
Citation: Ge, Z.; Wang, H. Integrated

Optimization of Blocking Flowshop

Scheduling and Preventive

Maintenance Using a Q-Learning-

Based Aquila Optimizer. Symmetry

2023, 15, 1600. https://doi.org/

10.3390/sym15081600

Academic Editor: José Carlos

R. Alcantud

Received: 17 July 2023

Revised: 12 August 2023

Accepted: 16 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Integrated Optimization of Blocking Flowshop Scheduling
and Preventive Maintenance Using a Q-Learning-Based
Aquila Optimizer
Zhenpeng Ge and Hongfeng Wang *

College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
2100741@stu.neu.edu.cn
* Correspondence: hfwang@mail.neu.edu.cn

Abstract: In recent years, integration of production scheduling and machine maintenance has gained
increasing attention in order to improve the stability and efficiency of flowshop manufacturing
systems. This paper proposes a Q-learning-based aquila optimizer (QL-AO) for solving the integrated
optimization problem of blocking flowshop scheduling and preventive maintenance since blocking
in the jobs processing requires to be considered in the practice manufacturing environments. In
the proposed algorithmic framework, a Q-learning algorithm is designed to adaptively adjust the
selection probabilities of four key population update strategies in the classic aquila optimizer. In
addition, five local search methods are employed to refine the quality of the individuals according to
their fitness level. A series of numerical experiments are carried out according to two groups of flow-
shop scheduling benchmark. Experimental results show that QL-AO significantly outperforms six
peer algorithms and two state-of-the-art hybrid algorithms based on Q-Learning on the investigated
integrated scheduling problem. Additionally, the proposed Q-learning and local search strategies are
effective in improving its performance.

Keywords: blocking flowshop; scheduling; preventive maintenance (PM); aquila optimizer (AO);
Q-learning (QL)

1. Introduction

In the field of intelligent manufacturing, manufacturers are generally aiming at more
reliable production systems. However, both deterioration and default of machines are be-
coming critical factors because they inevitably appear in practical production systems [1,2].
In such a scenario, machines are not idealized, and they can break down and deteriorate
with cumulative processing time. To restore machine efficiency and reduce faults, executing
preventive maintenance (PM) is necessary [3]. Nevertheless, making decisions solely from
one side of production or PM is seriously hard to reach a good scheduling solution since
they are in conflict with each other. Specifically, PM consumes production time, whereas de-
laying PM to ensure production on time may increase the probability of machine faults. To
this end, integrated optimization of production and PM has become an effective method to
handle such problems [4]. In the integrated optimization process, degradation and default
of machines are considered, and PM is regarded as a constraint to simultaneously optimize
production and PM. In recent years, a large number of studies have demonstrated that this
integrated optimization method can achieve a high-quality solution [5]. Consequently, this
study aims to optimize an integrated production and PM problem.

Flowshop is a well-known manufacturing system for production scheduling, and
complex manufacturing plants often can be abstracted into variants or combinations of
this system [6]. Blocking flowshop is one of the most important variants of flowshop.
It has limited buffer capacity between machines due to the process characteristics and
technological requirements, and it has significant practical applications, e.g., chemical

Symmetry 2023, 15, 1600. https://doi.org/10.3390/sym15081600 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081600
https://doi.org/10.3390/sym15081600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8954-0876
https://doi.org/10.3390/sym15081600
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081600?type=check_update&version=1

Symmetry 2023, 15, 1600 2 of 18

production [7], steel industry [8], and robotic scheduling [9]. The reason of the blocking
may be that jobs are stranded in machines due to the lack of workers, or certain stages
are not allowed to be stored [10]. Due to the important practical significance, this study
investigates the integrated optimization of blocking flowshop. A general situation, i.e., the
blocking flowshop with no intermediate buffers is taken as the research object. In this
situation, a job cannot leave a machine until the next machine is free. Following the
three-field notation proposed by Graham et al. [11], the problem studied in this paper can
be expressed as Fm|PM, blocking|ω1Cmax + ω2TMC, where Fm means the flowshop, PM
represents the preventive maintenance, blocking indicates the blocking scheduling, and
ω1Cmax + ω2TMC denotes the object with minimizing the weighted sum of completion
time and total maintenance cost.

In terms of algorithm, since the classical blocking flowshop with three or more ma-
chines has been proven to be NP-hard [12], it is even more NP-hard for a blocking flow
shop with an integrated optimization. It is difficult to obtain a satisfactory solution in a
short time for large-scale problems with exact and heuristic algorithms. Therefore, var-
ious swarm intelligence algorithms are often as fast and effective tools of solving such
problems [13], such as genetic algorithms (GA) [14], particle swarm optimization algo-
rithms (PSO) [15], and bee colony algorithms (ABC) [16]. However, for complex integrated
optimization problems, especially large-scale problems, swarm intelligence algorithms
often easily fall into local optimal solutions. Thus, scholars are continuously designing
high-performance search mechanisms to handle such problems. The aquila optimizer (AO)
is a recently developed swarm evolutionary algorithm that simulates the hunting behavior
of aquila using multiple update strategies. Recent studies [17] have revealed that AO
has advantages of strong search capabilities and fast convergence. Moreover, it has been
well applied to problems such as path planning [18], 0–1 backpacking [19] and network
node localization [20]. Therefore, in this work, the high-performance AO is used to get a
better solution.

