(x, y), zi‖
‖x‖r + ‖y‖r < ∞, i = 1, 2.

Then, the following two statements are valid:

(i) If r < 0, then h is a solution to Equation (8).

(ii) If r ≥ 0 and ‖·, ·‖ is complete, then there is a unique solution α : W → Y of (8) with

‖h(x)− α(x), z‖ ≤ |1− 2r−1|−1‖x‖rµi, ∀x ∈W0, i = 1, 2.
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Proof. It is enough to use Theorem 6 with Z = {z1, z2} and µ(zi) = µi for i = 1, 2.

Corollary 2. Let R0 := R \ {0} and h1, h2 : R → R. Assume that there exist r 6= 1 and
u1, u2 ∈ R such that u1 6= u2 and

µi := sup
x,y∈R0

∣∣h1(x + y)− h1(x)− h1(y)− (h2(x + y)− h2(x)− h2(y)
)
ui
∣∣

|x|r + |y|r < ∞, i = 1, 2.

Then, the following two statements are valid.

(i) If r < 0, then h1 and h2 are additive functions.

(ii) If r ≥ 0, then there are unique additive α1, α2 : W → Y with∣∣h1(x)− α1(x)−
(
h2(x)− α2(x)

)
ui
∣∣ ≤ |1− 2r−1|−1|x|rµi, ∀x ∈ R0, i = 1, 2. (18)

Proof. It is enough to use Corollary 1 with W = R, Y = R2 and the 2-norm in R2 defined
by (16), h(x) = (h1(x), h2(x)) for x ∈ R, d(x, y) = 0 for x, y ∈ R, and zi = (ui, 1) for
i = 1, 2.

Remark 1. Note that from inequality (18), we also obtain∣∣(u1 − u2)(h2(x)− α2(x))
∣∣

≤
∣∣h1(x)− α1(x)−

(
h2(x)− α2(x)

)
u1
∣∣+ ∣∣h1(x)− α1(x)−

(
h2(x)− α2(x)

)
u2
∣∣

≤ |1− 2r−1|−1|x|r(µ1 + µ2), ∀x ∈ R0, i = 1, 2,

whence

∣∣h2(x)− α2(x)
∣∣ ≤ |1− 2r−1|−1|x|r(µ1 + µ2)

|u1 − u2|
, ∀x ∈ R0, i = 1, 2.

Next,∣∣h1(x)− α1(x)
∣∣ ≤ ∣∣h1(x)− α1(x)−

(
h2(x)− α2(x)

)
ui
∣∣+ ∣∣ui(h2(x)− α2(x))

∣∣
≤ |1− 2r−1|−1|x|rµi +

|ui||1− 2r−1|−1|x|r(µ1 + µ2)

|u1 − u2|
, ∀x ∈ R0, i = 1, 2.

If we assume additionally that h1 is bounded on a real nontrivial interval, then the last
inequality implies that so must be the additive function α1 and, consequently, there exists a
real constant c1 such that α1(x) = cix for x ∈ R (see refs. [67–69]; for some other examples
of related regularity assumptions on h1, we refer to [69,70]). Clearly, the same concerns h2.

So, if h1 and h2 are bounded on some nontrivial intervals, then there exist real constants
c1, c2 such that inequality (18) takes the form∣∣h1(x)− c1x−

(
h2(x)− c2x

)
ui
∣∣ ≤ |1− 2r−1|−1|x|rµi, ∀x ∈ R0, i = 1, 2.

For applications in the theory of information of functional equations considered above,
we refer to [58]. For other possible applications of functional equations, see [67–69,71].

The next corollary is a consequence of Theorem 7.

Corollary 3. Assume that

C0 :=
p

∏
i=1

∣∣1− |ri|
∣∣ 6= 0.
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Let u1, u2 ∈ R be such that u1 6= u2, and (φn)n∈T , (γn)n∈T , (ψn)n∈T , (ρn)n∈T be sequences
in R with

µi := sup
n∈T

∣∣γn+p + a1γn+p−1 + . . . + apγn + φn (19)

−
(
ρn+p + a1ρn+p−1 + . . . + apρn + ψn)ui

∣∣ < ∞, i = 1, 2.

Assume that T = Z or (12) holds. Then, there exist two unique sequences (ηn)n∈T and
(ξn)n∈T in R such that

ηn+p + a1ηn+p−1 + . . . + apηn + φn = 0, ∀n ∈ T,

ξn+p + a1ξn+p−1 + . . . + apξn + ψn = 0, ∀n ∈ T,

and ∣∣γn − ηn − (ρn − ξn)ui
∣∣ ≤ C−1

0 µi, ∀n ∈ T, i = 1, 2. (20)

Proof. It is enough to argue analogously as in the proofs of Corollaries 1 and 2, but using
Theorem 7 instead of Theorem 6.

