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Abstract: This article introduces a computational hybrid one-step technique designed for solving
initial value differential systems of a first order, which utilizes second derivative function evaluations.
The method incorporates three intra-step symmetric points that are calculated to provide an optimum
version of the suggested scheme. By combining the hybrid and block methodologies, an efficient
numerical method is achieved. The hybrid nature of the algorithm determines that the first Dahlquist
barrier is overcome, ensuring its effectiveness. The proposed technique exhibits an eighth order
of convergence and demonstrates A-stability characteristics, making it particularly well suited for
handling stiff problems. Additionally, an adjustable step size variant of the algorithm is developed
using an embedded-type technique. Through numerical experiments, it is shown that the suggested
approach outperforms some other well-known methods with similar properties when applied to
initial-value ordinary differential problems.

Keywords: ODEs; initial-value problems; hybrid methods; adaptive step size; A-stability;
optimization strategy
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1. Introduction

In this article, our aim is to construct an efficient algorithm for integrating initial-value
differential problems given by

z′(x) = f(x, z); z(x0) = z0, (1)

with x ∈ [x0, xN ], z : [x0, xN ] → Rm, f : [x0, xN ] × Rm → Rm, assuming that all
prerequisites for the existence of a unique solution are fulfilled.

Differential equations are used to model continuous phenomena that frequently occur
in real-world situations. Unfortunately, very few of such equations can be tackled analyt-
ically. In this scenario, usually the problem of interest is dealt with numerically, that is,
an approximate solution is obtained on a discrete set of points. The classes of Runge–Kutta
and linear multi-steps techniques have usually been to obtain reliable approximations of
the true solution of (1). For more details, one can see the monographs written by Butcher [1],

Symmetry 2023, 15, 1635. https://doi.org/10.3390/sym15091635 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091635
https://doi.org/10.3390/sym15091635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8496-6755
https://orcid.org/0000-0001-9708-8608
https://orcid.org/0000-0003-2791-6230
https://orcid.org/0000-0002-7923-1324
https://doi.org/10.3390/sym15091635
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091635?type=check_update&version=1


Symmetry 2023, 15, 1635 2 of 21

Hairer [2,3], Lambert [4], Brugnano [5], Rosser [6] and Milne [7]. In Matlab and Mathematica,
many ODE solvers are incorporated with the purpose of carrying out the task efficiently.
For a detailed description of the codes, one can see the references by Shampine et al. [8,9]
and Dormand and Prince [10]. Some of these built-in codes are specifically designed for
solving stiff and non-stiff systems, for instance, the ODE23s solver is an integrated func-
tion explicitly crafted to manage stiff systems, as noted by Shampine et al. [11]. It excels
particularly when dealing with coarse tolerances. This solver relies on an adapted Rosen-
brock approach of a second order, employing a variable step size methodology through a
blend of precise second and third-order formulas, effectively estimating the solution. The
development of efficient algorithms with good stability characteristics is a major problem
of interest in the numerical analysis of differential systems.

The first Dahlquist’s barrier, as is well known, limits the order that can be achieved in
the class of zero-stable linear multi-step methods. Dahlquist established that the order of
accuracy, say p, of a linear m-step method is as follows:{

p ≤ m + 1, when m is odd,
p ≤ m + 2, when m is even.

To overcome the limitations of linear multi-step methods, numerous researchers have
proposed hybrid approaches which include information from the solution at off-step points
within the required interval of interest. These hybrid methods have also been referred to as
linear multi-step methods of a modified type [1]. For a more comprehensive understanding
of these techniques, Lambert’s book [4] serves as a valuable resource. Block methods
were initially designed to obtain starting guesses for implicit multi-step methods, but they
have evolved to be used in general-purpose codes [12]. These block methods aim to
provide the approximate solution at various grid points at once (see [13]). For an extensive
list of references on these methods, interested readers may refer to Lambert’s book and
Brugnano’s work [4,5].

Here, we have used both approaches, namely hybrid and block, to develop a new method
using interpolation and collocation techniques. An optimized version of the method can be
obtained by following an appropriate optimization strategy. The obtained algorithm can be
considered an extended version of the one presented in [14]. Additionally, the technique is
devised in an adaptive step size version, employing an embedded-type technique.

The article’s content is organized into the following sections: Section 2 contains the
derivation of the new algorithm. In Section 3, the primary characteristics of the proposed
method are examined. The formulation of the new method in adaptive step size mode
is elaborated on in Section 4. The performance of the proposed method, compared to
some existing methods in the literature, is demonstrated through numerical experiments
in Section 5. In Section 6, the efficiency curves have been plotted, which reflects the better
performance of the proposed scheme. Finally, Section 7 shows some conclusions drawn
from the study.

2. Construction of the Proposed Scheme

For the sake of simplicity, the method is derived for solving the differential system (1)
with m = 1, and then, by using the component-wise strategy it could be applied for solving
problems with m > 1. Let us consider a fixed step size h = xj+1 − xj on a discrete grid
with N + 1 points, x0 < x1 < · · · < xN . To derive the method, begin by considering the
theoretical solution of (1) in the form of an interpolating polynomial expressed as:

z(x) ≈ R(x) =
η1+η2−1

∑
i=0

Ψi Θi(x), x ∈ [xj, xj+k]. (2)