The presence of PM and blocking increases the complexity of the scheduling, making
it a complex, coupled, and symmetric combinatorial optimization problem. In order to
cope with the considered problem with high performance, it is necessary to adopt some
strategies to enhance the search capability. In recent years, Q-learning (QL) has become a
valid tool to improve intelligent algorithms in the field of scheduling, and the improved
algorithms always obtain an excellent performance. For instance, Runfo Li et al. [21]
used QL to dynamically adjust the crossover and variance probabilities of GA for the
port ship scheduling problem. Mao et al. [22] used QL to select the update strategies of
brain storm optimization algorithm for the assembly flow shop scheduling problem. Lixin
Cheng et al. [23] designed a QL based on the population size adjustment mechanism for
the energy-efficient manufacturing scheduling problem. Zhang et al. [24] designed a QL
based ant colony algorithm for an assembly scheduling, where QL is adopted to adjust the
search parameters. Learning from the previous studies, this study proposes a QL-based
AO (QL-AO), wherein QL is applied to adjust the selection probabilities of the four update
strategies of the basic AO. Additionally, a set of local search strategies is designed according
to the problem features. To verify the performance of QL-AO, computational experiments
are performed. The results show that the proposed algorithm can gain better results when
solving the proposed problem.

The contributions of this work are as follows:

(1) This work formulates an integrated optimization model for a blocking flowshop
scheduling problem. In this model, deterioration and default of machines, as well as
machine maintenance are considered at the same time. To calculate the object values,
a recursive formula is established;

(2) This work develops an AO with some special search techniques to enhance its perfor-
mance and propose the improved algorithm QL-AO. It employs a QL-based mecha-
nism for strategies selection. Other than that, a set of local search strategies is designed
to strengthen the search ability via combining the problem’s features;

Symmetry 2023, 15, 1600 3 of 18

(3) This work conducts a series of experiments to evaluate the performance of the pro-
posed QL-AO by comparing it with eight peer algorithms. They are experiments of
parameter settings, components comparison and algorithm comparison. The achieved
results suggest that QL-AO is an efficient optimizer compared to its peers.

The remainder of this paper is outlined as follows: Section 2 describes the problem
scenario and builds a mathematical model. Section 3 presents the designed algorithm.
Section 4 implements numerical experiments and analyzes the results. Section 5 concludes
this paper and provides some future research directions.

2. Problem Description

This study investigates an integrated optimization problem of blocking flowshop
scheduling and preventive maintenance (PM), in which both deterioration and default of
machines are also considered. The problem description is laid out in the following sections.

There are n jobs arriving at the initial time to be processed once on m machines in
turn. The sequence of processing jobs on all machines is the same as the first machine.
Due to the presence of blocking, the processed job must wait for the next operation on
the current machine until the next machine is available for processing. It is noted that
two special factors, that is, deterioration and default of machines, are both taken into
account on the basis of classic blocking flowshop scheduling. This means that the actual
processing time of job requires to be determined by the deterioration and failure parameters
of the machine. The purpose of integrated scheduling is to find the optimal job processing
sequence Jk,(k = 1, 2, · · · , n), as well as to determine when to execute PM activity.

For machine deterioration, let pi,j denote the normal processing time of i-th job on
machine j, ai,j denote the machine age of machine j after processing the i-th job, and γi
denote the deterioration factor of machine j. The processing time of i-th job on machine j
can be calculated as p′i,j = pi,j + γiai,j−1 when considering linear deterioration [25].

For machine fault, the Weibull distribution is adopted here according to the work
of Wang et al. [26]. The expected number of failures when machine j processes the i-th

job i can be calculated as Nij =
∫ ai,j

ai,j−1
r(t)dt =

(ai,j
η

)β
−
(ai,j−1

η

)β
, where β is the shape

parameter and η is the scale parameter. Once fault occurs, corrective maintenance (CM)
is executed immediately. CM can only restore the operating state of the machine but not
restore the machine age. In this study, the execution time of CM is included in the actual
processing time. Therefore, the actual processing time after considering the machine faults
and CM can be calculated as p′′i,j = p′i,j + Nijtcm, where tcm is the time for executing a CM.

This study employs a threshold-based PM strategy to ensure that the machine operates
at a consistently high level of reliability [27]. Specifically, the machine undergoes PM every
TPM (Time Period of Maintenance) to avoid potential fault or performance degradation.
The TPM should always be less than the maximum age limit Tmax j. Here, Tmax j can be

calculated as Tmax j = η·exp(
ln(−ln(Rj))

β), where Rj is the minimal reliability threshold
of machine.

Based on this policy, the execution of PM can be determined after obtaining the
scheduling sequence. To resolve any potential conflict between PM and job processing,
this study employed a conservative PM insertion approach. When scheduling a job,
the first step is to calculate whether the machine age exceeds Tmax j after processing. If
the limit is exceeded, the processing of this job is immediately delayed, and the PM is
inserted at the end of the previous job. If the threshold is not exceeded, normal process-
ing the job without executing PM. Therefore, the PM decision matrix can be defined as

pmi,j−1 =

{
0, i f ai,j ≤ Tmax j

1, else
, where pmi,j−1 = 1 denotes executing PM and restoring the

machine age, i.e., set ai,j−1 = 0, and pmi,j−1 = 0 denotes no execution of PM and calculating
the machine age ai,j = ai,j−1 + p′′i,j.

Symmetry 2023, 15, 1600 4 of 18

To further explain the impact of PM and blocking on scheduling, let us consider a
3 × 6 scheduling example, as depicted in Figure 1. Regarding PM, when machine 1 is
processing job 5, an immediate execution of job 1 would exceed the machine’s maximum
age limit. Therefore, PM is inserted after job 5’s processing, leading to the postponement of
job 1’s processing. Regarding blocking, during the processing of job 4 on the first machine,
job 6 is concurrently being processed on machine 2. Since there is no intermediate buffer,
job 4 remains on the first machine until job 6 completes its processing. Consequently, job
4’s transportation to machine 2 for processing is delayed, thereby causing a subsequent
delay in starting job 5.

