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Abstract: Nowadays, one of the main challenges facing production management is how to enhance
the performance of manufacturing processes by utilizing asymmetry input and output data. This
research, therefore, developed a framework for window analysis in data envelopment analysis (DEA)
for evaluating the overall technical efficiencies from asymmetry dynamic input and output data. The
framework was applied to assess the technical (TE), managerial (PTE), and scale (SE) efficiencies
of a blowing machine under three fuzzy input variables (planned production quantity, number of
defectives, and idle time) and a fuzzy output variable (actual or target production quantity). The
efficiency measures were then evaluated for all DMUs at low (L), middle (M), and high (H) data
levels. The obtained optimal fuzzy efficiencies were then transformed into a single crisp optimal
efficiency. The results showed that all seven DMUs of the blowing machine were technically inefficient.
The input and output slacks were estimated and utilized to determine the necessary improvement
actions. Improvement results revealed that the optimal TE, PTE, and SE were significantly improved,
which may result in significant savings in production and quality costs. In conclusion, the proposed
framework is effective in improving the efficiency of the blowing process and can be utilized for
efficiency assessment in a wide range of applications.

Keywords: fuzzy window analysis; technical efficiency; pure technical efficiency; scale efficiency

1. Introduction

Industries across the globe rely on the efficiency evaluation of manufacturing processes
to create quality products and save on expensive manufacturing and quality costs [1,2].
In practice, information asymmetries arise in the only collected data due to subjective
judgments based on experience and historical data or variations, which may significantly
affect the accuracy of the efficiency assessment results and the effectiveness of the improve-
ment decisions [3]. Consequently, developing effective approaches for efficiency evaluation
under asymmetry input and output has become a real challenge. This research, therefore,
develops a framework for window analysis in data envelopment analysis (DEA) to evaluate
efficiency from asymmetry input and output data for manufacturing processes.

Data envelopment analysis (DEA) is a mathematical programming-based non-parametric
approach that is widely used for assessing the relative efficiency of homogeneous decision-
making units (DMUs) [4]. In DEA, process engineers usually rely on multiple crisp inputs
and crisp outputs for assessing process efficiency. In DEA models, a DMUs’ efficiency
is defined by its relative distance from the production frontier [5,6]. Usually, two DEA
techniques are used to evaluate the DMUs’ efficiency, including the Charnes–Cooper–
Rhodes (CCR) [7] and Banker, Charnes, and Cooper (BCC) [8]. The CCR model measures
technical efficiency (TE) by maximizing the output from a given set of inputs at an optimal
scale of operation, or constant returns to scale (CRTS). To gain valuable information about
the source of inefficiencies, TE is composed of two efficiencies: pure technical efficiency
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(PTE) and scale efficiency (SE). The BCC model assumes that a DMU is operating under
variable returns to scale (VRS) and measures PTE by only comparing a DMU to a unit of
a similar scale. PTE assesses the extent to which a DMU utilizes its sources in exogenous
environments and evaluates managerial performance [9,10]. Finally, the scale efficiency (SE),
calculated as TE divided by PTE, is used to evaluate the effect of the scale size on efficiency
and enables management to select the optimal resource size to obtain the target production
level. Inappropriate scale size causes technical inefficiency [11,12]. Scale inefficiency (SIE)
is due to increasing returns-to-scale (IRTS) when the manufacturing process is too small for
its scale of operations. SIE is due to decreasing returns-to-scale (DRTS) when the process is
too large for its scale of operations. To reduce costs and maximize revenues, the process
has to operate at the most productive scale, which is CRTS [13–15]. The traditional DEA
models for evaluating DMUs relative efficiency in various business applications [16–20].

Nevertheless, for DEA models to avoid producing multiple efficient DMUs, the num-
ber of DMUs should be at least two times the sum of the number of inputs and outputs [6].
Fortunately, DEA window analysis was introduced to improve discriminating power by
increasing the number of DMUs when using a limited number of DMUs [2]. DEA window
analysis regards the same DMU in distinct periods, which are then treated as entirely
different DMUs. The TE, PTE, and SE of a DMU in any period can then be estimated
using the inputs and outputs of the same DMU in other periods as well as those of other
DMUs. The window analysis was applied to evaluate process efficiency under crisp input
and output data in a wide range of manufacturing and service applications [21–25]. In
manufacturing systems, however, variations in process and measurement result in asym-
metry data. As a result, the data available for efficiency analysis cannot be presented as
crisp data. Consequently, window analysis should be developed to deal with asymmetry
data, represent real-world problems more realistically, and obtain a reliable assessment of
manufacturing processes.

In this context, this research proposes a DEA window analysis to assess the DMUs
relative efficiency using asymmetry or fuzzy dynamic data. In this research, the relative
efficiency is calculated for each element of the triangular fuzzy number of the input and
output data. Then, the fuzzy efficiency is transformed into a crisp value. The efficiency
evaluation for a blowing machine used to manufacture plastic products during the year
2020 is utilized to illustrate the developed fuzzy window analysis. The remainder of this
paper, including the introduction section, is organized in the following sequence: Section 2
reviews the relevant background on fuzzy DEA techniques and applications. Section 3
presents this research methodology. Section 4 presents an application of the developed
window analysis and research results. Section 5 summarizes the research conclusions.