Consider η1 as the numbers of interpolation points and η2 as that of collocation points,
satisfying 0 ≤ η1 ≤ k and η2 > 0, with k denoting the number of steps in the block,
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with k > 0. The terms Ψi are unknown constants to be calculated, and Θi(x) = (x− xj)
i

represents the polynomial basis functions. To introduce a hybrid nature to the proposed
method, three values, r1, r2 = 1/2, and r3 ∈ [0, 1], are chosen such that xj+r1 = xj + r1 · h,
xj+r2 = xj + r2 · h, and xj+r3 = xj + r3 · h represent three intra-step points. The development
of the present method involves specifying the parameters η1 = 1, η2 = 8, and k = 1. The
derivation of the method is detailed below:

Step 1: The unknown coefficients Ψi in (2) are determined by imposing the following con-
ditions:

(i) z(xj) = R(xj)

(ii) z′(xj+v) = R′(xj+v), v = 0, r1, r2, r3, 1
(iii) z′′(xj+v) = R′′(xj+v), v = 0, r2, 1

Hence, a system of nine equations in nine unknowns Ψi, i = 0(1)8 is obtained. This
system can be solved by using a computer algebra system (CAS). After substituting
the obtained Ψ′is into (2), we get

z(x) ≈ R(x) = λ(x)zj + h

(
1

∑
i=0

µi(x) f j+i +
3

∑
i=1

µri (x) f j+ri

)
+ h2

(
σ0(x) f ′j + σr2(x) f ′j+r2

+ σ1(x) f ′j+1

)
(3)

where

f j+m = f (xj+m, zj+m), m = 0, r1, r2, r3, 1,

f ′j+m = f ′(xj+m, zj+m), m = 0, r2, 1 and zj+m ' z(xj+m).

Step 2: In order to obtain optimized values for r1 and r3, we evaluate expression (3) at x =
xj+1 and x = xj+r2 . This allows us to approximate the true solution at the final point
and at the midpoint of the interval [xj, xj+1], denoted as xj+1 and xj+r2 , respectively,
in terms of r1 and r3, as shown in [15]. The evaluation of z(xj+1) and z(xj+r2)
can be readily obtained through a CAS, although the resulting expressions can be
quite lengthy, and so they are not presented here. To determine the appropriate
values of the unknown parameters r1 and r3, the following optimization strategy
is employed:

(i) By expanding the formulas for z(xj+1) and z(xj+r2) using the Taylor series
around xj, we obtain the local truncation errors of these formulas, which are
given by

L(z(xj+1), h) =
(−2 + r1(3− 6r3) + 3r3)z(9)(xj)h9

203,212,800
+O(h10) (4)

and

L(z(xj+r2), h) =
(−23 + r1(87− 384r3) + 87r3)z(9)(xj)h9

26,011,238,400
+O(h10). (5)

(ii) By setting the leading terms of the truncation errors in (4) and (5) equal to
zero, we arrive at the following system of nonlinear equations:{

−2 + r1(3− 6r3) + 3r3 = 0
−23 + r1(87− 384r3) + 87r3 = 0.

(iii) The implicit system of equations above represents two curves in the r1r3-
plane, exhibiting symmetry with respect to the diagonal r1 = r3. A unique
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solution satisfying the condition 0 < r1 < r2 < r3 < 1 is obtained, and it is
given by:

r1 =
1
6

(
3−
√

3
)
' 0.211325, r3 =

1
6

(
3 +
√

3
)
' 0.788675.

Substituting the optimal values of r1 and r3 in the expressions (4) and (5), we
get

L(z(xj+1), h) = −
z(11)(xj)h11

1,207,084,032,000
+O(h12) , (6)

L(z(xj+r2), h) =
z(10)(xj)h10

133,772,083,200
+O(h11) . (7)

Note that using the optimized values of r1 and r3, we gain at least an order of
accuracy in the formulas to approximate zj+1 and zj+r2 .

Step 3: Finally, we require approximations of the true solution at the remaining intra-
step points, that is, at x = xj+r1 , xj+r3 . These are obtained by substituting the
optimized values of r1, r3 and x = xj + r1h, xj + r3h in the expression in (3).
The proposed hybrid method provides four approximations of the true solution at
xj+r1 , xj+r2 , xj+r3 , xj+1. The coefficients of each of the formulas of the block method
are listed in Table 1.

Table 1. Coefficients of the method.

z λ µ0 µr1 µr2 µr3 µ1 σ0 σr2 σ1

zj+r1 1 727+44
√

3
7560

(108+
√

3)
840 − 4(−36+23

√
3)

945
(36−23

√
3)

280
−43+44

√
3

7560
62+9

√
3

22,680
1

162
8−9
√

3
22,680

zj+r2 1 619
6720

9
70 + 9

√
3

128
16

105
9
70 −

9
√

3
128 − 11

6720
67

26,880 − 1
96

1
8960

zj+r3 1 727−44
√

3
7560

(36+23
√

3)
280

4(36+23
√

3)
945

(108−
√

3)
840

−43−44
√

3
7560

62−9
√

3
22,680

1
162

8+9
√

3
22,680

zj+1 1 19
210

9
35

32
105

9
35

19
210

1
420 0 − 1

420

This proposed method is implicit in nature, requiring the solution of a system of four
equations at each iteration. The commonly employed approach to solve this system is
Newton’s method or its variants, as outlined in [12].

3. Method Analysis: Examining Its Characteristics

Now, we discuss some basic characteristics of the method presented in Table 1, as the
order of accuracy, zero-stability, and the analysis of linear stability.