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 18

𝑝𝑚𝑖,𝑗−1 = {
 0, 𝑖𝑓 𝑎𝑖,𝑗 ≤ 𝑇𝑚𝑎𝑥𝑗

1, 𝑒𝑙𝑠𝑒
, where 𝑝𝑚𝑖,𝑗−1 = 1 denotes executing PM and restoring the

machine age, i.e., set 𝑎𝑖,𝑗−1 = 0, and 𝑝𝑚𝑖,𝑗−1 = 0 denotes no execution of PM and calcu-

lating the machine age 𝑎𝑖,𝑗 = 𝑎𝑖,𝑗−1 + 𝑝𝑖,𝑗
′′ .

To further explain the impact of PM and blocking on scheduling, let us consider a 3 ×

6 scheduling example, as depicted in Figure 1. Regarding PM, when machine 1 is pro-

cessing job 5, an immediate execution of job 1 would exceed the machine’s maximum age

limit. Therefore, PM is inserted after job 5’s processing, leading to the postponement of

job 1’s processing. Regarding blocking, during the processing of job 4 on the first ma-

chine, job 6 is concurrently being processed on machine 2. Since there is no intermediate

buffer, job 4 remains on the first machine until job 6 completes its processing. Conse-

quently, job 4’s transportation to machine 2 for processing is delayed, thereby causing a

subsequent delay in starting job 5.

Figure 1. Diagram of blocking flowshop integrated scheduling.

The recursive formula to calculate the makespan (𝐶𝑚𝑎𝑥) is proposed as shown in

Equations (1)–(6). This formula is an extension of the standard blocking flowshop recur-

sive formula [28]. In the recursive process, the calculation starts with determining the

completion time of the first job. Then, the departure time is calculated, followed by de-

termining the completion time and departure time of the second job. This process con-

tinues iteratively until reaching the last job. And then, 𝐶𝑚𝑎𝑥 is obtained.

𝐶1,𝑗 = ∑(𝑝1,𝑙
′′)

𝑗

𝑙=1

, 𝑗 = 1, ⋯ , 𝑚. (1)

𝐷1,𝑗 = 𝐶1,𝑗 , 𝑗 = 1, ⋯ , 𝑚. (2)

𝐷𝑖,0 = 𝐷𝑖−1,1, 𝑖 = 2, … , 𝑛. (3)

𝐶𝑖,𝑗 = max [𝐶𝑖−1,𝑗+𝑇𝑝𝑚𝑗 × 𝑝𝑚𝑖−1,𝑗 , 𝐷𝑖,𝑗−1] + 𝑝𝑖,𝑗
′′ , 𝑖 = 2, … , 𝑛, 𝑗 = 1, ⋯ , 𝑚. (4)

𝐷𝑖,𝑗 = 𝑚𝑎𝑥{𝐶𝑖,𝑗 , 𝐷𝑖−1,𝑗+1}, 𝑖 = 2, … , 𝑛, 𝑗 = 1, ⋯ , 𝑚 − 1. (5)

𝐶𝑚𝑎𝑥 = 𝐶𝑖,𝑚 = 𝐷𝑖,𝑚, 𝑖 = 2, … , 𝑛. (6)

Notably, 𝐷1,𝑗 represents the start time of the first job on machine j. Due to the

presence of PM, the other job’s start time on the machine 𝑗 depends on the completed

time for PM and the departure time of the last job. The computation of 𝑝𝑖,𝑗
′′ and 𝑝𝑚𝑖,𝑗 has

been detailed in the preceding paragraphs.

Figure 1. Diagram of blocking flowshop integrated scheduling.

The recursive formula to calculate the makespan (Cmax) is proposed as shown in
Equations (1)–(6). This formula is an extension of the standard blocking flowshop recursive
formula [28]. In the recursive process, the calculation starts with determining the comple-
tion time of the first job. Then, the departure time is calculated, followed by determining
the completion time and departure time of the second job. This process continues iteratively
until reaching the last job. And then, Cmax is obtained.

C1,j =
j

∑
l=1

(
p′′1,l

)
, j = 1, · · · , m. (1)

D1,j = C1,j, j = 1, · · · , m. (2)

Di,0 = Di−1,1, i = 2, . . . , n. (3)

Ci,j = max
[
Ci−1,j +Tpmj × pmi−1,j, Di,j−1

]
+ p′′i,j, i = 2, . . . , n, j = 1, · · · , m. (4)

Di,j = max
{

Ci,j, Di−1,j+1
}

, i = 2, . . . , n, j = 1, · · · , m− 1. (5)

Cmax = Ci,m = Di,m, i = 2, . . . , n. (6)

Notably, D1,j represents the start time of the first job on machine j. Due to the presence
of PM, the other job’s start time on the machine j depends on the completed time for PM
and the departure time of the last job. The computation of p′′i,j and pmi,j has been detailed
in the preceding paragraphs.

The objective function in this study considers not only the widely used metric Cmax,
but also the substantial costs associated with maintenance activities. The goal of the
problem is to minimize the weighted sum of the Cmax and the total maintenance cost,
which encompasses both PM cost and CM cost. The total maintenance cost is calculated

Symmetry 2023, 15, 1600 5 of 18

by multiplying the total number of maintenance activities by the unit price of each. The
mathematical representation of the objective function is provided in Equation (7).

Min obj = ω1Cmax + ω2[CPM×∑n
i=1 ∑m

j=1 Ni,j + CMR×∑n
i=1 ∑m

j=1 pmi,j] (7)

where ω1, ω2 are weighting factors, and CPM, CMR are the cost of performing once PM
and CM, respectively.

