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Abstract: In this study, we provide an efficient simulation to investigate the behavior of the solution
to the Brusselator system (a biodynamic system) with the Rabotnov fractional-exponential (RFE)
kernel fractional derivative. A system of fractional differential equations can be used to represent
this model. The fractional-order derivative of a polynomial function tp is approximated in terms of
the RFE kernel. In this work, we employ shifted Vieta–Lucas polynomials in the spectral collocation
technique. This process transforms the mathematical model into a set of algebraic equations. By
assessing the residual error function, we can confirm that the provided approach is accurate and
efficient. The outcomes demonstrate the effectiveness and simplicity of the technique for accurately
simulating such models.

Keywords: Brusselator system; Rabotnov fractional-exponential; Vieta–Lucas spectral collocation
method; residual error function
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1. Introduction

For the past 30 years, numerous scientists have been interested in fractional calcu-
lus [1]. As a result, scientists were able to offer new definitions of the fractional derivative
with non-singular kernels, which were required to satisfy the demand for mathematical
modeling of numerous real-life problems in various spheres of our lives, including physics,
biology, engineering, viscoelasticity, and fluid mechanics. It was essential to develop and
use many of the approximation approaches because it is well known that the majority
of fractional differential equations (FDEs) are challenging to be solved exactly [2,3]. The
reader is invited to check Reference [4] for more information about the definitions and
properties of these fractional derivatives. These days, a wide variety of fractional oper-
ators have been developed as generalizations of classical derivatives. The Caputo and
Riemann–Liouville fractional derivatives possess a power kernel that extends the classical
derivatives. However, we obtain a new generalized class of fractional derivatives if we
replace that kernel with exponential or Mittag–Leffler kernels. It is worth pointing out
that the derivative with a Mittag–Leffler kernel is known as the Atangana–Baleanu deriva-
tive, whereas the derivative with an exponential kernel is known in groundwater flow [5],
medical sciences [6], chaos theory [7], and other areas [8].
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Spectral methods are among the most significant and efficient tools for simulating
differential equations of various types [9]. As an application of these methods, we can see
that the spectral Tau method is implemented to solve a general class of FDEs [10], the spec-
tral collocation method (SCM) with shifted third-kind Chebyshev polynomials is used to
numerically treatment a type of nonlinear fractional pantograph differential equations [11],
and the coefficients of differentiated expansions of double and triple Jacobi polynomials
are considered in [12]. The capacity of these techniques to provide us with reliable findings
with very small errors is one of their most significant characteristics. For instance, the
Vieta–Lucas polynomials’ (VLPs’) orthogonality property is used to approximate periodic
functions in some bounded and closed interval [a, b] [13,14]. Spectral methods heavily rely
on polynomials. In this work, our goal is to use the RFE kernel to evaluate the fractional
derivative. The fractional-order derivative of a polynomial function tp is approximated
in terms of the RFE kernel. We provide the numerical solution to the proposed system
using this approximation formula and the characteristics of VLPs. By taking a fractional
derivative of polynomials, we demonstrate the validity of the newly derived formula.
Additionally, we investigate the Brusselator system using the fractional derivative of the
RFE kernel. This allows us to predict the viability of our numerical approach for this
model ([15,16]). The SCM and the shifted VLPs are combined to take advantage of the
properties of each of them in approximation, on the one hand, and in increasing the appli-
cability and accuracy of the proposed technique, on the other hand, which in turn gives
good and close solutions to the real solutions to the problem under study.

It is important to recall that several researchers have recently examined the fractional
Brusselator system [17,18]. Gafiychuk and Datsko investigated the stability of this sys-
tem [18]. The existence of a limit cycle in the solutions of the fractional Brusselator system
was demonstrated by Wang and Li using a numerical approach [18]. To approximate the
proposed RFE kernel problem, we applied the current approximation technique. We are
able to show that this method can be used to solve the given model successfully by using
the numerical approach and that there is excellent agreement with the solutions that are
currently available in the literature. To control and decrease the relative errors, we can
include additional terms from the solution series. The use and potential of the proposed
numerical method are demonstrated by comparing the exact and approximate solutions.
The comparison with previously published work using a different numerical approach and
a different fractional derivative allows us to conclude that the operator without singular-
ity is more suitable for numerical simulations for the model under consideration in this
research. It is worth pointing out that the numerical simulations were carried out using the
computer software Mathematica.