2. Literature Review

The traditional DEA models were reported as powerful techniques for efficient evalu-
ation of homogeneous DMUs from crisp input and output process data. In reality, however,
production processes are usually volatile and complex, which makes it difficult to obtain ac-
curate or precise input and output data. Therefore, significant research efforts were directed
at developing DEA models that can evaluate the relative efficiency of DMUs for a manu-
facturing process from fuzzy input and output data. For example, Guo and Tanaka [26]
proposed two fuzzy DEA models for evaluating the efficiencies of DMUs from fuzzy input
and output data. The efficiencies were represented by fuzzy numbers to reflect the inherent
fuzziness of evaluation problems. The fuzzy DEA models extended the CCR model to more
general forms that can handle crisp, fuzzy, and hybrid data. Lertworasirikul et al. [27]
transformed fuzzy DEA models into possibility DEA models by using possibility measures
of fuzzy constraints. The fuzzy membership functions of fuzzy data were of the trapezoidal
type. Liu and Chuang [28] proposed a DEA approach to determine the fuzzy efficiency
measures embedded with the assurance region (AR) concept. The fuzzy DEA/AR model
was transformed into a family of crisp DEA/AR models by calculating the lower and
upper bounds of efficiency scores at a specific level. A study of twenty-four university
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libraries in Taiwan was employed to illustrate their model. Wen and Li [29] proposed
a credibility measure in the fuzzy DEA model, followed by DMUs ranking. A hybrid
algorithm combined with the fuzzy simulation and genetic algorithmgenetic algorithm
was used to solve the model for trapezoidal or triangular fuzzy inputs and outputs. Puri
and Yadav [30] proposed the concept of fuzzy input mix-efficiency and evaluated the
fuzzy input mix-efficiency using the α-cut approach. A real case study from the State
Bank of Patiala in the Punjab state of India, with districts, was provided for illustration.
Wanke et al. [31] employed bootstrapped regressions and fuzzy-DEA (FDEA) models to
capture vagueness in the input and output measurements obtained from Nigerian airports.
Barak and Dahooei [32] proposed FDEA and fuzzy multi-attribute decision-making (F-
MADM) for ranking the airlines’ safety. The FDEA was adopted to estimate criteria weights,
which were then employed to rank each airline using MADM methods. Arana-Jiménez
et al. [33] considered a slacks-based additive inefficiency measure and compared it with
the existing fuzzy DEA methods. However, their model could not discriminate between
efficient and weakly efficient DMUs. Khoshandam and Nematizadeh [34] proposed an
inverse network DEA model for two-stage processes to evaluate the amount of change in
one or more indicators of one stage of a process by changing indicators of another stage
to preserve the level of efficiency in the presence of undesirable factors. The model was
implemented in poultry farming. Mohanta et al. [35] developed an intuitionistic fuzzy DEA
(IFDEA) model based on triangular intuitionistic fuzzy numbers (TIFNs). The weighted
possibility means for TIFNs were then utilized to compare and rank the TIFNs.

Little research has been reported on using window analysis to assess efficiency when
the input and output data are asymmetry and dynamic. For example, Wang et al. [36]
combined DEA window analysis and fuzzy techniques for order of preference by similarity
to the ideal solution to assess the capabilities of 42 countries in terms of renewable energy
production potential. Three inputs (population, total energy consumption, and total renew-
able energy capacity) and two outputs (gross domestic product and total energy production)
Peykani et al. [37] developed credibility-based fuzzy window analysis to evaluate the dy-
namic performance of hospitals during different periods of data ambiguity. The proposed
approach was implemented on a real data set to evaluate the performance of hospitals
in the USA. Al-Refaie [2] proposed a DEA window analysis and Malmquist productivity
index under fuzzy data. The proposed window analysis was based on providing crisp
efficiency scores by solving a single model.

This research provides an extension to ongoing research [38–40] by developing a
framework for window analysis with asymmetry data. The collected input and output
data are represented by triangular fuzzy numbers. Process efficiency is then calculated
at three levels and transformed into a single, crisp optimal efficiency. The proposed DEA
window analysis contributes to literature and practice by: (1) providing reliable assessments
of process efficiency under asymmetry input and output data; (2) determining effective
improvement actions based on slack analysis of inputs and outputs that lead to enhanced
process performance; and (3) transforming the fuzzy efficiency into a crisp score that
facilitates understanding and interpreting process efficiency.

3. Research Methodology

The developed framework for window analysis with asymmetry data are depicted in
Figure 1.

The steps of the developed window analysis with asymmetry data are presented
as follows:

Step 1: Specify the fuzzy input variables (planned production quantity, number of
defectives, and idle time) and a single fuzzy output variable (actual production quantity)
for the manufacturing process under consideration. Classify the variables into inputs and
outputs for DEA window analysis, where input (output) variables are these variables to be
minimized (maximized) [7]. Then, collect asymmetry data for those variables over a time
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horizon (T). It is assumed that the input and output data follow triangular fuzzy numbers
(TFNs).
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Figure 1. Research methodology.

Step 2: Let the collected fuzzy input and output data of DEA variables at time t; t = 1,
. . . , T, be denoted as x̃t

i ; i = 1,. . . , m, and ỹt
r, r = 1, . . . , s, respectively. The time horizon, T, is

then divided into n windows. Let z denote window width. Let wj denote the jth window,
which can be determined as follows: w1: t1 → tz , w2: t2 → tz+1 , . . . , and so on. Finally,
treat each window as a Decision-Making Unit (DMU).

Step 3.1: Evaluate the technical efficiency (TE) of each DMUj (j = 1, . . . , n). Let θk be the
efficiency of DMUk (k ∈ j). Then, the objective of the optimization model aims to maximize
θk [2, 9]. Generally,

Max θk=
virtual output
virtual input

=
u1y1k + u2y2k + . . . + usysk
v1x1k + v2x2k + . . . + vmxmk

(1)

where ur (r = 1,. . . , s) and vm (i = 1,. . . , m) are the input and output weights. The ratio of the
virtual output versus the virtual input of DMUj cannot exceed one. Then, the following
constraints are formulated [3, 8]:

u1y1j + u2y2j + . . . + usysj

v1x1j + v2x2j + . . . + vmxmj
≤ 1, ∀j (2)
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ur ≥ 0, ∀r (3)

vi ≥ 0, ∀i (4)