3. The Proposed Algorithm
3.1. Basic Aquila Optimizer

Aquila optimizer (AO) is a novel population-based swarm intelligence algorithm
proposed by Laith Abualigah et al. [29] in 2021, which simulates the hunting process
of aquila. In the framework of AO algorithm, there are four key population update
strategies termed as expanded exploration, narrowed exploration, expanded exploitation
and narrowed exploitation. The whole iteration process of AO can be divided into two
periods. In the first 2/3 iterations, that is regarded as the exploration period, expanded
exploration and narrowed exploration strategies are selected randomly to update the
population. In the last 1/3 iterations, that is regarded as the exploitation period, expanded
exploitation and narrowed exploitation strategies are employed randomly, as shown in
Algorithm 1.

Algorithm 1: Basic AO

1. Initialize the population X and the parameters (i.e., α, δ, etc.) of the AO;
2. Calculate the fitness values of individuals in the population and find Xt

best;
3. Set t = 0;
4. While (the end condition is not met) do
5. for each individual in the current population do
6. Update Xt

mean, x, y, QF(t), Levy(D);
7. if t ≤ 2

3 itermax
8. if rand ≤ 0.5
9. Update the current individual using expanded exploration;
10. else
11. Update the current individual using narrowed exploration;
12. end if
13. else
14. if rand ≤ 0.5
15. Update the current individual using expanded exploitation;
16. else
17. Update the current individual using narrowed exploitation;
18. end if
19. end if
20. end for
21. Update Xt

best;
22. T = t + 1;
23. end while
24. return The best solution (Xbest).

For expanded exploration strategy, the AO widely explores high soar to determine the
area of the search space, as shown in the following formula.

Xt+1 = X
t
best ×

(
1− t

itermax

)
+
(
Xt

mean − Xt
best × rand

)
(8)

where t is the current iteration, itermax is the maximum iteration, Xt
best is the best individual

in the t-th iteration, and rand is the uniformly distributed random numbers between 0

Symmetry 2023, 15, 1600 6 of 18

and 1. Xt
mean denotes the locations mean value of the current population connected at t-th

iteration, defined as Xt
mean = 1

N ∑N
i=1 Xt

i .
For narrowed exploration strategy, AO narrowly explores the selected area of the

target prey in preparation for the attack, as shown in the following formula.

Xt+1 = X
t
best × levy(D) + Xt

rand + (y− x)× rand (9)

where Xt
rand is an individual selected randomly from the population in the t-th iteration.

y and x are used to present the spiral shape in the search, which are calculated as x =
r× sin(φ), and y = r× cos(φ). r = r1 + 0.00565× D1, and φ = −0.005× D1 +

3π
2 , where

r1 is a parameter between 1 and 20 for fixed the number of search cycles, and D1 is integer
numbers from 1 to the length of the search space.

Levy(D) is the Levy flight distribution function used to enhance the randomness of
the search, as shown in Equation (10).

Levy(D) = s× u× σ

|v|1/λ
, σ =

Γ(1 + λ)× sine
(

πλ
2

)
Γ
(

1+λ
2

)
× β× 2(

λ−1
2)

 (10)

where D is the dimension of the individual and Γ(·) is the gamma function. The constant
parameters s and λ are set to 0.01 and 1.5, respectively, and the random parameters u and v
are taken between 0 and 1.

For expanded exploitation strategy, AO exploits the selected area of the target to get
close to the prey and attack, as shown in the following formula.

Xt+1 = ν×
(
Xt

best − Xt
mean

)
− rand + δ× [(UB− LB)× rand + LB] (11)

where UB and LB are the upper and lower bounds, respectively. ν and δ are both the
exploitation adjustment parameters.

For narrowed exploitation, AO attacks the prey over the land according to their
stochastic movements, as shown in the following formula.

Xt+1 = QF(t)× Xt
best −

(
G1 × Xt × rand

)
− G2 × Levy(D) + G1 × rand (12)

where QF(t) is a quality function defined as QF(t) = 2×rand−1
t(1−itermax)2

, which is used to balance
the search strategy. G1 = 2× rand− 1 is used to simulate the action of tracking prey, and
G2 = 2×

(
1− t

itermax
)

is used to represent the slope of the flight.

3.2. Individual Representation

Considering that the AO algorithm requires to utilize the individuals with continuous
encoding to search for the optimal processing sequence of jobs of the investigated schedul-
ing problem, a random key representation-based ROV rule [30] is used to accomplish the
mapping of individual and candidate solution in this study. For example, let us consider an
individual X = [0.82, 0.18, 0.23, 0.68], where the minimum value 0.18 is at position 2. This
indicates that job 2 will be the first to be processed. Next, the sub-minor value 0.23 is at
position 3, indicating that job 3 will be the second to be processed. So, the corresponding
candidate solution, that is, the processing sequence of 4 jobs, is J = {2, 3, 4, 1}.

In order to enhance the quality of the initial population, an NEH heuristic is used
to generate a number of initial individuals with higher fitness. In detail, a candidate
solution of flowshop scheduling is firstly achieved according to the NEH heuristic, and
then 10% individuals in the initial population are generated randomly by executing the
abovementioned ROV rule upon the achieved solution reversely.

Symmetry 2023, 15, 1600 7 of 18

3.3. Q-Learning-Based Strategies Selection

The balance of exploration and exploitation is very important to intelligent algo-
rithms [31]. In the basic AO, the selection probabilities of four population update strategies
are artificially fixed. To cope with the complex integration scheduling problem, a Q-learning
(QL)-based selection method is proposed, which is the major contribution of this study.
In the proposed selection method, QL is employed to dynamically adjust the selection
probabilities of population update strategies according to the feedback information of AO’s
iteration process. The procedure of the QL update process is given in Algorithm 2. The
state, action and reward are presented below.

