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Abstract: Accurate localization of the fovea in fundus images is essential for diagnosing retinal
diseases. Existing methods often require extensive data and complex processes to achieve high
accuracy, posing challenges for practical implementation. In this paper, we propose an effective and
efficient approach for fovea detection using simple image processing operations and a geometric
approach based on the optic disc’s position. A key contribution of this study is the successful
determination of the temporal direction by leveraging readable asymmetries related to the optic
disc and its surroundings. We discuss three methods based on asymmetry conditions, including
blood vessel distribution, cup disc inclination, and optic disc location ratio, for detecting the temporal
direction. This enables precise determination of the optimal foveal region of interest. Through this
optimized fovea region, fovea detection is achieved using straightforward morphological and image
processing operations. Extensive testing on popular datasets (DRIVE, DiaretDB1, and Messidor)
demonstrates outstanding accuracy of 99.04% and a rapid execution time of 0.251 s per image.
The utilization of asymmetrical conditions for temporal direction detection provides a significant
advantage, offering high accuracy and efficiency while competing with existing methods.

Keywords: fovea detection; foveal ROI; temporal direction; cup disc; optic disc; morphology

1. Introduction

Diabetic macular edema (DME) is a manifestation of diabetic retinopathy, a condition
that can lead to vision loss and blindness in affected individuals [1,2]. Consequently, regular
eye screenings, conveniently conducted on computers, are strongly recommended to reduce
the associated risks [3]. These screenings play a vital role in monitoring disease progression
and identifying any concerning lesions. Of particular importance is the accurate detection
of essential anatomical structures such as the optic disc (OD), blood vessels, and fovea.
The fovea, situated at the center of the macula, serves as a reference point for assessing
the severity of DME, particularly in cases where it coincides with the presence of hard
exudates in the retina [1]. Measuring the distance between the hard exudates and the fovea
is crucial for evaluating the severity of DME and necessitates precise detection methods [4].
Additionally, the computational efficiency of the utilized computer-assisted diagnosis
techniques significantly impacts the speed of the overall process [5].

Detecting the fovea in a retinal image has proven to be a challenging task due to its
unique characteristics. The macula, which encompasses the fovea, appears as a darker
region in the retinal image. However, precisely identifying the fovea within this area
is complicated because it lacks clear boundaries, making it challenging to distinguish it
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from the surrounding background. Furthermore, certain retinal images exhibit uneven
illumination, further complicating the detection of the fovea.

Several approaches have been employed in detecting the fovea in retinal images.
For example, deep learning has been applied recently as a cutting-edge method for this
detection. Furthermore, it was observed that Convolutional Neural Network (CNN)-based
approaches have achieved good results in object detection, including fovea detection [6–8].
Bander et al. [6] used a multistage deep learning approach to detect the optical disc and
fovea in retinal images, while Wu et al. [7] used faster R-CNN with physiological prior.
In addition, Hasan [8] utilized the DR-Net method, an end-to-end encoder-decoder network
for fovea detection. Similar to traditional methods, several deep learning methods have
also used retinal structures, such as the blood vessels and optic disc (OD), as boundaries
to ascertain the location of the fovea. For instance, Song [9] customized the Bilateral-
Vision-Transformer to integrate blood vessel information for improved fovea detection.
He et al. [10] used prior guided multi-task learning for joint optic disc/cup segmentation
and fovea detection. In addition, deep learning has also been used to measure the angle
between the optic disc and the fovea, as was done by Zheng [11].

It is important to note that the deep learning approach requires a large amount of com-
putation, especially during training, as well as a huge quantity of data in order to produce
a good detection model [12,13]. The existing methods are typically employed on datasets
comprising a substantial number of images. Subsequently, difficulties were also encoun-
tered during development due to the black box characteristic of the computation [14,15].