Let s−i and s+r denote the negative input and positive output slacks, respectively.
The equivalent dual problem of the input-oriented fractional model (Formulas (1)–(4)) is
formulated as [7]:

Minθk (5)

Subject to:

θkxik −
n

∑
j=1

λjxij − s−i = 0, ∀i (6)

n

∑
j=1

λjyrj − yrk − s+r = 0, ∀r (7)

λj ≥ 0, ∀j (8)

s−i ≥ 0, ∀i (9)

s+r ≥ 0, ∀r (10)

Let θ
∗
k denote the optimal efficiency of DMUk. Then, DMUk is identified as CCR-

efficient if θ
∗
k is equal to one and all slacks are zeros. Otherwise, DMUk is identified as

CCR-inefficient.
Because the input and output x̃ij and ỹrj are fuzzy numbers, then θ̃

∗
k is a triangular

fuzzy numbers [28]. Let θ
∗L

qk , θ
∗M

qk , and θ
∗H

qk , denote the low, middle, and high levels of the
optimal TE values, respectively. Let the fuzzy input x̃itk = (aitk, bitk, citk), where aitk, bitk
and citk denote the low (L), middle (M), and high (H) elements for fuzzy ith input; i = 1,. . . ,
m, of DMUk; k ∈ j. In addition, the fuzzy output ỹrtk = (drtk, ertk, frtk), where drtk, ertk, and
frtk represent the L, M, and H levels of fuzzy rth output; r = 1,. . . , s, of DMUk; k ∈ j. For
illustration, the representation of the collected data for a window of six periods of DMU1 is
displayed in Table 1.

Table 1. Representation of the fuzzy data for the six periods of DMU1.

Inputs/Outputs of DMU1
(k = 1)

t = 1
~
xi11=(ai11,bi11,ci11)

. . . t = 6
~
xi61=(ai61,bi61,ci61)

x̃it1 = (ait1, bit1, cit1)

x̃111 =
(a111, b111, c111)

. . . x̃161 = (a161, b161, c161)

x̃211 =
(a211, b211, c211)

. . . x̃261 = (a261, b261, c261)

...
...

...

x̃m11 =
(am11, bm11, cm11)

. . . x̃m61 = (am61, bm61, cm61)
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Table 1. Cont.

Inputs/Outputs of DMU1
(k = 1)

t = 1
~
xi11=(ai11,bi11,ci11)

. . . t = 6
~
xi61=(ai61,bi61,ci61)

ỹrt1 = (drt1, ert1, frt1)

ỹ111 =
(d111, e111, f111)

. . . ỹ161 = (d161, e161, f161)

ỹ211 =
(d211, e211, f211)

. . . ỹ261 = (d261, e261, f261)

...
...

...

ỹs11 = (ds11, es11, fs11) . . . ỹs61 = (ds61, es61, fs61)

The optimal low TE, θ
∗L

qk , of DMUk at a specific time q; q ∈ wk, in window k is estimated
using the dual formulation of the CCR model as follows:

Min θL
qk (11)

Subject to:

θL
qk aiqk − ∑

t∈wk

λtaitk − s−i = 0, ∀i (12)

∑
t∈wk

λtdrtk − drqk − s+r = 0 , ∀r (13)

s−i ≥ 0, ∀i (14)

s+r ≥ 0, ∀r (15)

λt ≥ 0 , ∀t ∈ wk (16)

Table 2 displays the optimal TE and PTE efficiencies from low-level input and output
data for DMU1.

Table 2. The optimal TE and PTE values from low-level input and output data for DMU1.

Inputs/Outputs of DMU1
(k = 1) at Low-Level Data t = 1 . . . t = 6 θ

*L

tk δ
*L

qk

ait1

a111 . . . a161

θ
∗L

11θ
∗L

21θ
∗L

31
θ
∗L

41θ
∗L

51θ
∗L

61

δ
∗L

11δ
∗L

21δ
∗L

31
δ
∗L

41δ
∗L

51δ
∗L

61

a211 . . . a261

...
...

...

am11 . . . am61

drt1

d111 . . . d161

d211 . . . d261

...
...

...

ds11 . . . ds61

Averages of optimal TE and PTE at low-level data θ
∗L

1 δ
∗L

1

The middle and high optimal efficiencies θ
∗L

tk for the remaining periods in window k;
t ∈ wk and t 6= q, are estimated similarly. Repeat this step to obtain the optimal efficiencies
θ
∗M

tk and θ
∗H

tk for all periods in window k; t ∈ wk, of DMUk. In a similar manner, obtain the
optimal efficiencies θ

∗M

tj and θ
∗H

tj from the middle and high levels of input and output data.
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Step 3.2: Evaluate the pure technical efficiency (PTE) of DMUj. Let δ
∗L

qk , δ
∗M

qk , and δ
∗H

qk ,
denote the low, middle, and high optimal PTE efficiencies, respectively. For illustration, the
optimal PTE, δ

∗L

qk , at the low data level DMUk, is estimated using an input-oriented BCC
model without slacks [2]. Mathematically,

Min δL
qk (17)

Subject to:

∑
t∈wk

λtdrtk − drqk ≥ 0 , ∀r (18)

δL
qk aiqk − ∑

t∈wk

λtaitk ≥ 0, ∀i (19)

n

∑
j=1

λj = 1 (20)

λt ≥ 0 , ∀t ∈ wk (21)

The obtained optimal values of δ̃
∗L

tk are shown in Table 2. Similarly, the δ̃
∗L

tk values are
calculated at the remaining periods (t 6= q) of DMUk. In a similar manner, the δ

∗M

qj and

δ
∗H

qj , are obtained at window periods of DMUj (j 6= k). Table 3 summarizes the calculated

θ
∗L

tj , θ
∗M

tj , θ
∗H

tj , δ̃
∗L

tk , δ
∗M

tk , and δ
∗H

tk .