Remark 2. Arguing analogously as in Remark 1, we can easily derive from (20) estimations
of the differences

∣∣γn − ηn
∣∣ and

∣∣ρn − ξn
∣∣.

7. Conclusions

Roughly speaking, an equation (e.g., difference, differential, functional, and integral)
is Ulam stable if every mapping satisfying the equation approximately (in some sense), is
close (in some way) to an accurate solution of the equation.

The notions of an approximate solution and the closeness of two mappings always de-
pend on a situation that we consider and therefore may have various meanings. Therefore,
it makes sense to consider such notions also with regard to the 2-norms.

In this paper, with four examples (with difference, differential, functional and integral
equations), we showed that it is possible to easily derive various general Ulam stability
outcomes, with respect to the 2-norms, from the already known results obtained for classical
normed spaces.

Our considerations show that there is a significant symmetry between the Ulam
stability results in classical normed spaces and in 2-normed spaces.

However, there are several issues that could be investigated further.
For instance, as we already mentioned in the introduction, it is shown in [10] (cf. [18])

that a result analogous to Theorem 2 is not possible for r = 1, which means that, then,
non-stability (lack of stability) occurs. Moreover, in the case r ≥ 0 and r 6= 1, the constant
in the inequality of (ii) (in Theorem 2) is optimal in the general situation (see ref. [3]). We
summarize this information and the statements of Theorem 2 in the Table 1.

Table 1. Stability of the Cauchy inhomogeneous Equation (8).

Value of the Power r Type of Stability

r < 0 hyperstability

r ≥ 0 and r 6= 1 stability with uniqueness and the best constant is known

r = 1 non-stability (the lack of stability)

With regard to our Theorem 6, it would be interesting to know if the situation is fully
symmetric in 2-normed spaces (i.e., as in Table 1, there is lack of stability if r = 1 and the
constant |1− 2r−1|−1 in (17) is optimum when r ≥ 0 and r 6= 1).
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Next, in Theorems 3 and 7, the assumption that T = Z or (12) holds is important. If it
is not fulfilled (i.e., T = N and (12) does not hold), then the situation in the normed spaces
is quite different (see [12] [Theorems 3 and 4]). Namely, if |ri| < 1 for some i ∈ {1, . . . , n}
(and |ri| 6= 1 for i = 1, . . . , n), then there is no uniqueness of (xn)n∈T ; actually, the set of
all such sequences (xn)n∈T satisfying (9) and (11) has the same cardinality as the space
X, which means that this case can be regarded as somewhat chaotic. If |ri| = 1 for some
i ∈ {1, . . . , n}, then there is lack of stability (non-stability occurs) in the following sense:
there exist sequences (yn)n∈T in X such that (10) holds and

sup
n∈T
‖yn − xn‖ = ∞

for every sequence (xn)n∈T in X, fulfilling (9). As before, we summarize this information
in the next table (Table 2).

Table 2. Stability of difference Equation (9).

Possible Case Type of Stability

|ri| > 1 for i = 1, . . . , n stability with uniqueness

|ri| 6= 1 for i = 1, . . . , n and T = Z stability with uniqueness

|ri| = 1 for some i ∈ {1, . . . , n} non-stability

|ri| 6= 1 for i = 1, . . . , n, |rj| < 1
for some j ∈ {1, . . . , n} and T = N stability without uniqueness

The cases in Table 2 are a bit complicated, so below, we also present the information
contained there in the simple case n = 2 (with only two roots r1 and r2) in two tables
(Tables 3 and 4) (for T = N and T = Z) of somewhat modified forms.

Table 3. Stability of difference Equation (9) for n = 2 and T = N.

|r1| > 1 |r1| = 1 |r1| < 1

|r2| > 1 stability with uniqueness non-stability stability without uniqueness

|r2| = 1 non-stability non-stability non-stability

|r2| < 1 stability without uniqueness non-stability stability without uniqueness

Table 4. Stability of difference Equation (9) for n = 2 and T = Z.

|r1| 6= 1 |r1| = 1

|r2| 6= 1 stability with uniqueness non-stability

|r2| = 1 non-stability non-stability

It would be interesting to know if the situation is analogous (symmetric) as in Tables 3
and 4 also in the 2-normed spaces.

Moreover, it would be nice to obtain results similar to our theorems for other equations.
In this regard, we would like to draw the attention of interested readers in particular to the
outcomes in publications [6,11,22–30] that were obtained mainly for the normed spaces.

Finally, it would be very desirable to extend the methods presented in this paper to
the case of n-norms and thus obtain analogous results, e.g., as in [72,73]. For the necessary
definitions of n-normed spaces, stability issues considered in them and related information,
we refer to [72–79].
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