On the other hand, the conventional approach is an alternative to identify the fovea
in a limited amount of data. This approach relies on two conditions: the intensity char-
acteristics of the macula and its geometric location. Syed et al. [16] employed the mean
intensity to detect the fovea area, while Maqsood et al. [17] used shape-based extraction.
Regarding fovea detection, the common techniques involve template matching and Gaus-
sian functions, utilizing the intensity attributes specific to the foveal area, as exemplified
by Fleming et al. [18]. Additionally, Chalakkal et al. [19] explored the incorporation of
average histogram intensity as a template matching feature for fovea detection. Further-
more, Zheng et al. [20] implemented feature extraction techniques to locate the center of
the fovea. In order to enhance effectiveness, other authors employ geometric principles
that are seamlessly integrated with existing algorithms.

In terms of the geometric approach for fovea detection, various studies have focused
on the fovea’s location relative to other anatomical structures. Kim et al. [21] utilized the
main blood vessels in the retina as a reference point for detecting the fovea area. Simi-
larly, Medhi [22] achieved comparable results by using the main blood vessels to identify
the fovea region of interest (ROI). Other investigations have utilized the optic disc (OD)
to locate the fovea area [19,23]. Chalakkal [19] employed connected component analysis
to define the foveal ROI in relation to the OD, while Khalid et al. [23] used normalized
cross-correlation. Additionally, aside from the OD’s significance as a reference point, other
researchers have emphasized that the localization of the fovea is influenced by the direction
of search required. For instance, Romero-oraá et al. [24] suggested that the fovea is likely
positioned in the temporal direction of the OD. The results obtained by this approach can
compete with the results from the deep learning approach. However, achieving these out-
comes involves a complex step that adversely affects execution time. Therefore, the quest
for a more streamlined solution poses a challenge.

In the retinal fundus image, the optic disc and blood vessels exhibit varying pixel
densities, resulting in an observable asymmetry. This asymmetry is evident by examining
the positions of these anatomical structures relative to others or by comparing them to the
overall retinal image. Exploiting this characteristic helps identify the temporal direction,
thereby pinpointing the precise location of the fovea. This study presents a geometric
approach for fovea localization, leveraging the positioning of the OD and temporal direction.
The proposed method aims to streamline the determination of the temporal direction by
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utilizing the asymmetrical conditions in the OD-related image. This study’s contributions
are as follows:

• Introducing a feature extraction technique that relies on asymmetries associated with
the OD and its surrounding area;

• Presenting a method for determining the temporal direction, which proves highly
beneficial for foveal ROI detection;

• Enhancing the effectiveness of fovea detection through the utilization of the temporal
direction for foveal ROI determination.

2. Materials and Methods
2.1. Materials
2.1.1. Dataset

This study utilized retinal image data from three publicly available datasets: Digi-
tal Retinal Images for Vessel Extraction (DRIVE), DiaretDB1, and Messidor. The DRIVE
dataset comprises 40 retinal fundus images with only 7 showing signs of mild early diabetic
retinopathy. These images were captured using a Canon CR5 non-mydriatic 3 CCD camera
with a Field of View (FOV) size of 45◦. Every picture was taken with a resolution of
768 × 584 pixels, employing 8 bits for each color plane. [25]. DiaretDB1 comprises
89 colored fundus images, with 84 exhibiting at least mild non-proliferative indicators
(such as microaneurysms) of diabetic retinopathy, while 5 are classified as normal, devoid
of any diabetic retinopathy signs. This dataset includes color images with dimensions
of 1500 × 1152 pixels with a FOV of 50◦ [26]. The Messidor dataset contains 1200 retinal
images captured using a 3CCD color video camera on a Topcon TRC NW6 non-mydriatic
retinograph with a FOV of 45◦. This dataset offers images with different resolutions, in-
cluding 1140 × 960, 2240 × 1488, and 2304 × 1536 pixels [27]. A total of 654 images of the
dataset exhibit indicators of diabetic retinopathy, while 546 images are classified as normal.

2.1.2. Environment

A computer with a specification of Intel ® Core ™ i5-10400 CPU @ 2.90 GHz with
16 GB RAM and Matlab 2018b software was used to conduct this study.