This study is organized as follows. In Section 2, we consider some preliminaries
and notations concerning definitions of the fractional derivatives and shifting Vieta–Lucas
polynomials. In Section 3, we present the numerical implementation of the proposed
method. The conclusion is given in Section 4.

2. Preliminaries and Notations
2.1. Definitions of Fractional Derivatives

We provide a fresh start by recalling some definitions for fractional derivatives avail-
able in the literature, along with some of their properties.

Definition 1. For the function p(η) ∈ H1(0, b), the fractional derivative of order 0 < ν ≤ 1 in
the Caputo sense is given by

CDν p(η) =
1

Γ(1− ν)

∫ η

0

p
′
(τ)

(η − τ)ν
dτ, η > 0.
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Definition 2. For a function Θ(η), the left-sided Caputo fractional derivative of order κ on the
interval [0, 1] is defined by

RFEDκΘ(η) =
∫ η

0
Θ(n)(ξ)Rκ [−Ω(η − ξ)κ ]dξ, n− 1 < κ ≤ n. (1)

Here, the Rabotnov fractional exponential function for the function Ω ∈ R+ is defined as follows:

Rκ [−Ω(η)κ ] =
∞

∑
j=0

(−Ω)j η(j+1)(κ+1)−1

Γ[(j + 1)(κ + 1)]
.

See [19,20] for additional information regarding the RFE-operator derivative. In the
next step, we recall the approximation formula for the fractional derivative concerning the
RFE kernel using a readily available numerical integration scheme.

Theorem 1. The function g(η) = ηθ with θ ≥ n (n = dκe) has an RFE derivative of order
n− 1 < κ < n, which is given by [20]

RFEDκ ηθ =
Γ(θ + 1)

Γ(θ + 1− dκe) ×
h
3

[
Gκ,θ(η, γ0) + Gκ,θ(η, γm)

+ 4
m−1

∑
j=1, j−odd

Gκ,θ(η, γj) + 2
m−2

∑
j=2, j−even

Gκ,θ(η, γj)
]
.

(2)

Each segment of length h in the domain [0, 1] is separated into m equal segments so that, for
each j = 0, 1, . . . , m, we have h = 1

m , γj =
j

m , and

Gκ,θ(η, γ) = γθ−dκe Rκ [−Ω(η − γ)κ ].

Remark 1. Since the integral in the formula (1) is difficult to calculate in exact form, we can
estimate it by using the Simpson 1

3 method or any other numerical methodology. It is well known
that the formula in (1) is used to generate the formula in (2).

2.2. Shifting Vieta–Lucas Polynomials

In this subsection, we define the shifted Vieta–Lucas polynomials and the properties
which are necessary in the present study. We focus our investigation on a class of orthogonal
polynomials. It is possible to create a new family of orthogonal polynomials using the
recurrence relations and analytical equations of the VLPs as follows.

The VLP, VLi(t), of degree i ∈ N0 is defined by [21]

VLi(t) = 2 cos(iψ),

where ψ = arccos(0.5 t), ψ ∈ [0, π], and −2 ≤ t ≤ 2. It is easy to demonstrate that the
following recurrence relation holds for the VLPs:

VLi(t) = t VLi−1(t)−VLi−2(t), ∀ i = 2, 3, . . .

Here, VL0(t) = 2 and VL1(t) = t. A new class of orthogonal polynomials on the interval
[0, 1] is created from VLPs using t = 4 η − 2. This new class of polynomials is denoted by
the symbol SVLi(η), and the elements are given by the relation

SVLi(η) = VLi(4 η − 2).

As a consequence, it is easy to check that the following recurrence relation holds:

SVLi+1(η) = (4η − 2) SVLi−1(η)− SVLi−2(η), ∀ i = 2, 3, . . . ,
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where SVL0(η) = 2 and SVL1(η) = 4η − 2. Also, observe that SVLi(0) = 2(−1)i and
SVLi(1) = 2 are satisfied for all i = 0, 1, 2, ....

The analytical formula for the polynomials SVLi(η) is given by

SVLi(η) = 2i
i

∑
j=0

(−1)j 4i−jΓ(2i− j)
Γ(j + 1)Γ(2i− 2j + 1)

ηi−j, ∀ i = 2, 3, . . .

Notice that the polynomials SVLi(η) are orthogonal polynomials on [0, 1] concerning the
weight function 1√

η−η2
. As a consequence, we have that

〈
SVLi(η), SVLj(η)

〉
=
∫ 1

0

SVLi(η) SVLj(η)√
η − η2

dη =


0, i 6= j 6= 0,
4π, i = j = 0,
2π, i = j 6= 0.