State: There are 12 states in the state set. It is divide into two metrics, that is cbad
and popdiv, as shown in Table 1. Here, cbad is the cumulative unimproved frequency of
historical optimal solutions, and c1, c2, d1, d2, d3 are the division parameters. The popdiv
represents the population diversity as shown in Equations (13) and (14) [32].

popdiv =
∑D

k=1 ∑D
η f (q)k(1− f (q)k)

D− 1
(13)

where f (q)k is defined as Equation (14). For notation δi,j(q), if the j-th job processed by the
machine i is job q, then δi,j(q) is set to 1, otherwise it is set to 0.

f (q)k =
∑

popnum
i=1 ∑D

j=1 δi,j(q)

popnum
, ∀q, k = 1, · · · , D (14)

Table 1. States definition table.

State Description State Description

1 cbad < c1&& popdiv < d1 7 c1 ≤ cbad < c2&& d2 ≤ popdiv < d3
2 cbad < c1&& d1 ≤ popdiv < d2 8 c1 ≤ cbad < c2&& popdiv ≥ d3
3 cbad < c1&& d2 ≤ popdiv < d3 9 cbad ≥ c2&& popdiv < d1
4 cbad < c1&& popdiv ≥ d3 10 cbad ≥ c2&& d1 ≤ popdiv < d2
5 c1 ≤ cbad < c2&& popdiv < d1 11 cbad ≥ c2&& d2 ≤ popdiv < d3
6 c1 ≤ cbad < c2&& d1 ≤ popdiv < d2 12 cbad ≥ c2&& popdiv ≥ d3

Action: Action set A is composed of four actions. They are defined as increasing the
selection probabilities of four update strategies. For example, let ∆ξ denote the amount
of probability increase, and p1 denote the selection probability of expanded exploration.
Action 1 can be described as p1 ← p1 + ∆ξ . To ensure that the probability sum is 1 after
the action is executed, the selection probabilities are normalized as pi = pi/∑4

i=1 pi. The
well-known ε-greedy strategy is used to select an action, as described in lines 10–14 in
Algorithm 2. In addition, to expedite the convergence of QL, the ε value undergoes a linear
decrease from 0.9 to 0.01 within every 100 iterations.

Reward: The reward method is described in lines 2–8 in Algorithm 2. If the optimal
solution is improved, the reward is set to 20. If the optimal solution does not improve but
there is an increase in diversity, the reward is set to 10. If neither of these conditions is met,
the reward is set to −5.

Symmetry 2023, 15, 1600 8 of 18

Algorithm 2: Pseudo code of Q-learning update

Input: A, Q, s, cbad, popdiv, c1, d1, f t
best, fbest, ε.

Output: Q, a′, s′.

1. Get the new state s′by cbad, popdiv, c1, d1 based on the rules in Table 1.
2. If f t

best < fbest
3. r = 20
4. else if popdiv > 0
5. r = 10
6. else
7. r = −5
8. end if
9. Q(s, a)← (1− α)Q(s, a) + α[r + γ·maxa′∈AQ(s′, a′)]
10. if rand > ε
11. a′ ← argmaxa∈AQ(s′, a)
12. else
13. a′ ← randomChoise(A)
14. end if

3.4. Local Search Strategies

In order to further enhance the search performance, five search strategies are used,
which can be described as follows.

1. Machine Age-Based Insert (MI): Insert the job with the highest mean machine age (the
average value of machine age for all machines) after the job with the lowest mean
machine age but excluding the first job. By applying this strategy, the job with the
highest mean machine age is repositioned to a more favorable location. This approach
may find a more potential solution.

2. PM-Based Swap (PS): In this strategy, the job with the maximum total times of PM
is moved one position backward. By performing this swap operation, the algorithm
aims to explore different arrangements of the PM-intensive job, potentially leading to
improvements in the scheduling solution.

3. Job Insert (JI): This is a common local search strategy in that two different jobs are
randomly selected and the first job is inserted after the second job. This operation
introduces a change in the sequence of jobs and may lead to an improved solution.

4. Job Swap (JS): Another commonly used local search strategy is job swap. Two different
jobs are randomly selected, and their positions are swapped. This exchange alters the
job order, potentially resulting in a better scheduling solution.

5. Random Generation (RG): This strategy randomly generates a scheduling solution.
The purpose of this strategy is to introduce diversity into the population. It encourages
the discovery of novel and potentially better scheduling solution.

For executing the five local search strategies, the population is first sorted according
to objective values. The top 20% individuals use MI and PS with equal probability. The
bottom 20% use RG, and the other individuals use JI and JS with equal probability. Among
all the local search strategies, the new solution is accepted if it improved, otherwise not.

3.5. The Framework of Proposed Algorithm

The proposed algorithm termed as QL-AO is an effective combination of AO and QL
to further improve the performance of AO for the investigated problem. The detailed steps
of QL-AO are presented below and the flow chart is shown in Figure 2.

Symmetry 2023, 15, 1600 9 of 18Symmetry 2023, 15, x FOR PEER REVIEW 9 of 18

Figure 2. The flow chart of QL-AO.

4. Computational Experiments

In this section, a series of experiments are conducted to evaluate the performance of

the proposed QL-AO algorithm for the investigated integrated optimization problem of

blocking flowshop scheduling and preventive maintenance. All algorithms run on a

computer with an Intel Core i5-10500 @ 3.10 GHz CPU and 16 GB memory and all the al-

gorithms are coded in the software platform MATLAB 2017a.