2.2. Methods

The macula, characterized by a circular area of low intensity on the retinal image [28],
houses the fovea at its center. The fovea is positioned 2.5 diameters away from the optic disc
in the temporal direction [29] and slightly below the optic disc [30]. This study aimed to
precisely determine the location of the fovea. To achieve this, a geometry-based approach
utilizing the optic disc as a reference point was employed. The methodology consists
of several steps. Firstly, a pre-processing stage was conducted to normalize the retinal
image. Subsequently, the OD localization process was executed. The temporal direction
was established by leveraging the asymmetry associated with the OD in retinal images.
Finally, the fovea’s location was determined within the foveal ROI. The following sections
provide a detailed explanation of the procedure undertaken in this study.

2.2.1. Pre-Processing

The retinal images captured by the fundus camera exhibit variations in size and
lighting intensity. To establish a robust recognition method for retinal images obtained
through a fundus camera, it is crucial to address variations in size and lighting intensity.
One approach to achieve this is by ensuring the images used possess similar character-
istics. Initially, we perform a pre-processing step on each dataset to ensure uniformity.
This involves standardizing the image size, normalizing luminance levels, and accurately
detecting the field of view (FOV) for each retinal image.

• Resizing: The retinal images in different datasets vary in size and proportions, depend-
ing on the conditions during image capture. In this study, we aim to establish consis-
tency by resizing the images. To maintain the original shape of objects within each
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retinal image, we preserved the proportions of the image during resizing. The initial
result was achieved by setting the height of each image to 564 pixels, while adjusting
the width according to the original aspect ratio. The resized image is denoted as Ir in
our study;

• Illumination normalization: In order to detect the OD and fovea, a thresholding ap-
proach was employed. However, it was observed that uneven illumination,
as illustrated in Figure 1a, negatively impacted the detection accuracy. To address this
issue, a normalization step was performed prior to the detection process. The normal-
ization aims to reduce the excessive brightness that can occasionally be observed at
the border of the FOV, as well as decreasing the light intensity in areas outside the
OD region that exhibit similar intensity to the OD. In the initial phase, the resized
images were subjected to contrast enhancement using Clip Limited Adaptive His-
togram Equalization (CLAHE), resulting in the creation of an enhanced image denoted
as Ic. This enhancement process specifically utilized the green layer, known for its
superior contrast properties (Figure 1b) [31]. Furthermore, intensity normalization was
conducted following the approach described in a previous study [32]. The resulting
normalized image, denoted as In, is illustrated in Figure 1c;
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Figure 1. Pre-processing: (a) original color image, (b) the green layer of image, (c) normalized image,
(d) Field of View (FOV) of the image.

• The FOV represents the visible area of the retina captured in an image. The size of the
FOV plays a crucial role in estimating the dimensions of retinal objects, particularly the
OD. This is particularly valuable in addressing variations in the proportion of retinal
area displayed across different datasets. By defining the area, the search location
for objects on the retina can be constrained. Additionally, the FOV size is utilized to
estimate the location of the fovea through a geometric approach. Segmentation of the
FOV area was accomplished by applying Otsu thresholding to the grayscale image,
utilizing a threshold value of 0.2 times the Otsu threshold obtained. The segmented
FOV is illustrated in Figure 1d.

2.2.2. Optic Disc Localization

The OD is a distinctive anatomical structure within retinal images, known for its high
intensity compared to other features. Due to its prominent characteristics, OD localization
is relatively straightforward. It is worth noting that the OD location is often associated
with the position of the fovea [30,33]. In this study, the OD serves as a reference point
for determining the center of the fovea ROI. Additionally, certain features, such as blood
vessels and bright areas on the cup disc, are leveraged to determine the temporal direction.
To detect the OD, a thresholding method based on [34] was applied to the pre-processed
images In. Equation (1) was employed to obtain the OD candidate areas (IODcand). The OD
candidates are shown in Figure 2b.