Let φ(η) ∈ L2[0, 1]. Using the polynomial SVLj(η), we readily obtain that

φ(η) =
∞

∑
j=0

cj SVLj(η), (3)

where cj must be evaluated to transform φ(η) into the terms of SVLi(η). By taking into
account only the first m + 1 terms in (3), we define

φm(η) =
m

∑
j=0

cj SVLj(η). (4)

Consequently, it is possible to calculate cj for each j = 0, 1, 2, . . . as follows:

cj =
1
δj

∫ 1

0

φm(η)SVLj(η)√
η − η2

dη, δj =

{
4π, j = 0,
2π, j = 1, 2, . . . , m.

(5)

Lemma 1. Let us assume that φ(η) ∈ L2
w̃ [0, 1], regarding the weight function w̃(η) = 1√

η−η2
,

with the assumption |φ′′(η)| ≤ ε, for some constant ε. Then, the series (4) uniformly converges to
the function φ(η) as m→ ∞. Additionally, the following estimates are satisfied:

1. In Equation (4), the coefficients’ series are bounded, that is,∣∣cj
∣∣ ≤ ε

4j(j2 − 1)
, ∀ j > 2.

2. The following inequality applies to the error estimate norm (L2
w̃ [0, 1]-norm):

‖φ(η)− φm(η)‖w̃ <
ε

12
√

m3
.

3. The following absolute error bound applies if φ(m)(η) ∈ C[0, 1]:

‖φ(η)− φm(η)‖ ≤
∆ Πm+1

(m + 1)!
√

π.

Here, ∆ = maxη ∈[0,1] φ(m+1)(η) and Π = max{1− η0, η0}.

See the reference [22] for additional information on these polynomials and the conver-
gence analysis for the approximation in (4).
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Theorem 2. The κ-order of the RFE fractional derivative for the function φi(η) which is defined in
Equation (4) can be evaluated as follows [20]:

RFEDκ φi(η) =
i

∑
j=dκe

χi,j,κ

[
Gκ,p(η, γ0) + Gκ,p(η, γm)

+ 4
m−1

∑
`=1, `−odd

Gκ,p(η, γ`) + 2
m−2

∑
`=2, `−even

Gκ,p(η, γ`)
]
,

(6)

where

χi,j,κ =
h Γ(i− j + 1)

3 Γ(i− j + 1− dκe) ×
(−1)j 2i 4i−j Γ(2i− j)
Γ(j + 1)Γ(2i− 2j + 1)

and
Gκ,p(η, γ) = γp−dκe Rκ [−Ω(η − γ)κ ]p=i−j.

Proof. By using Theorem 1, we have

RFEDκ ti−j =
Γ(i− j + 1)

Γ(i− j− dκe+ 1)
× h

3

[
Gκ,p(η, γ0) + Gκ,p(η, γm)

+ 4
m−1

∑
`=1, `−odd

Gκ,p(η, γ`) + 2
m−2

∑
`=2, `−even

Gκ,p(η, γ`)
]
.

(7)

Each segment in the domain [0, 1] has a length of h and is divided into m equal segments.
This fact yields that h = 1

m and γ` =
`
m for each ` = 0, 1, 2, ..., m, and

Gκ,p(η, γ) = γp−dκe Rκ [−Ω(t− γ)κ ]p=i−j.

Now using Equations (4) and (7), we can evaluate the RFE derivative of φi(η) as follows:

RFEDκφi(η) =
i

∑
j=0

(−1)j 2i 4i−j Γ(2i− j)
Γ(j + 1) Γ(2i− 2j + 1)

RFEDκ ηi−j

=
i

∑
j=dκe

Γ(i− j + 1)
Γ(i− j + 1− dκe) ×

(−1)j2i4i−jΓ(2i− j)
Γ(j + 1)Γ(2i− 2j + 1)

× h
3

[
Gκ,p(η, γ0) + Gκ,p(η, γm) + 4

m−1

∑
`=1, `−odd

Gκ,p(η, γ`) + 2
m−2

∑
`=2, `−even

Gκ,p(η, γ`)
]
.

(8)

From this result, we can easily obtain the required Formula (6), as desired.