Table 3. Summary of the fuzzy optimal TE and PTE values.

DMUj t = 1 t = 2 . . . t = 6 t = 7 t = 11 t = 12
DMU

Efficiency
θ

*

j ,δ
*

j ,ω
*

j

DMU1
θ
∗L

11, θ
∗M

11 , θ
∗H

11
δ
∗L

11, δ
∗M

11 , δ
∗H

11

θ
∗L

12, θ
∗M

12 , θ
∗H

12
δ
∗L

12, δ
∗M

12 , δ
∗H

12
. . .

θ
∗L

61, θ
∗M

61 , θ
∗H

61
δ
∗L

61, δ
∗M

61 , δ
∗H

61
θ
∗
1, δ

∗
1, ω

∗
1

DMU2
θ
∗L

22, θ
∗M

22 , θ
∗H

22
δ
∗L

22, δ
∗M

22 , δ
∗H

22
. . .

θ
∗L

62, θ
∗M

62 , θ
∗H

62
δ
∗L

62, δ
∗M

62 , δ
∗H

62

θ
∗L

72, θ
∗M

72 , θ
∗H

72
δ
∗L

72, δ
∗M

72 , δ
∗H

72
θ
∗
2, δ

∗
2, ω

∗
2

...
...

...
...

DMU6
θ
∗L

66, θ
∗M

66 , θ
∗H

66
δ
∗L

66, δ
∗M

66 , δ
∗H

66

θ
∗L

76, θ
∗M

76 , θ
∗H

76
δ
∗L

76, δ
∗M

76 , δ
∗H

76
. . .

θ
∗L

11,6, θ
∗M

11,6, θ
∗H

11,6

δ
∗L

11,6, δ
∗M

11,6, δ
∗H

11,6

θ
∗
6, δ

∗
6, ω

∗
6

DMU7
θ
∗L

77, θ
∗M

77 , θ
∗H

77
δ
∗L

77, δ
∗M

77 , δ
∗H

77
. . .

θ
∗L

11,7, θ
∗M

11,7, θ
∗H

11,7

δ
∗L

77, δ
∗M

77 , δ
∗H

77

θ
∗L

12,7, θ
∗M

12,7, θ
∗H

12,7

δ
∗L

77, δ
∗M

77 , δ
∗H

77
θ
∗
7, δ

∗
7, ω

∗
7

Period
efficiency θ

∗1
, δ
∗1

, ω
∗1

θ
∗2

, δ
∗2

, ω
∗2

θ
∗6

, δ
∗6

, ω
∗6

θ
∗7

, δ
∗7

, ω
∗7

θ
∗11

, δ
∗11

, ω
∗11

θ
∗12

, δ
∗12

, ω
∗12

Step 3.3: Calculate the elements of the TE and PTE averages θ̃
∗
j (θ

∗L

j , θ
∗M

j , θ
∗H

j ) and

δ̃
∗
j (δ

∗L

j , δ
∗M

j , δ
∗H

j ), respectively, of DMUj; j = 1, . . . , n. For example, in Table 2, the low-level

optimal efficiency of DMU1, θ
∗L
1 , is the average of the period efficiencies θ̃

∗
11, θ̃

∗
21, . . . , and

θ̃
∗
61. Similarly, the low-level optimal PTE of DMU1, δ̃

∗L

1 .
Step 4: To provide a more practical interpretation of the optimal fuzzy TE and PTE, the

θ̃
∗
j (θ

∗L

j , θ
∗M

j , θ
∗H

j ) and δ̃
∗
j (δ

∗L

j , δ
∗M

j , δ
∗H

j ) are transformed into single crisp values. Let D denote
the defuzzified optimal efficiency, which is calculated as follows [25]:

D =
1
3
((U − L) + (M− L)) + L (22)
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where U, M, and L are the high, middle, and low of efficiency TFN, respectively. Use
Equation (22) to calculate the optimal θ

∗
j and δ

∗
j of DMUj; j = 1, . . . , n, respectively, as follows:

θ
∗
j =

1
3
((θ

∗H

j − θ
∗L

j ) + (θ
∗M

j − θ
∗L

j )) + θ
∗L

j (23)

δ
∗
j =

1
3
((δ

∗H

j − δ
∗L

j ) + (δ
∗M

j − δ
∗L

j )) + δ
∗L

j (24)

Step 5: Calculate the optimal SE, ω∗j , as follows:

ω∗j =
θ
∗
j

δ
∗
j

(25)

Table 3 also summarizes the values of ω∗j for all DMUs.

Step 6: Let θ
∗t

, δ
∗t

, and ω∗t denote the TE, PTE, and SE at period t, respectively. Obtain
θ̃
∗t

and δ̃
∗t

as follows. Firstly, calculate the average period TE, θ
∗tL

, at low-level data,
from the values of θ

∗L

tj for the DMUs that include the period t in window j, as shown in
Equation (26).

θ
∗tL

=
∑n′

j=1 θ
∗L

tj

n′
(26)

where n′ denotes the number of DMUs that include period t in window j. Similarly,
calculate the θ

∗tM
and θ

∗tH
in a similar manner. Apply Equations (23) and (24) to calculate

the crisp θ
∗t

and δ
∗t

, respectively. Finally, calculate the values of ω∗t using Equation (25).
The results are shown in Table 3.

Step 7: Analyze the results for the DMUs and period fuzzy and crisp optimal efficien-
cies (TE, PTE, and SE). Determine and examine the input and output negative and positive
slacks for all DMUs and periods. Recommend the required actions to improve process
performance. Finally, validate the anticipated improvement.