IODcand(x, y) =
{

1 i f In(x, y) ≥ thOD
0 otherwise

(1)
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where thOD is the threshold value used, which is 0.85 from the maximum value of In.
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Occasionally, bright retinal images with high luminance are found at the edge of the
FOV, which corresponds to the area around the OD. It was observed that the luminance
normalization process conducted during pre-processing does not adequately affect these
areas. This can potentially result in the misidentification of the optic disc candidate region.
Therefore, this study introduced FOV edge detection as an additional step to mitigate such
effects. To encompass a wider range, the edges were subjected to morphological dilation
using a disc-shaped structuring element with a radius of 50 pixels. The resulting edge area
is denoted as It (Figure 2c). Equation (2) was employed to obtain the refined optic disc
candidate area (IODcand2) [34]:

IODcand2 = IODcand − (IODcand ∩ It) (2)

The center point of the blob within IODcand2 (Figure 2e) is estimated to correspond
to the cup disc area of the optic disc. Based on this center point, the subsequent step
involves cropping the OD ROI to one-quarter the size of the image. The resulting OD ROI
is illustrated in Figure 2f.

Furthermore, optic disc segmentation is performed through several additional steps.
Initially, contrast enhancement is applied using CLAHE with a clip limit of 0.03 and multiple
tiles [2]. This process specifically focuses on the red channel, which is least affected by
blood vessels, as indicated by Zheng [20]. Additionally, the boundary of the optic disc is
more distinct in the red channel [35].

Subsequently, a morphological opening operation is employed to remove blood vessels
in the region, utilizing a disc-shaped structuring element with a radius of 20 pixels.

The OD obtained through Otsu thresholding is then refined using morphological
closing and opening operations with disc-shaped structuring elements of sizes 10 and 15,
respectively. The largest blob is selected to determine the OD, and the result is obtained
by cropping the area according to the bounding box, as depicted in Figure 2g. Notably,
the center of this area serves as a reference for determining the foveal ROI. It is important
to mention that the diameter of the optic disc (DOD) is not calculated directly from this
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obtained area. Instead, DOD is computed as w
11 , where w represents the width of the FOV.

The value assignment is adopted from Romero-oraá [24] with a minor adjustment to the
value to accommodate the image resizing.

2.2.3. Temporal Direction Determination

In this paper, our objective is to utilize the OD appearance in retinal images to detect
the fovea and determine the temporal direction. The OD, being present in the retinal image,
provides crucial information for locating the fovea, which is typically positioned in the
temporal direction relative to the OD. Moreover, the OD itself can act as an indicator of the
temporal direction.

To achieve this, we concentrate on exploiting the observed asymmetry in the OD’s
appearance (Figure 3), including the brightest area of cup disc and major blood vessels,
as distinctive features for identifying the temporal direction in interlaced retinal images.
We propose three distinct methods that make use of these existing asymmetrical conditions
for temporal direction determination:

• The convergence pattern of blood vessels in the OD: We examine the convergence
pattern of blood vessels within the OD. The direction of convergence can provide
valuable clues regarding the temporal direction;

• The location of the brightest area of cup disc in the OD: We analyze the OD to identify
the cup disc with the highest brightness. By assessing its position within the OD, we
can infer the temporal direction;

• The location of the OD in the retinal image: We investigate the position of the OD
within the retinal image. Its relative location can offer insights into the temporal
direction.
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These methods aim to leverage the inherent asymmetry of the OD and its associated
features to improve the accuracy and efficiency of determining the temporal direction in
retinal images. By employing these approaches, we anticipate significant advancements in
retinal imaging analysis.

Convergence Pattern of Blood Vessels in the OD

The blood vessels in the retina exhibit a parabolic shape and converge on the OD,
resulting in an asymmetry where the blood vessels cluster predominantly on one side
of the OD, as illustrated in Figure 4. This inherent asymmetry was leveraged in our
proposed method to determine the temporal direction. A comparison of the number of
blood vessel pixels on both sides was performed, taking into account their tendency to
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cluster on one side of the OD. To facilitate this comparison, we focused on the green layer
of the retinal image, as it offers better contrast compared to the other two layers.
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Figure 4. Appearance of blood vessels converging on a single side of the Optic Disc (OD).

Once the location of the optic disc was successfully detected, its area was cropped to
identify the side corresponding to the temporal direction. At the initial stage of the process,
we employed an adaptive operation using the CLAHE method to enhance image contrast.
This contrast enhancement effectively enhanced the visibility of blood vessels against the
background image.