4.1. Test Instance Settings

In total, the 19 test instances are generated according to two flowshop scheduling

benchmark, in which the first 12 are proposed by Taillard [33] and the last 7 come from

the work of Ruiz [34], respectively. Additionally, we set the parameters of machine fail-

ure and maintenance as follows: two parameters of Weibull distribution 𝛽 = 2 and 𝜂 =

7000, deterioration factor γ = 0.02, two parameters of maintenance time 𝑡𝑐𝑚 = 20 and

𝑡𝑝𝑚 = 100, and reliability threshold R = 0.85.

4.2. Key Parameter Settings

Figure 2. The flow chart of QL-AO.

(1) Initialize the population with 90% random individuals and 10% ones generated via
the NEH-based solution.

(2) Select update strategy for each individual according to selection probabilities and then
update the population using different strategies.

(3) Execute local search for each individual to further improve its quality.
(4) If the termination condition is not met, execute a new iteration after adjusting the

selection probabilities by QL; otherwise, the algorithm is terminated.
(5) Go to QL section. Update the system state, reward, and Q-table. Select the new action,

execute the action to adjust probabilities, and then go to step (2).

4. Computational Experiments

In this section, a series of experiments are conducted to evaluate the performance
of the proposed QL-AO algorithm for the investigated integrated optimization problem
of blocking flowshop scheduling and preventive maintenance. All algorithms run on a
computer with an Intel Core i5-10500 @ 3.10 GHz CPU and 16 GB memory and all the
algorithms are coded in the software platform MATLAB 2017a.

Symmetry 2023, 15, 1600 10 of 18

4.1. Test Instance Settings

In total, the 19 test instances are generated according to two flowshop scheduling
benchmark, in which the first 12 are proposed by Taillard [33] and the last 7 come from
the work of Ruiz [34], respectively. Additionally, we set the parameters of machine failure
and maintenance as follows: two parameters of Weibull distribution β = 2 and η = 7000,
deterioration factor γ = 0.02, two parameters of maintenance time tcm = 20 and tpm = 100,
and reliability threshold R = 0.85.

4.2. Key Parameter Settings

In the proposed QL-AO algorithm, there are five key parameters, i.e., the population
size n, two exploitation adjustment parameters ν and δ, two QL-related parameters α
and γ. To find the promising parameters for the algorithms and the sensitivity analysis
of parameters, the Taguchi’s orthogonal experiment approach was employed. In this
part, three sets of orthogonal experiments were conducted, respectively, on a small-scale
instance (with 20 jobs and 20 machines), a medium-scale instance (with 100 jobs and
5 machines), and a large-scale instance (with 400 jobs and 20 machines). In each group of
experiment, 5 parameter levels were chosen for each parameter and an orthogonal array
with 25 parameter combinations was picked. QL-AO with each parameter combination was
run 20 times, and the mean value of the object over 20 independent runs was determined as
the response variable (RV), as shown in Table 2. Additionally, Table 3 shows the significant
rank of parameter combinations, and the results of the orthogonal experiments are shown
in Figure 3.

Table 2. Orthogonal experiment settings of QL-AO.

Trial
Number

Factor Levels RV
(20 × 20)

RV
(5 × 100)

RV
(400 × 20)n ν δ α γ

1 20 0.1 0.1 0.1 0.5 2919.89 7607.12 54201.77
2 20 0.3 0.3 0.2 0.6 2914.63 7602.14 54207.26
3 20 0.5 0.5 0.3 0.7 2928.07 7617.98 54208.93
4 20 0.7 0.7 0.4 0.8 2952.31 7602.17 54208.01
5 20 0.9 0.9 0.5 0.9 2914.06 7605.10 54205.58
6 40 0.1 0.3 0.3 0.8 2916.63 7577.49 54150.14
7 40 0.3 0.5 0.4 0.9 2933.99 7602.04 54134.41
8 40 0.5 0.7 0.5 0.5 2910.07 7590.76 54137.54
9 40 0.7 0.9 0.1 0.6 2904.77 7597.79 54112.47
10 40 0.9 0.1 0.2 0.7 2907.46 7572.77 54102.59
11 60 0.1 0.5 0.5 0.6 2913.42 7555.60 54114.38
12 60 0.3 0.7 0.1 0.7 2921.55 7570.67 54092.44
13 60 0.5 0.9 0.2 0.8 2900.78 7580.53 54104.55
14 60 0.7 0.1 0.3 0.9 2910.33 7570.79 54076.38
15 60 0.9 0.3 0.4 0.5 2905.61 7583.08 54103.36
16 80 0.1 0.7 0.2 0.9 2918.75 7574.19 54081.89
17 80 0.3 0.9 0.3 0.5 2902.09 7566.89 54084.02
18 80 0.5 0.1 0.4 0.6 2928.77 7532.74 54061.93
19 80 0.7 0.3 0.5 0.7 2893.97 7574.99 54061.09
20 80 0.9 0.5 0.1 0.8 2910.99 7563.49 54098.52
21 100 0.1 0.9 0.4 0.7 2906.50 7565.46 54075.70
22 100 0.3 0.1 0.5 0.8 2904.08 7573.83 54088.92
23 100 0.5 0.3 0.1 0.9 2900.06 7560.35 54070.07
24 100 0.7 0.5 0.2 0.5 2894.66 7576.20 54040.78
25 100 0.9 0.7 0.3 0.6 2901.78 7583.82 54031.82

Symmetry 2023, 15, 1600 11 of 18

Table 3. Response and rank of parameters.