3.1. Order of Accuracy and Consistency

To address the convergence analysis, we rewrite the method whose coefficients are
given in Table 1 as

A ZJ = h B FJ + h2 C GJ , (8)

where A, B, and C are matrices of dimension 4× 5, given by

A =


−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

,
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B =



727+44
√

3
7560

(108+
√

3)
840 − 4(−36+23

√
3)

945
(36−23

√
3)

280
−43+44

√
3

7560

619
6720

(
9

70 + 9
√

3
128

)
16

105

(
9

70 −
9
√

3
128

)
− 11

6720

727−44
√

3
7560

(36+23
√

3)
280

4(36+23
√

3)
945

(108−
√

3)
840

−43−44
√

3
7560

19
210

9
35

32
105

9
35

19
210


,

C =



62+9
√

3
22,680 0 1

162 0 8−9
√

3
22,680

67
26,880 0 − 1

96 0 1
8960

62−9
√

3
22,680 0 1

162 0 8+9
√

3
22,680

1
420 0 0 0 − 1

420


and

ZJ = (zj, zj+r1 , zj+r2 , zj+r3 , zj+1)
T ,

FJ = ( f j, f j+r1 , f j+r2 , f j+r3 , f j+1)
T ,

GJ = ( f ′j , f ′j+r1
, f ′j+r2

, f ′j+r3
, f ′j+1)

T .

The linear difference operator L̄ related to the difference block given in (8) can be
expressed as follows:

L̄[z(x), h] = ∑
j

ρ̄jz(x + jh)− h ∑
j

δ̄jz′(x + jh)− h2 ∑
j

γ̄jz′′(x + jh), j = 0, r1, r2, r3, 1 (9)

where ρ̄j, δ̄j, and γ̄j are precisely the column vectors of matrices A, B and C. We make the
assumption that z(x) is sufficiently differentiable to expand z(x + jh), z′(x + jh), and z′′(x +
jh) in Taylor series around x. In this way we get

L̄[z(x), h] = τ̄0z(x) + τ̄1hz′(x) + τ̄2h2z′′(x) + · · ·+ τ̄phpz(p)(x) + . . . (10)

Definition 1. The linear operator in (9) and the method whose coefficients are given in Table 1 are
regarded as being of order p when the condition stated in (10) produces

τ̄0 = τ̄1 = τ̄2 = · · · = τ̄p = 0 and τ̄p+1 6= 0.

We note that the τ̄′i s are vectors and τ̄p+1 is known as the vector of error constants, being

L̄[z(x), h] = −τ̄p+1hp+1z(p+1)(x) +O(hp+2).

Concerning the obtained method, it is τ̄0 = τ̄1 = τ̄2 = · · · = τ̄8 = 0 and

τ̄9 =

(
− 1

1,881,169,920
√

3
, 0 ,

1
1,881,169,920

√
3

, 0
)T

with

L̄[z(x), h] =


− 1

1,881,169,920
√

3
h9z9(x) +O(h10)

1
133,772,083,200 h10z10(x) +O(h11)

1
1,881,169,920

√
3

h9z9(x) +O(h10)

− 1
1,207,084,032,000 h11z11(x) +O(h12)

.
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This indicates that the proposed method in Table 1 has order p = 8. Since p ≥ 1, this char-
acteristic serves as a sufficient condition for ensuring the consistency of the corresponding
block method.

3.2. Zero-Stability Analysis

The primary focus of this subsection lies in analyzing the stability of the difference
Equation (8) when h tends to zero. In this case, the method in Table 1 reduces to zj+r1 = zj,
zj+r2 = zj, zj+r3 = zj, zj+1 = zj, which can further be rewritten in a more convenient way
as

Ŵζ = Ā Ŵζ−1, (11)

where

Ā =


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1


and

Ŵζ = (zj+r1 , zj+r2 , zj+r3 , zj+1)
T ,

Ŵζ−1 = (zj+r1−1, zj+r2−1, zj+r3−1, zj)
T .

(12)

The first characteristic polynomial of the proposed block method is

ρ(η) = det[I4η − Ā] = η3(η − 1). (13)

Since the roots of the equation ρ(η) = 0 fulfill ηj ≤ 1, and the root with a modulus of one is
simple, the proposed method is considered to be zero-stable according to [2].

3.3. Convergence

As per the Lax equivalence theorem, a method is deemed to be convergent if and
only if it satisfies both consistency and zero-stability. In the preceding sections, we have
demonstrated the consistency and zero-stability of the newly developed method, leading
to the conclusion that the method presented in Table 1 is convergent.

3.4. Linear Stability Analysis

The notion of linear stability differs from zero stability since zero stability analysis
involves considering the step size h→ 0. In practical applications, we always work with
finite step sizes, i.e., h > 0.

Let us consider the well-known Dahlquist’s test equation:

z′(x) = γz(x), Re(γ) < 0. (14)

The theoretical solution to this problem is represented by z(x) = eγx, exhibiting a tendency
to approach zero as x approaches infinity. It is anticipated that when employing the
proposed method to solve the test problem (14), the resulting numerical solution will
exhibit a similar behavior to the analytical solution. To ascertain the region in which the
numerical method reproduces the true behavior of the test problem’s solutions, we apply
the proposed method to the problem described in (14), thereby obtaining a system of
equations.