Next, the blood vessels within the OD are extracted using a bottom-hat morphological
operation and adaptive binarization with Otsu’s method. This involves utilizing a ‘disc’-
shaped structuring element of size 5 pixels. The result is an image called IOV. However, it is
observed that the blood vessels in the IOV still retain vertical and horizontal orientations,
which can introduce false information. To address this, the orientation direction of the
blood vessels is selectively considered.

Comparisons between the left and right sides of the OD were performed using verti-
cally oriented vessel pixels. To facilitate the comparison process, it is essential to optimize
the vertically oriented blood vessels and eliminate the horizontally oriented ones prior
to the analysis of the left and right sides of the OD. This is accomplished through the
sequential application of morphological operations, specifically opening and closing opera-
tions. By performing these operations consecutively, the vertically oriented blood vessels
are enhanced, while the horizontally oriented ones are attenuated. The resulting image,
denoted as Iv, is obtained using rectangular structuring elements with dimensions of 6 × 3
and 10 × 3.

Suppose Sv1 is the number of white pixels on the left side of the Iv image and Sv2 is
the number of white pixels on the right side Iv. The following rules were adopted when
determining the temporal direction:

temporal direction =

{
LEFT , Sv1 < Sv2

RIGHT , Sv1 ≥ Sv2

Location of the Brightest Area of Cup Disc Area in an Optic Disc

The OD serves as the origin for blood vessels in the retina and exhibits a cup disc
structure. The brightest area within the OD corresponds to the cup disc, partially obscured
by blood vessels on one side. The remaining cup disc area is situated on the temporal
side of the OD. By comparing the position of the cup disc area with that of the vertically
oriented blood vessels, we can determine the temporal direction of the retinal image. This
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is achieved by analyzing the center coordinates of the cup disc area and the vertical vessel
center coordinates, which serve as defining features for the temporal direction.

To detect the temporal direction, the OD area must first be segmented as shown in
Figure 5a. Initially, we identify the visible cup disc area and a curve representing the
vertical vessels within the OD. To simplify the process, we focus on the brightest part of the
cup disc, avoiding the need for precise segmentation. The segmentation is performed on
the brightest portion of the cup disc by applying a binary operation with a threshold of 80%
of the maximum pixel value within the OD area. This binary operation is conducted on the
green layer, which offers optimal contrast. Subsequently, a closing operation is applied to
refine the bright area. A circular structuring element (SE) with a diameter of 10 pixels is
used for this purpose. The segmentation results are depicted in Figure 5b. The midpoint
coordinates of the bright cup disc area (xCOD, yCOD) are then used as reference values for
determining the temporal direction.
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The curve representing the vertical vessels in the OD is extracted using a combination
of morphological operations. Initially, the contrast of the OD image is enhanced using
CLAHE, followed by emphasizing the blood vessels using a bottom-hat operation. Figure 5c
shows the results of the extraction of blood vessels in the OD. This operation employs a
circular SE with a radius of 5 pixels. The lines representing the vertical vessels are obtained
through a combination of opening and closing operations. The SE used has a rectangular
shape with a vertical orientation. The first combination employs an SE of size 6 × 3 for
opening and 10× 3 for closing. In the second combination, an SE of size 13× 1 and 50 × 15
is used. The resulting curve is illustrated in Figure 5d. Finally, the coordinates of the blood
vessel center (xves, yves) are extracted from the last obtained blob. An illustration of the
relative location of the cup disc’s brightest area to the curve representing the vertical vessels
in OD is shown in Figure 5e.

Once the coordinates of the cup disc center and the vertical blood vessel center within
the OD are determined, the temporal location on the retinal image can be established.
In general, the temporal area on the retinal image is determined based on the location of
the cup disc with respect to the vertical vessels, as shown in Figure 6. To simplify the search
process, this study compares the x-axis values of each coordinate point. The temporal area
is defined according to the following rules:
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If xCOD < xves {the cup vessel area on the left of the vertical vessel OD}
temporal direction = LEFT
Else {the cup vessel area on the right of the vertical vessel OD}
temporal direction = RIGHT

Location of the OD in the Retinal Image

In diabetic retinopathy examination, it is essential for the retinal image used in screen-
ing to have a visible macular condition at the center. This recommendation is supported by
the Health Technology Board for Scotland [36,37]. In this context, the OD is situated at the
edges of the imaged retinal area, both on the left and right sides. This indicates that the
temporal direction can be determined by comparing its location with the center coordinates
of the retinal image.