(a) Small-scale instances with 20 jobs and 20 machines

Levels n ν δ α γ

1 2925.79 2915.04 2914.11 2911.45 2906.46

2 2914.58 2915.27 2906.18 2907.26 2912.67

3 2910.34 2913.55 2916.23 2911.78 2911.51

4 2910.91 2911.21 2920.89 2925.44 2916.96

5 2901.42 2907.98 2905.64 2907.12 2915.44

Delta 24.38 7.29 15.25 18.32 10.49

Rank 1 5 3 2 4

(b) Medium-scale instances with 100 jobs and 5 machines

Levels n ν δ α γ

1 7606.90 7575.97 7571.45 7579.88 7584.81

2 7588.17 7583.11 7579.61 7581.17 7574.42

3 7572.13 7576.47 7583.06 7583.39 7580.37

4 7562.46 7584.39 7584.32 7577.10 7579.50

5 7571.93 7581.65 7583.15 7580.06 7582.49

Delta 44.44 8.42 12.87 6.30 10.39

Rank 1 4 2 5 3

(c) Large-scale instances with 400 jobs and 20 machines

Levels n ν δ α γ

1 54206.31 54124.78 54106.32 54115.05 54113.49

2 54127.43 54121.41 54118.38 54107.41 54105.57

3 54098.22 54116.60 54119.40 54110.26 54108.15

4 54077.49 54099.75 54110.34 54116.68 54130.03

5 54061.46 54108.37 54116.46 54121.50 54113.67

Delta 144.85 25.03 13.09 14.09 24.46

Rank 1 2 5 4 3

It can be observed from the main effects plots that n = 100, ν = 0.9, δ = 0.9,
α = 0.5, γ = 0.5 is a promising parameter combination for small-scale instances; n = 80,
ν = 0.1, δ = 0.1, α = 0.4, γ = 0.6 is a promising parameter combination for medium-scale
instances;n = 100, ν = 0.7, δ = 0.1, α = 0.2, γ = 0.6 is a promising parameter combination
for large-scale instances. From Table 3, it is observed that population size n is the most
significant parameter for all situations. An appropriate increase in n is beneficial to the
search. The ranking of two exploitation adjustment parameters ν, δ increases and decreases,
respectively, with the increase in scale of the instances. This suggests that in large-scale
instances, the parameter ν is more important. The learning rate α is ranked low in the
medium-scale and large-scale instances but is ranked high in the small-scale instance. This
suggests that only the small-scale instances are more sensitive to the setting of the learning
rate. The importance of the discount rate γ is not much affected by the scale of the instances,
and it keeps around rank 3.

Symmetry 2023, 15, 1600 12 of 18Symmetry 2023, 15, x FOR PEER REVIEW 11 of 18

(a)

(b)

(c)

Figure 3. Main effect plots of key parameters. (a) Small-scale instance with 20 jobs and 20 ma-

chines; (b) large-scale instance with 400 jobs and 20 machines; (c) large-scale instance with 400 jobs

and 20 machines.

It can be observed from the main effects plots that 𝑛 = 100, 𝜈 = 0.9, 𝛿 = 0.9, 𝛼 =

0.5, 𝛾 = 0.5 is a promising parameter combination for small-scale instances; 𝑛 = 80,

𝜈 = 0.1, 𝛿 = 0.1 , 𝛼 = 0.4 , 𝛾 = 0.6 is a promising parameter combination for medi-

um-scale instances; 𝑛 = 100, 𝜈 = 0.7, 𝛿 = 0.1, 𝛼 = 0.2, 𝛾 = 0.6 is a promising parame-

ter combination for large-scale instances. From Table 3, it is observed that population

size 𝑛 is the most significant parameter for all situations. An appropriate increase in 𝑛

is beneficial to the search. The ranking of two exploitation adjustment parameters 𝜈, 𝛿

increases and decreases, respectively, with the increase in scale of the instances. This

suggests that in large-scale instances, the parameter 𝜈 is more important. The learning

rate 𝛼 is ranked low in the medium-scale and large-scale instances but is ranked high in

the small-scale instance. This suggests that only the small-scale instances are more sensi-

tive to the setting of the learning rate. The importance of the discount rate 𝛾 is not much

affected by the scale of the instances, and it keeps around rank 3.

Figure 3. Main effect plots of key parameters. (a) Small-scale instance with 20 jobs and 20 machines;
(b) large-scale instance with 400 jobs and 20 machines; (c) large-scale instance with 400 jobs and
20 machines.

4.3. Comparison of the Components on QL-AO

The proposed QL-AO includes the following key components: (1) NEH heuristic
method for initialization, (2) Q-learning-based strategies selection, and (3) local search
strategies. To illustrate the performance of each component, we compared the QL-AO
without them separately, as shown in Table 4. Each algorithm runs 20 times on a large-scale
instances with 100 jobs and 3 machines.

Table 4. QL-AO with different components.

Algorithm Description

1 QL-AO without NEH heuristic method for initialization
2 QL-AO without local search strategies
3 QL-AO without QL based strategies selection
4 QL-AO with all components

Symmetry 2023, 15, 1600 13 of 18

The boxplots of result are shown in Figure 4. It can be seen that the algorithm without
heuristic initialization and without local search strategies easily fall into a poor solution.
The QL-based strategies selection can significantly improve AO. Other than that, in order
to illustrate the probabilities adjustment process, the probabilities curves (Figure 5) were
printed out. It can be seen that the selection probabilities of different update strategies are
continuously adjusted to find the optimal value.

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 18

Figure 4. Boxplots of components comparison.

Figure 5. Probabilities adjusting process.

4.4. Algorithm Comparison

To verify the effectiveness of the proposed QL-AO, it is compared with the most

classic algorithms, GA and PSO, three novel algorithms, ABC, CS and JAYA, and the

basic AO. In addition, Q-learning-based genetic algorithm (QL-GA) and

Q-learning-based artificial bee colony algorithm (QL-ABC), proposed by Chen et al. [35]

in 2020 and Long et al. [36] in 2022, respectively, are selected as comparison algorithms.