4. Research Results

The efficiency evaluation of the blowing machine in the plastics industry was consid-
ered and is presented as follows. In steps 1 and 2, the relevant fuzzy input and output
data for a blowing process were collected for 12 months; t = 1, . . . , 12, from the production
reports. The planned production quantity (x̃1), number of defectives (x̃2), and idle time (x̃3)
were treated as the inputs, whereas the actual production quantity in production units (ỹ)
was set as the output for all periods in the DEA model as shown in Table 4. The length of
each window consisted of six periods. Hence, seven DMUs; DMU1 to DMU7 for t1–t6, t2–t7,
. . . , and t7–t12, respectively, were obtained.

Table 4. DEA data (Units) for blowing machines.

Period
t

Inputs Output

Planned Production
~
x

t
1

Defectives
~
x

t
2

Idle Time
~
x

t
3

Production Quantity
~
y

t

1 (24150, 24192, 25100) (179, 185, 192) (1383,1426, 1483) (21099, 22300, 23103)

2 (24100, 24192, 24300) (91, 94, 97) (7756, 7996, 8315) (15550, 15731, 17832)

3 (24000, 24192, 25159) (66, 69, 71) (3054, 3149, 3274) (20549, 21419, 22318)

4 (24000, 24192, 25000) (94, 97, 100) (6221, 6414, 6670) (18231, 18359, 23721)
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Table 4. Cont.

Period
t

Inputs Output

Planned Production
~
x

t
1

Defectives
~
x

t
2

Idle Time
~
x

t
3

Production Quantity
~
y

t

5 (20113, 20736,21565) (170, 176, 183) (1876, 1935, 2012) (17128, 17221, 19762)

6 (26818, 27648, 28753) (137, 142, 147) (49, 51, 53) (26810, 27620, 27640)

7 (23466, 24192, 25159) (116, 120, 124) (3317, 3420, 3556) (18089, 19456, 22941)

8 (20113, 20736, 21565) (51, 53, 55) (2018, 2081, 2164) (19012, 19616, 20000)

9 (13409, 13824, 14376) (31, 32, 33) (657, 678, 705) (12984, 13500, 13561)

10 (10056, 10368, 10782) (70, 73, 75) (2769, 2855, 2969) (8195, 8318, 9939)

11 (15085, 15552, 16174) (111, 115, 119) (2873, 2962, 3080) (13294, 13350, 15230)

12 (21790, 22464, 23362) (237, 245, 254) (2268, 2339, 2432) (20137, 20750, 22252)

In step 3.1, the input-oriented CCR model was employed to estimate the optimal TE;
θ
∗L

tj , θ
∗M

tj , and θ
∗H

tj , at the low, middle, and high levels respectively. Table 5 displays the

obtained optimal values of θ
∗L

tj ,θ
∗M

tj ,θ
∗H

tj , and θ
∗L

j .

Table 5. Optimal technical efficiency.

DMU Period t

j 1 2 3 4 5 6 7 8 9 10 11 12 θ
∗L
j CV%

1 0.8739 0.7024 1.0000 0.8193 0.8518 1.0000 0.8746 13.01%
2 0.7024 1.0000 0.8193 0.8518 1.0000 0.7789 0.8587 14.01%
3 0.9015 0.7795 0.8518 1.0000 0.7738 1.0000 0.8844 11.45%
4 0.7702 0.8518 1.0000 0.7725 0.9737 1.0000 0.8947 12.31%
5 0.8518 1.0000 0.7725 0.9737 1.0000 0.8152 0.9022 11.21%
6 1.0000 0.7725 0.9737 1.0000 0.8152 0.8815 0.9072 10.90%
7 0.7961 0.9762 1.0000 0.8416 0.9101 0.9544 0.9131 8.77%

θ
∗L
t 0.8739 0.7024 0.9672 0.7971 0.8518 1.0000 0.7777 0.9795 1.0000 0.8240 0.8958 0.9544

CV% 0.00% 0.00% 5.88% 3.25% 0.00% 0.00% 1.20% 1.18% 0.00% 1.85% 2.26% 0.00%

j 1 2 3 4 5 6 7 8 9 10 11 12 θ
∗M

j CV%

1 0.9227 0.6941 1.0000 0.8048 0.8313 1.0000 0.8755 13.81%
2 0.6941 1.0000 0.8048 0.8313 1.0000 0.8122 0.8571 14.08%
3 0.9299 0.7777 0.8313 1.0000 0.8080 1.0000 0.8912 11.06%
4 0.7665 0.8313 1.0000 0.8062 0.9668 1.0000 0.8951 11.79%
5 0.8313 1.0000 0.8062 0.9668 1.0000 0.8031 0.9012 10.80%
6 1.0000 0.8062 0.9668 1.0000 0.8031 0.8593 0.9059 10.37%
7 0.8235 0.9687 1.0000 0.8215 0.8790 0.9459 0.9064 8.41%

θ
∗M
t 0.9227 0.6941 0.9766 0.7885 0.8313 1.0000 0.8104 0.9738 1.0000 0.8092 0.8692 0.9459

CV% 0.00% 0.00% 4.14% 2.46% 0.00% 0.00% 0.84% 1.51% 0.00% 1.31% 1.60% 0.00%

j 1 2 3 4 5 6 7 8 9 10 11 12 θ
∗H
j CV%

1 0.9575 0.7737 1.0000 1.0000 0.9533 1.0000 0.9474 9.28%
2 0.7737 1.0000 1.0000 0.9533 1.0000 0.9506 0.9463 9.27%
3 0.9524 1.0000 0.9533 1.0000 0.9506 1.0000 0.9761 2.69%
4 0.9944 0.9533 1.0000 0.9497 0.9815 1.0000 0.9798 2.35%
5 0.9533 1.0000 0.9497 0.9815 1.0000 0.9589 0.9739 2.37%
6 1.0000 0.9497 0.9815 1.0000 0.9589 0.9796 0.9783 2.12%
7 0.9638 0.9829 1.0000 0.9721 0.9925 1.0000 0.9852 1.52%
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Table 5. Cont.