M Ŵζ = N Ŵζ−1 (15)

where

M =

 B11 B12

B21 B22
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with

B11 =


840−(108+

√
3)H

840
(−864+552

√
3−35H)H

5670

− 9(64+35
√

3)H
4480 1− 16H

105 + H2

96

,

B12 =


(−36+23

√
3)H

280
H(−3(89+

√
3)+(19+

√
3)H)

22,680(1+
√

3)

(−576+315
√

3)H
4480

(44−3H)H
26,880

,

B21 =

−
(36+23

√
3)H

280 − H(864+552
√

3+35H)
5670

− 9H
35 − 32H

105

,

B22 =


840+(−108+

√
3)H

840
H(129+132

√
3−8H−9

√
3H)

22,680

− 9H
35

(420+(−38+H)H)
420


and

N =



0 0 0
22,680+H(2181+132

√
3+62H+9

√
3H)

22,680

0 0 0 26,880+H(2476+67H)
26,880

0 0 0
22,680+H(2181−132

√
3+(62−9

√
3)H)

22,680

0 0 0 (420+H(38+H))
420


,

with H = γh and Ŵζ , Ŵζ−1 as in (12).
In order to understand the stability characteristics of the proposed hybrid block

method, (15) is rewritten as
Ŵζ = G(H)Ŵζ−1 (16)

where G(H) = M−1N is known as the stability matrix. The stability properties of the
derived method rely on evaluating the magnitude of the eigenvalues of the stability matrix,
with particular emphasis on the spectral radius, denoted as ρ[G(H)]. The region of absolute
stability, denoted as S, is defined as explained in [3].

S = {H ∈ C : |ρ[G(H)]| < 1}.

If the region of absolute stability contains the entire left-half complex plane, i.e., C− ⊆ S,
then the method is considered to be A-stable. The spectral radius of the stability matrix
G(H) is given by

ρ[G(H)] =
R(H)

S(H)
, (17)

where

R(H) = 483,840 + 241,920H + 55,440H2 + 7560H3 + 660H4 + 36H5 + H6,

S(H) = 483,840− 241,920H + 55,440H2 − 7560H3 + 660H4 − 36H5 + H6.

The absolute value of the spectral radius given in (17) is less than unity on the left-half
complex plane. This establishes the conclusion that the method whose coefficients are given
in Table 1 is A-stable. Hence, the interval of absolute stability for the proposed method is
(−∞, 0).
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4. Adaptive Step-Size Formulation

The proposed method (8) can be transformed into an adaptive step-size algorithm by
adopting a procedure similar to the one described in [11]. This procedure involves executing
two approaches of different orders, denoted as p and q, with p > q, simultaneously.
The combination of formulas involves using the lower-order formula to estimate the
local error at each integration step, while the higher-order method advances the solution.
The careful selection of this pair is crucial. To maintain the computational cost at the same
level, the formula of the lower order is chosen in a manner that it does not need new
function evaluations. In this way, there will be no increase in the computational cost in
terms of the number of function evaluations.

The detailed procedure is as follows:
In the present case, the following implicit block formula of a lower order (q = 7) with

local truncation error LTE = − 19z(8)(xj)h8

304,819,200 +O(h9) is considered

z∗j+1 = zj + h

(
19

105
f j +

36− 19
√

3
140

f j+r1 +
32
105

f j+r2 +
36 + 19

√
3

140
f j+r3

)
+ h2

(
5

504
f ′j −

19
315

f ′j+r2
+

13
2520

f ′j+1

)
.

The considered lower-order formula is firstly used to compute the approximate solu-
tion of the system at the final point of the block interval, xj+1, denoted as z∗j+1. It is worth
noting that this computation will not involve any additional computational efforts concern-
ing new function evaluations. We have established that the local error LTE1 obtained for
the approximation z∗j+1 is

LTE1 = z(xj + h)− z∗j+1 = O(hq+1) (18)

where z(x) represents the continuous solution of the problem.
Secondly, the solution of the problem is also approximated at the same block interval

with the proposed higher-order block method (p = 8) of interest. The obtained numerical
solution at the final point is denoted as zj+1 and the local error LTE2 obtained in this case is

LTE2 = z(xj + h)− zj+1 = O(hp+1). (19)

In the next step, the unknown exact solution z(xj + h) can be eliminated by differencing
Equation (18) from (19), and the obtained expression is denoted as Eest

Eest = zj+1 − z∗j+1 = LTE1 +O(hp+1). (20)

For sufficiently small values of h, the termO(hq+1) dominates in expression (20), hence
it gets the computable estimate of the local error of the lower-order formula. The advancing
of the integration process can be carried out with the more accurate available higher-order
solution zj+1. Therefore, it can be said that the procedure uses the lower-order formula
to estimate the local error at each step of the integration, while the higher-order method
advances the computation.

This local error estimate Eest helps in predicting the suitable step size for the forth-
coming block. The solver will change the step size from hold to hnew until the magnitude of
the local error estimate Eest is less than the predefined user tolerance Tol. The value of new
step size is given by

hnew = ξhold

(
TOL
||Est||

)1/(q+1)
, (21)

where q denotes the order of the lower-order formula (q = 7) and the introduced ξ repre-
sents a safety factor lying in (0, 1) to avoid the failure of the integration steps.

To initiate the strategy, an initial step size hini is needed, which can be selected using
existing techniques from the literature (refer to [9,16]), or simply by choosing a very small
starting step size as described in Sedgwick [17]. Subsequently, the algorithm will adjust this
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value if required, based on the chosen step size modification strategy. The entire process
yields an embedded-type approach, which can be summarized in the following steps:

1. Firstly, assume the step size h = hini and solve the IVP (1) numerically, using the
developed method with that step size and denote the approximate solution as zj+1.

2. Secondly, use the lower-order formula to obtain a different approximate solution z∗j+1.
3. As a next step, obtain the local error estimate Eest by considering the difference

of the obtained approximate solutions in Step 1 and Step 2, which is defined as
Eest = zj+1 − z∗j+1.