It has been observed that when the OD is on the right side of the image, the abscissa
center is greater than the retinal image center, indicating a temporal direction towards the
left. Conversely, when the OD is on the left side, the abscissa is smaller than the image
center, and the temporal direction points to the right, as depicted in Figure 7.
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The temporal direction is determined using the following rule:

temporal direction =

{
LEFT , w

2 < xOD
RIGHT , other

where w denotes the retinal image width, and xOD is the abscissa value of the OD center
obtained during OD detection.

2.2.4. Fovea Detection

According to established medical definitions, the macula, with the fovea as its center,
is situated in the temporal area, and the fovea is approximately 2.5 times the diameter of
the OD [38]. This implies that a comprehensive search for the fovea should be conducted
within a restricted area aligned with this definition. In the detection process, a geometric
approach is employed, with the OD location serving as a reference. The effectiveness of
the proposed method relies on accurately determining the size and location of the ROI
corresponding to the fovea.

To initiate the detection process and minimize errors, the determination of the foveal
ROI occurs after obtaining the OD location and temporal direction. This allows for the
limitation of the detection area and reduces the likelihood of errors. Moreover, the location
is obtained by utilizing the OD as a reference based on the gathered information. Figure 8
visually depicts the construction of the foveal ROI, which takes the form of a square
with dimensions of 2 times the OD diameter (2 × DOD), where DOD represents the OD
diameter. This size is chosen to account for potential inaccuracies in the ROI location,
aiming to minimize errors. The selection of the multiplier parameter is performed through
experimentation with three estimated values: 2.0, 2.25, and 2.5.
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Furthermore, the center location of the fovea ROI is determined using Equations (3) and (4).

x f =

{
xOD − 3.8× DOD , temporal direction = LEFT
xOD + 3.8× DOD , temporal direction = RIGHT

(3)

y f = yOD + 0.25× DOD (4)

where
(

x f , y f

)
represents the coordinates of the foveal ROI center and (xOD, yOD) are the

coordinates of the OD center location.
The subsequent step involves detecting the fovea within the foveal ROI. This process

utilizes a combination of thresholding techniques and morphological operations. Initially,
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the contrast within the foveal ROI (Figure 9a) is enhanced using CLAHE with a clip limit
of 1. This results in an improved foveal ROI image with enhanced contrast (Figure 9b),
revealing darker areas and clearer edges. To facilitate the recognition process, the resulting
image is negated, generating the complement of the image (Imc) as shown in Figure 9c.
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The thresholding process is then applied to obtain a binary foveal image (Imb) by
utilizing an adaptive threshold value of 77% of the maximum intensity of Imc. The result of
the thresholding process is shown in Figure 9d. It should be noted that Imb may still contain
some degree of noise. To mitigate this, a cleaning and repair procedure is conducted using
morphological dilation and erosion operations, as described in Equation (5):

Im = εα
(

δβ(Imb)
)

(5)

where Im is the obtained macular image, εα is the erosion morphology operation with a
disc-shaped α-element structure measuring 15, and δβ represents the dilation operation
with a disc-shaped β measuring 5, and then the fovea is extracted from the area containing
Im (Figure 9e).

3. Results

The proposed method was evaluated on three datasets, namely DRIVE, DiaretDB1,
and Messidor. The appropriated images from - DRIVE were 35 in number. This is because
five images in this dataset do not show the foveal area according to [20]. Similarly, this test
uses 1136 images from Messidor in line with [39]. In DiaretDB1, all images were considered
in the evaluation. This evaluation involved a meticulous comparison of the obtained results
with Ground Truth, with the supervision of an ophthalmologist.