DMU Period t

θ
∗H
t 0.9575 0.7737 0.9841 0.9986 0.9533 1.0000 0.9524 0.9855 1.0000 0.9633 0.9861 1.0000

CV% 0.00% 0.00% 2.79% 0.28% 0.00% 0.00% 0.59% 0.83% 0.00% 0.79% 0.93% 0.00%

From Table 5, the following remarks are obtained: Firstly, the estimated optimal
TE listed at each period (column) reveals a stable performance because almost all the
percentages of the coefficient of variation, CV%, are smaller than 0.05 for all columns.
However, the CV percentages corresponding to the DMUs (rows) are greater than 0.05,
which implies significant dispersion or trend in the TE scores of the same window. Secondly,
the averages of θ

∗L

j ,θ
∗M

j , and θ
∗H

j are found to be smaller than one for all seven DMUs, and
thereby it can be concluded that the blowing process was TE-inefficient at all data levels.
Furthermore, the optimal TE values for each window period; θ

∗tL
, θ

∗tM
, and θ

∗tH
were

estimated and found to be equal to one in two, two, and three out of twelve periods,
respectively. In step 3.2, the optimal values of the pure technical efficiency; δ

∗L

tj ,δ
∗M

tj , and

δ
∗H

tj , were calculated at low, middle, and high data levels to explain the causes of the TE
inefficiency (TIE) for all window periods. Table 6 displays the results of the optimal PTE,
where it is found that: (1) the CV% indicates the existence of less dispersion in PTE scores
than the TE scores of the same window for all DMUs. For example, the δ

∗L

1 (=0.9785) for
DMU1 implies that the same output level could be produced by 97.85% of the recourses.
In other words, about 2.15% of recourses could be saved by enhancing the machine’s
performance to the highest level, and (2) the averages of δ

∗L

j ,δ
∗M

j , and δ
∗H

j are smaller than
one for all seven DMUs, and thereby the blowing machine is judged PTE-inefficient in all
DMUs. Further, the optimal PTE at each window period; δ

∗tL
,δ
∗tM

, and δ
∗tH

) was calculated
and found to be equal to one in six, six, and eight out of the twelve periods, respectively.

Table 6. Optimal pure technical efficiency.

Period t

DMUj 1 2 3 4 5 6 7 8 9 10 11 12 δ
∗L
j CV%

1 0.9467 0.9624 1.0000 0.9620 1.0000 1.0000 0.9785 2.47%
2 0.9624 1.0000 0.9620 1.0000 1.0000 0.9520 0.9794 2.34%
3 1.0000 0.8380 1.0000 1.0000 0.8571 1.0000 0.9492 8.32%
4 0.7707 0.8665 1.0000 0.7824 1.0000 1.0000 0.9033 12.29%
5 0.8665 1.0000 0.7824 1.0000 1.0000 1.0000 0.9415 10.03%
6 1.0000 0.7824 1.0000 1.0000 1.0000 0.9088 0.9485 9.40%
7 0.8134 1.0000 1.0000 1.0000 0.9118 1.0000 0.9542 8.12%

δ
∗tL 0.9467 0.9624 1.0000 0.8832 0.9466 1.0000 0.8283 1.0000 1.0000 1.0000 0.9103 1.0000

CV% 0 0.00% 0.00% 10.77% 7.72% 0.00% 8.13% 0.00% 0.00% 0.00% 0.23% 0.00%

DMUj 1 2 3 4 5 6 7 8 9 10 11 12 δ
∗M
j CV%

1 0.9967 0.9703 1.0000 0.9669 1.0000 1.0000 0.9890 1.61%
2 0.9703 1.0000 0.9669 1.0000 1.0000 0.9413 0.9798 2.48%
3 1.0000 0.8571 1.0000 1.0000 0.8571 1.0000 0.9524 7.75%
4 0.7681 0.8424 1.0000 0.8125 1.0000 1.0000 0.9038 11.95%
5 0.8424 1.0000 0.8125 1.0000 1.0000 1.0000 0.9425 9.51%
6 1.0000 0.8125 1.0000 1.0000 1.0000 0.8825 0.9492 8.62%
7 0.8497 1.0000 1.0000 1.0000 0.8825 1.0000 0.9554 7.32%

δ
∗tM 0.9967 0.9703 1.0000 0.8898 0.9370 1.0000 0.8476 1.0000 1.0000 1.0000 0.8825 1.0000

CV% 0 0.00% 0.00% 10.81% 9.21% 0.00% 5.92% 0.00% 0.00% 0.00% 0.00% 0.00%
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Table 6. Cont.

Period t

DMUj 1 2 3 4 5 6 7 8 9 10 11 12 δ
∗H
j CV%

1 0.9803 1.0000 1.0000 1.0000 1.0000 1.0000 0.9967 0.81%
2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9832 0.9972 0.69%
3 1.0000 1.0000 1.0000 1.0000 0.9661 1.0000 0.9944 1.39%
4 1.0000 0.9603 1.0000 0.9521 1.0000 1.0000 0.9854 2.31%
5 0.9603 1.0000 0.9521 1.0000 1.0000 1.0000 0.9854 2.31%
6 1.0000 0.9521 1.0000 1.0000 1.0000 0.9942 0.9911 1.94%
7 1.0000 1.0000 1.0000 1.0000 0.9955 1.0000 0.9993 0.18%

δ
∗H
t 0.9803 1.0000 1.0000 1.0000 0.9841 1.0000 0.9676 1.0000 1.0000 1.0000 0.9949 1.0000

CV% 0 0.00% 0.00% 0.00% 2.21% 0.00% 2.08% 0.00% 0.00% 0.00% 0.09% 0.00%

Table 7 displays the estimated optimal fuzzy values of θ
∗
j and δ

∗
j for all DMUs. It is

obvious in Table 7 that the existence of variations in the input and output data results
in reasonable differences between the θ