4. Here, the user has to predefine the tolerance level Tol such that

(i) If ||Eest|| ≤ Tol then the new step size can be taken as hnew = 2× hold which
makes the computation more efficient and it will reach the final stage in fewer
steps and keep the obtained values and proceed the computations.

(ii) If ||Eest|| > Tol, then the current step size is revised to new step size, as in (21),
until it reaches ||Eest|| ≤ Tol and carries out the computations using the new
step size.

5. Numerical Experimentation

This section focuses on the application of the adaptive step size version of the algorithm
presented in (8) to various well-known problems in the literature. Some of these differential
systems model different chemical reactions, where certain variables undergo rapid changes
while others vary slowly, indicating stiffness. The abbreviations presented in the tables are
identified as follows:

(i) hini (initial step size): This denotes the initial step size used with the variable step-size
algorithm for conducting the integration procedure. The initial step size in adaptive
step-size solvers is crucial, as it sets the starting point for the dynamic adjustments.
In this paper, we conduct numerical experiments employing identical initial step sizes
for all solvers.

(ii) TOL (tolerance): This represents the error tolerance set by the user, signifying the
predetermined tolerance of error for numerical integration using the chosen step
size. Error tolerance is a key parameter in adaptive step-size solvers for numerical
integration of differential equations. It defines the acceptable level of error between
the numerical solution and the true solution of the differential equation. Adaptive
solvers adjust their step sizes dynamically to ensure that the computed solution
remains within this error tolerance. Likewise, in this context, we conduct experiments
with all solvers, maintaining the same error tolerance.

(iii) MaxErr (maximum error): This refers to the highest magnitude of error observed
among all the absolute errors computed for the numerical solution zkj at the calculated
grid points.

MaxErr = max
1≤k≤m

{ max
0≤j≤N

{|zk(xj)− zkj|}},

and ∆zk (maximum absolute errors in computing the numerical solution zkj on the
grid points) is given by

∆zk = max
0≤j≤N

{|zk(xj)− zkj|},

where N + 1 is the number of grid points, zk(xj) and zkj represent the exact value and
approximate kth-component of the solution of an m-system at the point xj

(iv) N (no. of steps): In this context, it indicates the count of integration steps executed by
the solver to reach the final step of the interval.

(v) FEVALs (number of function evaluations): Here, this represents the overall count of
function evaluations (including derivatives) performed by the solver to reach the final
integration step.

(vi) Ctime (computational time): It refers to the CPU time in seconds. The computational
time taken by a solver to integrate a differential equation numerically is influenced by
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algorithm complexity, problem characteristics, step size, hardware resources, paral-
lelization, and various other factors. Choosing an appropriate algorithm, adjusting
parameters wisely, and utilizing available hardware effectively can help balance
accuracy and computational efficiency.

(vii) J.Eval (Jacobi evaluations): It denotes the total count of Jacobian evaluations taken by
the solver throughout the numerical integration. In the context of numerical methods
for solving ordinary differential equations (ODEs), particularly implicit methods
or methods that involve solving systems of equations, “Jacobi evaluations” refer
to the number of times the Jacobian matrix is computed and evaluated during the
integration process. The Jacobian matrix captures the partial derivatives of the system
of equations with respect to the variables involved. It plays a crucial role in implicit
methods where a system of equations is solved at each integration step.

The following well-studied methods were used for comparison purposes:

1. Lob-IIIC: This is a Runge–Kutta implicit approach, utilizing a Lobatto quadrature
technique. Specifically, it is a five-stage eighth-order method of Lobatto type. To facili-
tate adaptive step size integration, the same approach is adapted using the strategy
outlined in Section 4. In the adaptive step-size formulation, a three-stage Lobatto-type
method is employed as a lower-order approach. This lower-order method necessitates
eight function evaluations at each integration step.

2. RKGauss: This is a ‘Gaussian quadrature’-based implicit Runge–Kutta method fol-
lowing an A-stable characteristic. Here, the method is also formulated in a variable
step-size mode using the same strategy. In this approach, the lower-order method
used employs the same function evaluations as in the main method. This method
evaluates six functions at each integration step. The method chosen is a five-stage
method of order ten [1].

3. RADAU: The solver utilized in the experiments is designed with variable orders
(1,5,9,13) and incorporates step-size control. It uses implicit Runge–Kutta approaches,
specifically Radau–IIa. In the experiments, we employed the Matlab code provided by
Hairer. The code can be found in the Matlab Stiff package at http://www.unige.ch/
~hairer/software.html (accessed on 10 July 2023).

4. EMOHB: This refers to the new hybrid scheme in (8), incorporating the variable step-
size strategy elucidated in Section 4. As the method is implicit, solving a system of
equations is required at each iteration. The code for this method has been formulated
using Mathematica. In order to tackle the resulting algebraic systems, the FindRoot
command was utilized.

Remark 1. Both solvers, that is, RADAU and the new scheme, change the step size using different
strategies. RADAU considers both variable-step and variable-order methods, while the proposed
scheme, RKGauss, and Lob-IIIC methods have been formulated in variable step-size versions,
following the technique outlined in Section 4. We considered TOL = AbsTOL = RelTOL, where
AbsTOL and RelTOL represent the abbreviations for absolute error tolerance and relative error
tolerance, respectively. RADAU utilizes AbsTOL and RelTOL, while the hybrid scheme in Table 1
uses TOL to get an estimate of the error on each iteration. For the implementation, we used
MATLAB R2009b for the RADAU solver, while the derived method, Lob-IIIC and RKGauss codes
were implemented in Wolfram Mathematicaversion 11.0.1.0. The computations were performed on a
laptop with a processor i3-4030U CPU @ 1.90 GHz, running on Windows 10.