3. Numerical Implementation

In this stage of our study, the approach designed in the previous section is used to
numerically obtain a semi-analytical solution for the proposed fractional model. In this
way, we drastically simplify the problem to a nonlinear system of algebraic equations.
To obtain the unknown coefficients of the series solution, this system is converted into a
restricted optimization problem. More precisely, we investigate the Brusselator system as
formulated in an RFE-fractional form as follows ([17,18]):

RFED$ψ1(η) = ρ− (λ + 1)ψ1(η) + ψ2
1(η)ψ2(η), (9)

RFED$ψ2(η) = λ ψ1(η)− ψ2
1(η)ψ2(η), (10)

ψ1(0) = ψ1,0, ψ2(0) = ψ2,0. (11)

In this model, the parameters ρ > 0, λ > 0, and ψ1,0, ψ2,0 are real constants [23]. These
equations describe how the concentrations of the two species change over time due to the
reaction and diffusion processes. The behavior of the Brusselator model (BM) depends
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critically on the values of the parameters ρ and λ. These parameters control the strength of
the reaction and diffusion processes and, hence, determine the system’s overall behavior.
In particular, the parameter ρ controls the distance from the Hopf bifurcation, a critical
point at which the system transitions from a stable to an unstable steady state. The system
can exhibit sustained oscillations as ρ increases beyond this critical value. Parameter λ
controls the balance between the reaction and diffusion processes. The reaction dominates
at low values of λ, and the system can exhibit sustained oscillations or spiral waves. As λ
increases, diffusion becomes more important, and the system can exhibit Turing patterns.

As we pointed out, we use the approach proposed in this work to numerically solve
the system (9)–(11). In the first stage, we approximate ψ1(η) and ψ2(η) by ψN

1 (η), and
ψN

2 (η), respectively, in the following formulas:

ψN
1 (η) =

N

∑
i=0

αi SVLi(η), ψN
2 (η) =

N

∑
i=0

βi SVLi(η). (12)

Now substituting (4) and (12) into the system (9)–(10) and evaluating them at the N points
ηs which are the roots of SVLN(η), we obtain the identities

N

∑
j=d$e

αj χN,j,$

[
G$,p(ηs, γ0) + G$,p(ηs, γm)

+ 4
m−1

∑
k=1, k−odd

G$,p(ηs, γk) + 2
m−2

∑
k=2, k−even

G$,p(ηs, γk)
]

= ρ− (1 + λ)

(
N

∑
i=0

αi SVLi(ηs)

)
+

(
N

∑
i=0

αi SVLi(ηs)

)2( N

∑
i=0

βi SVLi(ηs)

)
,

(13)

and

N

∑
j=d$e

β j χN,j,$

[
G$,p(ηs, γ0) + G$,p(ηs, γm)

+ 4
m−1

∑
k=1, k−odd

G$,p(ηs, γk) + 2
m−2

∑
k=2, k−even

G$,p(ηs, γk)
]

= λ

(
N

∑
i=0

αi SVLi(ηs)

)
+

(
N

∑
i=0

αi SVLi(ηs)

)2( N

∑
i=0

βi SVLi(ηs)

)
.

(14)

Substituting Equation (12) into (11), the initial conditions (11) are transformed into the
following system of algebraic equations:

N

∑
i=0

2 (−1)i αi = ψ1,0,
N

∑
i=0

2 (−1)i βi = ψ2,0. (15)

As a consequence, the following cost functions (CFs) can be used to express the preceding
system as a restricted optimization problem:

CF1 =
N

∑
r=0

∣∣∣∣∣ N

∑
j=d$e

αj χN,j,$

[
G$,p(ηs, γ0) + G$,p(ηs, γm)

+ 4
m−1

∑
k=1, k−odd

G$,p(ηs, γk) + 2
m−2

∑
k=2, k−even

G$,p(ηs, γk)
]
− ρ

+ (1 + λ)

(
N

∑
i=0

αi SVLi(ηs)

)
−
(

N

∑
i=0

αi SVLi(ηs)

)2( N

∑
i=0

βi SVLi(ηs)

)∣∣∣∣∣,
(16)
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and

CF2 =
N

∑
r=0

∣∣∣∣∣ N

∑
j=d$e

β j χN,j,$

[
G$,p(ηs, γ0) + G$,p(ηs, γm)

+ 4
m−1

∑
k=1, k−odd

G$,p(ηs, γk) + 2
m−2

∑
k=2, k−even

G$,p(ηs, γk)
]

− λ

(
N

∑
i=0

αi SVLi(ηs)