Impressively, the OD detection test achieved remarkable accuracy rates. The method
exhibited a flawless accuracy of 100% for the DRIVE dataset, while for the DiaretDB1
and Messidor datasets the accuracies were equally impressive, measuring 98.88% and
98.59%, respectively. Additionally, Table 1 provides an overview of the accuracy rates
for determining the temporal direction. Three different methods were employed for
determining the temporal direction: T1, T2, and T3. T1 involved comparing the blood
vessel pixels, T2 relied on the location of the cup disc area and the perpendicularity of
the blood vessels, while T3 utilized the position of the OD relative to the center of the
image. In order to evaluate the performance of the proposed algorithm in determining the
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temporal direction, an assessment was conducted on the images where the OD has been
successfully detected.

Table 1. Performance evaluation of the temporal direction determination.

Method DRIVE
(%)

DiaretDB1
(%)

Messidor
(%)

T1 100 100 98.66
T2 100 100 99.29
T3 100 100 100

During the evaluation of fovea detection, accuracy was quantitatively assessed by
measuring the Euclidean distance between the detected fovea and the Ground Truth (GT).
This approach facilitated a precise quantitative comparison. Furthermore, Figures 10–12
illustrate the performance of the three methods used to determine the temporal direction,
while Table 2 provides a concise summary of their performance metrics.
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Table 2. Summary of fovea detection.

Temporal Determination
Method

Accuracy
(%) Distance Computational Time

(s/Image)

DRIVE

T1 100 14.1 0.200
T2 100 14.1 0.202
T3 100 14.1 0.190

DiaretDB1

T1 98.88 10.68 0.277
T2 98.88 10.68 0.278
T3 98.88 10.68 0.270

Messidor

T1 96.83 8.63 0.294
T2 97.54 8.60 0.295
T3 98.24 8.61 0.291

Of the three methods, T3 exhibited the highest performance, showcasing its superi-
ority in determining the temporal direction. The significance of these variations became
particularly evident when testing on datasets with a larger number of images, such as the
Messidor dataset. Interestingly, T3 also demonstrated comparable performance with the
DRIVE and DiaretDB1 datasets, despite their smaller data sizes. In terms of accuracy, T3
outperformed T1 and T2, achieving accuracies of 98.24%, 96.83%, and 97.54%, respectively.
Furthermore, T3 showcased superior computational efficiency, with a processing time of
0.291 s per image, compared to T1 and T2, which required 0.294 and 0.295 s, respectively.

The average accuracy and computational time for the three datasets are 99.04% and
0.251 s/image. Table 3 shows the comparison results of the performance with other studies.

Table 3. Comparison of the fovea detection results with other studies.

Method Accuracy Computational Time
(s/Image)

Computational Time
Improvement

Zheng [20] DRIVE: 100% 12 s 62.2×
DiaretDB1: 93.3% 12 s 43.4×

Medhi [22]
DRIVE: 100% - -
DiaretDB1: 95.51%

Chalakkal [19]
DRIVE: 100% 25 s 130.6×
DiaretDB1: 95.5% 25 s 91.6×
Messidor: 98.5% 25 s 85.2×

Romero-oraá [24]
DRIVE: 100% 0.54 s 1.8×
DiaretDB1: 100% 14.55 s 52.8×
Messidor: 99.67% 27.04 s 92.2×

Al Bander [6] Messidor: 96.6% - -
Song [9] Messidor: 100% - -

Proposed method
DRIVE: 100% 0.19 s -
DiaretDB1: 98.87% 0.27 s -
Messidor: 98.24% 0.29 s -

4. Discussion

Upon analysis, it was observed that the method using the comparison of the OD
location and the image center for determining the temporal direction exhibited the highest
performance among the three methods. The performance differences were particularly
noticeable when testing on datasets with a large number of images, such as the Messidor
dataset. However, in the DRIVE and DiaretDB1 datasets with a smaller number of images
the three methods showed no significant difference in performance. It was found that
using the bright area on the cup disc as a feature for determining the temporal direction
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becomes problematic when the distribution of bright areas is not concentrated on one
side as expected. In cases where the bright area is distributed circularly around the
blood vessels, the expected asymmetry does not appear, causing the center point of this
bright area to sometimes shift to the opposite side and resulting in incorrect temporal
direction determination.