5.1. The Oregonator

The origin of this stiff system can be traced back to the renowned Belousov–Zhabotinskii
reaction. The problem is given by

z′1(x) = a (z2(x) + z1(x) (1− b z1(x)− z2(x)))

z′2(x) = (z3(x)− (1 + z1(x))z2(x)) / a

z′3(x) = c (z1(x)− z3(x))

(22)

http://www.unige.ch/~hairer/software.html
http://www.unige.ch/~hairer/software.html
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For the computation, the constants are assumed as follows: a = 77.27, b = 8.375× 10−6,
and c = 0.161, with initial values z(0) = (1, 2, 3)T and integration interval [0, 360]. The ref-
erence values at xN are as follows:

z1(xN) = 0.1000814870318523× 101,

z2(xN) = 0.1228178521549917× 104,

z3(xN) = 0.1320554942846706× 103. (23)

The problem is tackled numerically using two solvers: Lob-IIIC and EMOHB. A com-
parison of their results is presented in Table 2, carried out over the same number of steps
and function evaluations. To ensure an equal number of steps, a varied initial step size hini
and predefined tolerances Tol were employed. The data presented in Table 2 demonstrate
the superior performance of the proposed algorithm in comparison to Lob-IIIC. The dis-
crete solutions of the problem are depicted in Figure 1. Additionally, efficiency curves for
this problem are plotted in Figure 2, further illustrating the improved accuracy and fewer
Jacobian computations achieved by the new method.
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80000
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120000

(a) Plot of solution z1j

50 100 150 200 250 300 350

500

1000

1500

(b) Plot of solution z2j
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5000

10000

15000

20000

25000

30000

(c) Plot of solution z3j

Figure 1. Discrete solutions of problem in Section 5.1 using EMOHB with hini = 10−2, TOL = 10−3.

Table 2. Data for problem in Section 5.1.

N FEVAL’s Method MaxErr J.Eval

808 6464 Lob-IIIC 5.22381× 10−0 5652
EMOHB 8.71751× 10−10 4862

1712 13,696 Lob-IIIC 2.12699× 10−4 10,421
EMOHB 6.32099× 10−11 8874

1865 14,920 Lob-IIIC 8.45584× 10−5 11,082
EMOHB 3.93356× 10−11 9476

3852 30,816 Lob-IIIC 8.09143× 10−7 20,826
EMOHB 2.04636× 10−12 17,909
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Figure 2. Efficiency curves for problem in Section 5.1.

5.2. The Robertson Chemistry Problem

We now turn our attention to a classical stiff problem from chemical sciences, which
models the kinetics of an autocatalytic reaction [3]. This problem has been extensively
studied by Cash [18,19] and has also been addressed in [14,20]. The problem is

z′1(x) = −0.04 z1(x) + 104 z2(x) z3(x), z1(0) = 1,

z′2(x) = 0.04 z1(x)− 104 z2(x) z3(x)− 3× 107 z2
2(x), z2(0) = 0,

z′3(x) = 3× 107 z2(x)2, z3(0) = 0.

(24)

The numerical solution to the problem is computed over the integration interval [0, 40],
following [18]. Here, the NDSolve Mathematica command incorporated with a 12th order
Runge–Kutta implicit method has been used to compute the reference solutions at xN = 40,
which helps to compare the efficiency of proposed scheme in terms of errors.

z1(40) = 0.71582706871940509022276063873209,

z2(40) = 9.185534764557763892160044740155× 10−6,

z3(40) = 0.28416374574583035201334720122317. (25)

The computational data in Table 3 are presented considering different initial step
sizes hini, tolerances TOL, which compares the proposed method to other solvers: RK-
Gauss, RADAU. By examining these data, it becomes evident that the proposed method
outperforms the other methods. The efficiency curves were plotted taking

(hini, TOL) = (10−a, 10−(a+4)), a = 3(1)6,

which are represented in Figure 3.
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Table 3. Data for problem in Section 5.2.

Method hini TOL ∆z1 ∆z2 ∆z3 N FEVALs J.Eval Ctime

EMOHB
10−10 10−12 1.5× 10−17 6.0× 10−20 1.5× 10−17 49 392 225 1.17
10−10 10−13 1.4× 10−18 2.0× 10−21 1.4× 10−18 60 480 255 1.43
10−10 10−14 6.4× 10−18 2.7× 10−22 6.4× 10−18 75 600 260 1.32

RKGauss 10−6 10−9 1.0× 10−7 4.1× 10−12 1.0× 10−7 250 1500 1465 4.16
10−6 10−10 3.5× 10−8 1.3× 10−12 3.5× 10−8 712 4272 3951 12.82

RADAU

10−6 10−9 5.1× 10−10 0.0× 10−10 5.1× 10−10 55 467 43 0.5470
10−6 10−10 2.4× 10−12 0.0× 10−12 2.4× 10−12 53 736 28 0.6148
10−10 10−13 1.7× 10−13 0.0× 10−13 1.7× 10−13 102 1213 41 0.8941
10−10 10−14 5.0× 10−14 0.1× 10−16 5.0× 10−14 131 1437 43 0.7285
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Figure 3. Efficiency curves for problem in Section 5.2.