∗L
j , θ

∗M

j , and θ
∗H
j values. A similar conclusion is

obtained when comparing between δ
∗L
j ,δ

∗M

j , and δ
∗H
j values. Such differences may lead

to erroneous improvement directions and complications in the decision-making process.
Consequently, in step 4, the defuzzified values of the optimal TE and PTE, θ

∗
j and δ

∗
j ,

respectively, were calculated using Equations (23) and (24), respectively. From Table 7,
the optimal TE is found to be smaller than one for all DMUs. Hence, all DMUs can be
characterized as TE-inefficient. Moreover, the optimal PTE is smaller than one for all
DMUs, and consequently, the seven DMUs can be identified as PTE inefficient (PTIE).
Step 5 follows to determine the optimal SE, ω∗j , values shown in Table 7. Figure 2 depicts
the optimal TE, PTE, and SE for all DMUs, where the optimal PTE is found to be larger
than the corresponding SE in four DMUs: DMU1 to DMU3 and DMU7. Consequently,
the reason behind the TIE for these DMUs was scale inefficiency. whereas the TIE was
caused by managerial inefficiency for the remaining three DMUs, DMU4 to DMU6. The
largest differences (∆j > 0.05) between PTE and SE correspond to DMU1, DMU2, and DMU4.

Further, the averages of optimal θ
∗
j , δ

∗
j , and ω∗j were calculated from all DMUs and found

0.9169, 09672, and 0.9501, respectively. Consequently, it is concluded that TIE was caused
by SIE.

Table 7. Summary of optimal TE, PTE, and SE.

TE PTE SE

DMUj θ
*L
j θ

*M

j θ
*H
j θ

*

j δ
*L
j δ

*M
j δ

*H
j δ

*

j ω*
j ∆j=δ

*

j−ω*
j

1 0.8746 0.8755 0.9474 0.8992 0.9785 0.989 0.9967 0.9881 0.9101 0.0780
2 0.8571 0.8587 0.9463 0.8874 0.9794 0.9798 0.9972 0.9855 0.9005 0.0850
3 0.8844 0.8912 0.9761 0.9172 0.9492 0.9524 0.9944 0.9653 0.9501 0.0152
4 0.8947 0.8951 0.9798 0.9232 0.9033 0.9038 0.9854 0.9308 0.9918 −0.0610
5 0.9012 0.9022 0.9739 0.9258 0.9415 0.9425 0.9854 0.9565 0.9679 −0.0115
6 0.9059 0.9072 0.9783 0.9305 0.9485 0.9492 0.9911 0.9629 0.9663 −0.0034
7 0.9064 0.9131 0.9852 0.9349 0.9542 0.9554 0.9993 0.9696 0.9642 0.0055

Average 0.9169 0.9672 0.9501 0.0154
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The period averages of TE, PTE, and SE were analyzed in step 6 and then shown in
Figure 3. It is noted that the TIE in months 1 to 3, 5, 8, 10, and 12 were caused by SIE,
whereas the TIE was caused by PTE in months 4, 7, and 11. Finally, the process operated at
an optimal TE in months 6 and 9.
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Furthermore, the data projections resulting from the CCR and BCC models were
calculated and then displayed in Table 8 for all DMUs. It is found that the largest input
excesses correspond to IT, followed by DQ for all DMUs. Thus, reductions in excess inputs
should be made to become technically efficient. To illustrate, for DMU1 to become CCR-
efficient at the same PQ, the PP, DQ, and IT have to be reduced by 9.77%, 24.93%, and
57.67%, respectively. On the other hand, for DMU1 to become BCC-efficient, the PP, DQ,
and IT have to be reduced by 1.54%, 3.82%, and 27.72%, respectively, while the PQ should
be increased by 3.11%. On average, for the blowing process to become CCR-efficient, the
inputs PP, DQ, and IT should be reduced by 8.10, 23.3, and 69.21%, respectively. On the
other hand, to become BCC-efficient, the inputs PP, DQ, and IT should be reduced by 3.83,
14.04, and 34.55%, respectively, while increasing the output by 1.01%.
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Table 8. Slacks and projections.

DMUj

PP DQ IT PQ

Model Data Projection Diff.
(%) Data Projection Diff.

(%) Data Projection Diff.
(%) Data Projection Diff.

(%)

CCR

1 24,235.50 21,866.57 −9.77 125.7777 94.42027 −24.93 3471.387 1469.371 −57.67 20,728.33 20,728.33 0.00
2 24,162.77 21,545.93 −10.83 114.9997 92.20273 −19.82 3801.447 1544.804 −59.36 20,384.87 20,384.87 0.00
3 23,567.83 21,604.67 −8.33 108.2223 88.26153 −18.44 2822.163 1299.394 −53.96 20,889.97 20,889.97 0.00
4 21,791.97 20,039.83 −8.04 102.2222 82.81483 −18.99 2413.11 366.3373 −84.82 19,562.93 19,562.93 0.00
5 19,452.77 18,090.2 −7.00 98.16653 76.83613 −21.73 1823.943 295.734 −83.79 17,682.13 17,682.13 0.00
6 18,594.60 17,402.13 −6.41 88.05557 73.32023 −16.73 1994.057 294.472 −85.23 17,004.37 17,004.37 0.00
7 17,736.43 16,618.97 −6.30 105.1113 60.52847 −42.41 2372.777 957.104 −59.66 15,963.63 15,963.63 0.00