)
+

(
N

∑
i=0

αi SVLi(ηs)

)2( N

∑
i=0

βi SVLi(ηs)

)∣∣∣∣∣.
(17)

In this case, the constraint has the form

Cons =
∣∣∣ N

∑
i=0

2 (−1)i αi − ψ1,0

∣∣∣+ ∣∣∣ N

∑
i=0

2 (−1)i βi − ψ2,0

∣∣∣. (18)

We use the Penalty Leap Frog procedure [24] for solving the constrained optimization
problem (16)–(18) for the unknowns αi and βi, for each i = 0, 1, 2, ..., N. This, in turn, leads
us to formulate the approximate solution by substitution into (12).

The remainder of this section is devoted to presenting numerical simulations on a test
example associated with system (9)–(11) in the range [0, 3], with varying values of N, ρ, and
λ, and initial conditions ψ1,0 = 1 and ψ2,0 = 1. As a result of our experiments, we confirm
the accuracy and quality of the numerical scheme. Figure 1 illustrates the behavior of the
approximation using several values of $ (namely, $ = 1.0, 0.9, 0.8, 0.7), λ = 1, ρ = 0.25,
and N = 8. Figure 2 presents a comparison of our approach against the well-known
fourth-order Runge–Kutta method (RK4), using $ = 1, ρ = 0.25, λ = 1, and N = 8. The
behavior of the approximate solution employing the different values of λ = 0.5, 1.0, 1.5,
along with $ = 0.95, N = 8, and ρ = 0.25, is presented in Figure 3. Also, the behavior of
the approximate solution using the values ρ = 0.3, 0.6, 0.9, and $ = 0.95, N = 8 and λ = 1.0
is shown in Figure 4. From Figures 3 and 4, we can confirm that the behavior of the BM
depends critically on the values of the parameters λ and ρ. These parameters control the
strength of the reaction and diffusion processes and, hence, determine the system’s overall
behavior. In turn, Figure 5 shows the residual error function (REF) of the approximate
solution using the values N = 5, 9, with $ = 0.95, ρ = 0.1 and λ = 1. Finally, Figure 6
presents the behavior of the REF for the approximate solution using ρ = 0.2, 0.4, 0.6, along
with $ = 0.95, N = 8, and λ = 0.5. These results show the behavior of the numerical
solution resulting from the application of the proposed method concerning the parameters
$, N, λ, and ρ. We observe that the proposed method is adequate for solving the proposed
model in its fractional form with the RFE operator.

Figure 1. Approximate solutions for (a) ψ1(η) and (b) ψ2(η) versus different values of $.
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Figure 2. Solutions for (a) ψ1(η) and (b) ψ2(η) using the proposed approach and the RK4 method.

Figure 3. Approximate solutions for (a) ψ1(η) and (b) ψ2(η) vs. different values of λ.

Figure 4. Approximate solutions for (a) ψ1(η) and (b) ψ2(η) vs. different values of ρ.

Figure 5. The REF for the solutions (a) ψ1(η) and (b) ψ2(η) vs. different values of N.



Symmetry 2023, 15, 1619 9 of 10

Figure 6. The REF of the solutions (a) ψ1(η) and (b) ψ2(η) vs. different values of ρ.

4. Conclusions

The Brusselator model is a simple yet powerful mathematical model of chemical
reaction dynamics that has significantly impacted the field of chemical research. By un-
derstanding the behavior of this model, researchers can gain insights into the underlying
mechanisms of chemical reactions and develop new strategies for controlling and manipu-
lating these reactions. This model is an important example of a nonlinear dynamical system
and has applications in various fields beyond chemistry. In this manuscript, the numerical
solutions for the fractional Brusselator model were calculated using the Rabotnov fractional-
exponential kernel fractional derivative. Various fractional orders were considered, and
we employed the residual error function in our investigation. The results confirmed that
the proposed method is suitable for approximating the fractional mathematical model
considered in this work. Additionally, by including additional terms from the approxi-
mation solution series, we were able to control the precision of the error and decrease it
conveniently. Moreover, we concluded that the numerical simulations of the model under
consideration in the current study are better suited for the RFE operator without singularity.
By assessing the residual error function, we confirmed the effectiveness and accuracy of
the proposed approach. As a future generalization of this work, we will attempt to deal
with the same problem using a different kind of fractional derivative and different type of
polynomials. Finally, we must point out that the Mathematica software program was used
to carry out the numerical simulation work.
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