5.3. The Brusselator System

Let us consider the “Brusselator system” [2], which has also been studied in previous
works such as [14]. The problem is given by

z′1(x) = L + z2
1(x) z2(x)− (M + 1) z1(x), z1(0) = z0

1,

z′2(x) = M z1(x)− z2
1(x) z2(x), z2(0) = z0

2.
(26)

The positive real constants L and M are involved in the system [21]. The points
(z∗1 , z∗2) = (L, M/L) can be showed as the critical points of the system. The values for
constants L and M are assumed to be L = 1, M = 3, with z0

1 = 1.5 and z0
2 = 3 for numerical

purposes. The numerical integration is spanned over the interval [0, 20]. The reference
solution at xN = 20 was obtained using Mathematica by employing NDSolve with a 12th
order Runge–Kutta implicit approach. Hence, the obtained values are

z1(xN) = 0.498637071268347848635481287883,

z2(xN) = 4.596780349452011183183066998636.



Symmetry 2023, 15, 1635 14 of 21

In the numerical experiments, we used the combinations

(hini, TOL) = (10−a, 10−(a+3)), a = 1, 2, 3.

The data presented in Table 4 indicate that the new method outperforms other methods.
Figure 4 illustrates the plot of the obtained solution components z1j and z2j on [0,20], using
TOL = 10−9 and hini = 10−7. The adaptive step size scheme discussed in Section 4
demonstrates effectiveness with the proposed method, as larger step sizes are employed
for smoother portions in the curves, effectively reducing computation time and the number
of function evaluations.

z1 j

z2 j

5 10 15 20

1

2

3

4

Figure 4. Plot of discrete solution components z1j and z2j of problem in Section 5.3, 1 ≤ j ≤ 20 with
hini = 10−7, TOL = 10−9.

Table 4. Data for problem in Section 5.3.

hini TOL Method MaxErr N FEVALs

10−1 10−4
RADAU 8.2435× 10−6 113 957
RKGauss 4.03571× 10−5 64 384
EMOHB 1.972285× 10−7 36 288

10−2 10−5
RADAU 1.8202× 10−7 156 1296
RKGauss 2.37942× 10−5 101 606
EMOHB 2.358920× 10−8 45 360

10−3
10−6

RADAU 4.0993× 10−7 173 1692
RKGauss 1.43751× 10−5 197 1182
EMOHB 1.53089× 10−9 56 448
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5.4. A Mildly Stiff Linear System

As a next test problem, we consider a mildly stiff problem, which is a well-known
classical system with a stiffness ratio 1:1000. The problem was also discussed in [13].
The problem composed of two first-order equations is

z′1(x) = 998 z1(x) + 1998 z2(x), z1(0) = 1,

z′2(x) = −999 z1(x)− 1999 z2(x), z2(0) = 1.
(27)

The results are computed over the interval [0,10] taking (hini, TOL) = (10−ξ , 10−(ξ+1)),
ξ = 2, 3, 4. The exact solution for the given system, with decaying exponential compo-
nents, is

z1(x) = 4 e−x − 3 e−1000 x, z2(x) = −2 e−x + 3 e−1000 x.

The numerical results in Table 5 reveal the good performance of the derived method
compared with the considered solvers. The exact and discrete solutions are presented in
Figure 5 on the time interval [0,10].

2 4 6 8 10
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3

4

(a)

2 4 6 8 10

-2.0

-1.5

-1.0

-0.5

0.5

1.0

(b)

Figure 5. Exact and discrete solutions of problem in Section 5.4 using the proposed method EMOHB
with hini = 10−6, TOL = 10−10. (a) Plot of solution z1(x) of problem in Section 5.4; (b) plot of solution
z2(x) of problem in Section 5.4.

Table 5. Data for problem in Section 5.4.

hini TOL Method MaxErr N FEVALs

10−2 10−3
RADAU 2.0618× 10−5 24 110
RKGauss 2.3902× 10−4 22 132
EMOHB 4.12974× 10−6 12 96

10−3 10−4
RADAU 1.8942× 10−6 30 143
RKGauss 1.0263× 10−4 30 180
EMOHB 9.46409× 10−8 14 112

10−4 10−5
RADAU 3.6773× 10−7 35 173
RKGauss 2.0540× 10−5 52 312
EMOHB 9.82063× 10−9 16 128
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5.5. Jacobi Elliptic Functions

Next, we explore a well-known system associated with Jacobi elliptic functions sn, cn,
and dn, which is commonly employed as a numerical test [22]. It is given by

sn′(x) = cn(x) dn(x), sn(0) = 0,

cn′(x) = −sn(x) dn(x), cn(0) = 1,

dn′(x) = −m sn(x) cn(x), dn(0) = 1,

(28)

with m = 1
2 . The exact solution can be expressed as follows:

sn(x) =
2π√

1
2 K

∞

∑
n=0

qn+ 1
2

1− q2n+1 sin((2n + 1)v),

cn(x) =
2π√

1
2 K

∞

∑
n=0

qn+ 1
2

1 + q2n+1 cos((2n + 1)v),

dn(x) =
π

2K
+

2π

K

∞

∑
n=1

qn

1 + q2n cos(2nv).

(29)

The values of the parameters appearing in the analytical solution are

q = e−π , v =
πt
2K

, and K =

π
2∫

0

d θ√
1− 1

2 sin2 θ
≈ 1.85.

We solved this problem over the integration interval [0, 50]. The computations were
carried out for

(hini, TOL) = (10−a, 10−(a+3)), a = 1, 2, 3.

The collected data in Table 6 show the excellent performance of the proposed scheme.