Average −8.10 −23.3 −69.21 0.00

BCC

1 24,235.5 23,862.77 −1.54 125.7767 120.9733 −3.82 3471.387 2509.017 −27.72 20,728.33 21,373.13 3.11
2 24,162.77 23,811.93 −1.45 114.9967 113.49 −1.31 3801.447 2780.73 −26.85 20,384.87 21,140.6 3.71
3 23,567.83 22,715.97 −3.61 108.2233 102.8267 −4.99 2822.163 2194.013 −22.26 20,889.97 20,945.23 0.26
4 21,791.97 20,200.47 −7.30 102.22 76.3 −25.36 2413.11 1021.95 −57.65 19,562.93 19,562.93 0.00
5 19,452.77 18,472.57 −5.04 98.16333 74.77667 −23.82 1823.943 1076.643 −40.97 17,682.13 17,682.13 0.00
6 18,594.6 17,802.33 −4.26 88.05667 69.47333 −21.10 1994.057 1107.037 −44.48 17,004.37 17,004.37 0.00
7 17,736.43 17,097.87 −3.60 105.1133 86.35333 −17.85 2372.777 1853.293 −21.89 15,963.63 15,963.63 0.00

Average −3.83 −14.04 −34.55 1.01

In practice, the optimal SE and PTE obtained enable the identification of the causes of
DMUs technical inefficiency: managerial or scale inefficiencies. Management actions, such
as controlling resources to improve PTE, expanding/decreasing operational scale to boost
overall technical efficiency, implementing effective quality control procedures to reduce
defectives, increasing the sampling and testing scale to avoid producing defective outputs,
and adopting efficient production scheduling and sequencing to reduce idle time (IT) and
better utilize input resources and available production capacities, are needed.

Implementing these actions, the optimal TE, PTE, and SE, θ
∗
j δ
∗
j , and ω∗j , respectively,

were estimated and then displayed in Table 9. It is noted after improvement that all the
optimal TE, θ

∗
j , values are less than one, which implies that the blowing process is still

technically inefficient. Comparing the θ
∗
j values in Table 6 with the corresponding values

in Table 9, it is obvious that the TE efficiency has improved for all DMUs. Moreover, the
TIE is still caused by SIE in three DMUs (DMU1 to DMU3), while it is caused by PTIE
in the remaining four DMUs. Nevertheless, all the differences are less than 0.05. The
averages of θ

∗
j , δ

∗
j , and ω∗j after improvement are 0.9481, 0.9692, and 0.9784, respectively.

On average, the cause of the TIE is managerial inefficiency because improvement actions
take longer to take effect. Despite that, these θ

∗
j , δ

∗
j , and ω∗j averages are larger than their

corresponding values in Table 4. Figure 4 compares the optimal TE, PTE, and SE before
and after improvement actions.

Table 9. Validation of TE, PTE, and SE.

DMUj θ
*L
j θ

*M

j θ
*H
j θ

*

j δ
*L
j δ

*M
j δ

*H
j δ

*

j ω*
j ∆j = δ

*

j−ω*
j

1 0.9183 0.9193 0.9465 0.9280 0.9429 0.9881 1.0000 0.9770 0.9499 0.0271
2 0.9251 0.9324 0.9553 0.9376 0.9538 0.9888 1.0000 0.9809 0.9559 0.0250
3 0.9286 0.9358 0.9545 0.9396 0.9614 0.9782 0.9938 0.9778 0.9610 0.0168
4 0.9394 0.9542 0.9633 0.9523 0.8873 0.9624 0.9679 0.9392 1.0139 −0.0747
5 0.9473 0.9635 0.9752 0.9620 0.9438 0.9709 1.0000 0.9716 0.9902 −0.0186
6 0.9356 0.9512 0.9654 0.9507 0.9363 0.9589 0.9938 0.9630 0.9873 −0.0243
7 0.9588 0.9654 0.9744 0.9662 0.9446 0.9806 1.0000 0.9751 0.9909 −0.0158

Averages 0.9481 0.9692 0.9784
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From Figure 4, the following remarks are obtained: (a) the optimal TE after improve-
ment is larger than its corresponding before-improvement TE for all DMUs; (b) the optimal
PTE after improvement is larger than its corresponding PTE before improvement for al-
most all DMUs. The optimal PTE after improvement started to become larger than the
corresponding before-improvement optimal PTE from DMU3. The reason behind such
a delay may be attributed to improving quality and production procedures that require
time to take effect, and (c) the SE after improvement is larger than its corresponding
before-improvement SE due to the improvement of the optimal technical efficiency for
all DMUs.

The improvement analysis shows that the proposed DEA window analysis is effective
in evaluating and enhancing the performance of the blowing process under asymmetry
input and output data. Further, the improvement actions conducted based on the proposed
efficiency analyses have resulted in significant improvements in the process’s technical
efficiency and, thereby, savings in costly production and quality resources.

5. Conclusions

Efficiency assessment is a critical aspect of an improvement program that helps
decision-makers optimize process resources to achieve maximum performance. This re-
search, therefore, developed a framework for DEA window analysis to assess the efficiency
of blowing machines in the plastic industry from asymmetry input and output data. The
framework was implemented to evaluate the technical, pure technical, and scale efficiencies
of the blowing process. Results showed that the blowing process was technically inefficient
due to the inefficiencies in PTE and SE. Improvement actions were conducted to enhance
scale and management efficiencies. The averages of θ

∗
j , δ

∗
j , and ω∗j after (before) improve-

ment are 0.9481 (0.9169), 0.9692 (0.9672), and 0.9784 (0.9501), respectively. An improvement
analysis revealed that the actions taken have resulted in a significant improvement in the
technical efficiency of the blowing process. In conclusion, the developed framework for
fuzzy DEA window analysis can provide valuable feedback to production engineers on
how to boost the technical efficiency of the blowing process under asymmetry data. In
practice, the incorporation of fuzziness in the input and output data during efficiency
evaluation provides reliable assessment and prediction results for process performance and
helps implement effective improvement actions. Nevertheless, this framework requires
significant computational effort and time, which can be solved by developing professional
software in future research. Moreover, machine learning techniques can be utilized to
predict process performance.
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