Similarly, using blood vessels in the OD as a feature is disturbed when the distribution
of these blood vessels is evenly spread within the OD. Consequently, when applying
morphological operations to the vascular pixels in the OD, there are several images that do
not exhibit the expected asymmetry and provide an incorrect temporal direction. Overall,
the evaluation results indicate that all three methods of determining the temporal direction
perform well.

This suggests that all the methods are capable of providing good temporal direction
results for generating an optimal foveal region of interest (ROI). The use of a small rectan-
gular foveal ROI, based on the geometric location of the fovea, enhances the effectiveness
of the proposed method. By limiting the detection area to the foveal region only, the ROI
prevents other objects from being covered, leading to a higher accuracy in fovea detection,
averaging 99.04%. These findings demonstrate that the proposed method is stable and
accurate, despite relying on simple image processing operations such as binarization and
morphology. Additionally, the use of these straightforward image processing operations
has contributed to reducing the computational time to 0.251 s per image.

When compared to other studies, the proposed method exhibits competitive accuracy
and computation time. In comparison to classical approaches, it outperforms the accuracy
achieved by Zheng [17] and Medhi [15]. Although it slightly trails behind the performance
of Chalakkal [16] and Romero-oraá [18], it surpasses both methods significantly in terms
of computational time. Test results on large-sized images indicate that the proposed
method is 85.2× faster than Chalakkal [16] and 92.2× faster than Romero-oraá [18]. This
improved performance is attributed to the efficient detection process, where effective
temporal direction detection plays a crucial role in determining the optimal foveal ROI.
With an optimal ROI, the detection process can be executed efficiently through simple
binary and morphological operations.

Furthermore, the accuracy of the proposed method surpasses that of Al-Bander [5]
and is slightly below Song [9], which employs a deep learning approach, achieving an
accuracy of 98.24% compared to 96.6% and 100%, respectively. However, the proposed
method is able to perform well on datasets that have a small number of images such as
DRIVE and DiaretDB1, which is not shown in both deep learning models. The proposed
method does not contain a training process and thus does not require a large amount of
data as the two deep learning models do. In addition, it is important to note that the
computational time required for Al-Bander is the fastest at approximately 0.007 s per image.
Nonetheless, a direct comparison of the computation time between the proposed method
and the deep learning approach is not feasible due to the significantly different computing
devices used [19].

Most of the detection errors encountered in the proposed method can be attributed
to imperfect OD detection. This condition occurs when the intensity of OD pixels in the
retinal image is not as bright as usual and is accompanied by the appearance of bright
lesions with luminance exceeding the OD. As explained earlier, the accurate detection of
the OD is crucial for determining the temporal direction and the location of the foveal
region of interest (ROI). When an error occurs during the OD detection process, it can lead
to errors in determining the temporal direction and the reference point for the foveal ROI.
Consequently, this can result in inaccurate foveal ROI determination and ultimately lead
to erroneous fovea detection. As a limitation, this study is valid for healthy eyes where
the OD is well identified, not for diseases such as proliferative diabetic retinopathy where
the bright part of the OD is covered with neovascularization or when the foveal reflex is
not dark enough due to edema or hemorrhage. Further assessment of such methods in
non-healthy eyes is needed.
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5. Conclusions

The methods used to determine the temporal direction based on the OD yielded
impressive results. Among the three methods tested, the one comparing the OD position
with the image center showed the best performance. Although there were challenges with
using bright areas and blood vessels as features, overall, all three methods performed
well. The proposed methods effectively generated ROIs for the fovea by utilizing a small
rectangular ROI based on the fovea’s geometric location.

It demonstrated stability, accuracy, and computational efficiency, surpassing traditional
approaches in terms of accuracy and computation time. While it slightly lagged behind
certain methods in accuracy, it excelled in computational speed. Imperfect OD detection
was the main cause of detection errors, affecting the determination of the temporal direction
and fovea detection.
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