Table 6. Data for problem in Section 5.5.

hini TOL Method MaxErr N FEVALs

10−1 10−4

RADAU 1.0737× 10−3 145 1115
RKGauss 2.20187× 10−3 89 534
EMOHB 1.73727× 10−6 42 336

10−2 10−5

RADAU 2.6296× 10−4 185 1323
RKGauss 1.48977× 10−3 145 870
EMOHB 8.56278× 10−8 56 448

10−3 10−6

RADAU 2.7531× 10−5 254 1764
RKGauss 5.42132× 10−4 326 1956
EMOHB 2.41961× 10−8 74 592

5.6. Van der Pol System

The well-known Van der Pol system described in [23] is considered. The system is
given by

z′1(x) = z2(x), z1(0) = 2,

z′2(x) =
(1− z2

1(x))z2(x)− z1(x)
ε

, z2(0) =
−2
3

+
10
81

ε− 292
2187

ε2 − 1814
19,683

ε3.
(30)
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We have integrate this system on [0, 0.55139], using ε = 10−1, which aligns with the
approach in [23]. We have considered the combinations

(hini, TOL) = (10−a, 10−(a+3)), a = 3, 4, 5.

The reference solution for the problem

z1(xN) = 1.563373944230092,

z2(xN) = −1.000020831854273,

was provided using a 12th order Runge–Kutta implicit method. The data presented in
Table 7 strongly support the excellent performance of the new scheme.

Table 7. Data for problem in Section 5.6.

hini TOL Method MaxErr N FEVALs

10−3 10−6

RADAU 1.5397× 10−6 13 119
RKGauss 5.7954× 10−6 13 78
EMOHB 1.93659× 10−9 4 32

10−4 10−7

RADAU 1.8324× 10−7 16 148
RKGauss 2.4281× 10−6 23 138
EMOHB 6.75444× 10−11 5 40

10−5 10−8

RADAU 2.0754× 10−8 18 154
RKGauss 6.64973× 10−7 56 336
EMOHB 1.84577× 10−11 8 48

5.7. Test Problem

Finally, we have considered a challenging first-order differential equation given by

z′(x) = −20 z(x)(z(x)− 1) cos x, z(0) = 0.5, (31)

whose exact solution is z(x) =
1

1 + e−20 sin x . From the plot of the exact solution shown in

Figure 6, one can guess that this problem is a demanding one to be solved numerically with
solvers using a constant step size. We have considered hini = 10−4 with various tolerances
TOL = 10−k, k = 11, 12, 13, 14. We have compared the proposed method only with the
solver RADAU. We have not considered the RKGauss and Lob-IIIC methods as they are
not performing well for this problem, needing a high number of function evaluations to
get acceptable accuracy. The data in Table 8 show the good performance of the method.
Figure 6 presents the plot of the exact and discrete solutions for hini = 10−5, TOL = 10−11

with the EMOHB approach.

Table 8. Data for problem in Section 5.7.

TOL Method MaxErr N FEVALs

10−11 RADAU 4.6038× 10−5 1651 35,131
EMOHB 4.83376× 10−6 876 7008

10−12 RADAU 2.7569× 10−5 2067 42,622
EMOHB 1.84514× 10−7 1142 9136

10−13 RADAU 8.1137× 10−6 2572 50,018
EMOHB 9.48677× 10−9 1499 11,992

10−14 RADAU 3.3542× 10−7 2628 55,925
EMOHB 1.36784× 10−9 1971 15,768
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Figure 6. Plot of exact (blue line) and discrete (red dots) solutions of problem in Section 5.7 with
hini = 10−5, TOL = 10−11.

6. About the Efficiency Curves

Here, we examine the efficiency curves that compare the performance of the new hybrid
method (EMOHB) with the RADAU one, based on the maximum absolute errors (EMAX)
versus the total number of function evaluations (FEvals). The curves presented in Figure 7
illustrate the comparison for problems Sections 5.3–5.7. Notably, we have excluded the plots
for methods LOBIIIC and RKGauss, as the tabular data already indicate their higher number
of function evaluations compared to the other methods under consideration. Upon analyzing
the efficiency curves, it becomes evident that the new proposed method stands out as the
most efficient approach for solving the type of problems considered.
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Figure 7. Efficiency curves. (a) Efficiency curves for problem in Section 5.3; (b) Efficiency curves
for problem in Section 5.4; (c) Efficiency curves for problem in Section 5.5; (d) Efficiency curves for
problem in Section 5.6; (e) Efficiency curves for problem in Section 5.7.

7. Conclusions

This paper introduces an optimized hybrid technique specially crafted for the in-
tegration of first-order initial value problems (IVPs), employing three intra-step points.
To heighten accuracy, the method integrates using second-order derivatives in its formulas.
The approach’s genesis lies in a fusion of two techniques: the hybrid and block approaches.
This hybrid nature enables the method to surmount the Dahlquist barriers, while the
embedded block approach concurrently evaluates the numerical solution at diverse grid
points, including off-step points, yielding computational efficiency. The hybrid point
values are computed using an optimization strategy, culminating in an accurate scheme.
Moreover, an enhanced iteration of the proposed approach is presented, incorporating an
adaptive step size capability. This adaptive approach allows the method to dynamically
adjust the step size as required. Numerical experiments are conducted to evaluate the new
scheme’s performance, revealing its potential as a promising and efficient solution for the
addressed problem.
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Abbreviations
The following abbreviations are used in this manuscript:

IVP Initial value problem
ODEs Ordinary differential systems
TOL Tolerance
FEVAL’s Number of fucntion evaluations
hini Intial step size
MaxErr Maximum absolute errors along the integration interval

∆zk
Maximum absolute errors in computing the numerical solution zkj along the integration
interval

N Number of integration steps
Ctime CPU time in seconds
J.Eval Number of Jacobian evaluations
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