In fairness, the competitive algorithms used the same heuristic initialization method as

QL-AO. In addition, ABC, QL-ABC, PSO, CS, JAYA and AO used the same encoding

method and local search strategies as QL-AO, and GA, QL-GA used the local search

strategies of QL-AO as the mutation part.

Table 5 shows the results of QL-AO and its comparative algorithms on Taillard

benchmark where Min, Mean, Std., respectively, indicates the best solution, the mean

value, the standard deviation of 20 runs. The minimums of the mean and the min for

each instance are bolded. In addition, Wilcoxon test was used to show the significance of

the difference between QL-AO and the competitive algorithms. The symbol “+” indicates

that QL-AO is significantly better than the competitive algorithm, the symbol “−” indi-

cates that QL-AO is significantly worse than the competitive algorithm, and the symbol

“≈” indicates that the difference with the competitive algorithm is not significant under

the Wilcoxon rank sum test (α = 0.05). The symbol “+∕≈∕−” indicates the number of in-

stances that QL-AO is better, similar or worse than the competitive algorithms under the

Wilcoxon test.

It can be seen from the data in Table 5 that the mean value of QL-AO is always

better than that of AO, and it is significant on large-scale cases. This proves the effec-

tiveness of combining QL and AO. GA, QL-GA, ABC, QL-ABC PSO, CS, and JAYA have

excellent performance than QL-AO, respectively, on the small-scale instances 1–4. How-

ever, they do not do well on other instances. The reason may be that small-scale instanc-

Figure 4. Boxplots of components comparison.

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 18

Figure 4. Boxplots of components comparison.

Figure 5. Probabilities adjusting process.

4.4. Algorithm Comparison

To verify the effectiveness of the proposed QL-AO, it is compared with the most

classic algorithms, GA and PSO, three novel algorithms, ABC, CS and JAYA, and the

basic AO. In addition, Q-learning-based genetic algorithm (QL-GA) and

Q-learning-based artificial bee colony algorithm (QL-ABC), proposed by Chen et al. [35]

in 2020 and Long et al. [36] in 2022, respectively, are selected as comparison algorithms.

In fairness, the competitive algorithms used the same heuristic initialization method as

QL-AO. In addition, ABC, QL-ABC, PSO, CS, JAYA and AO used the same encoding

method and local search strategies as QL-AO, and GA, QL-GA used the local search

strategies of QL-AO as the mutation part.

Table 5 shows the results of QL-AO and its comparative algorithms on Taillard

benchmark where Min, Mean, Std., respectively, indicates the best solution, the mean

value, the standard deviation of 20 runs. The minimums of the mean and the min for

each instance are bolded. In addition, Wilcoxon test was used to show the significance of

the difference between QL-AO and the competitive algorithms. The symbol “+” indicates

that QL-AO is significantly better than the competitive algorithm, the symbol “−” indi-

cates that QL-AO is significantly worse than the competitive algorithm, and the symbol

“≈” indicates that the difference with the competitive algorithm is not significant under

the Wilcoxon rank sum test (α = 0.05). The symbol “+∕≈∕−” indicates the number of in-

stances that QL-AO is better, similar or worse than the competitive algorithms under the

Wilcoxon test.

It can be seen from the data in Table 5 that the mean value of QL-AO is always

better than that of AO, and it is significant on large-scale cases. This proves the effec-

tiveness of combining QL and AO. GA, QL-GA, ABC, QL-ABC PSO, CS, and JAYA have

excellent performance than QL-AO, respectively, on the small-scale instances 1–4. How-

ever, they do not do well on other instances. The reason may be that small-scale instanc-

Figure 5. Probabilities adjusting process.

4.4. Algorithm Comparison

To verify the effectiveness of the proposed QL-AO, it is compared with the most classic
algorithms, GA and PSO, three novel algorithms, ABC, CS and JAYA, and the basic AO. In
addition, Q-learning-based genetic algorithm (QL-GA) and Q-learning-based artificial bee
colony algorithm (QL-ABC), proposed by Chen et al. [35] in 2020 and Long et al. [36] in 2022,
respectively, are selected as comparison algorithms. In fairness, the competitive algorithms
used the same heuristic initialization method as QL-AO. In addition, ABC, QL-ABC, PSO,
CS, JAYA and AO used the same encoding method and local search strategies as QL-AO,
and GA, QL-GA used the local search strategies of QL-AO as the mutation part.

Table 5 shows the results of QL-AO and its comparative algorithms on Taillard bench-
mark where Min, Mean, Std., respectively, indicates the best solution, the mean value, the
standard deviation of 20 runs. The minimums of the mean and the min for each instance
are bolded. In addition, Wilcoxon test was used to show the significance of the difference
between QL-AO and the competitive algorithms. The symbol “+” indicates that QL-AO is
significantly better than the competitive algorithm, the symbol “−” indicates that QL-AO
is significantly worse than the competitive algorithm, and the symbol “≈” indicates that
the difference with the competitive algorithm is not significant under the Wilcoxon rank
sum test (α = 0.05). The symbol “+/≈/−” indicates the number of instances that QL-AO is
better, similar or worse than the competitive algorithms under the Wilcoxon test.

Symmetry 2023, 15, 1600 14 of 18

Table 5. Experimental results on Taillard benchmark.

Instance n × m GA QL-GA ABC QL-ABC PSO CS JAYA AO QL-AO

1 20 × 5 Min 1383.40 1380.55 1390.95 1382.09 1381.78 1384.42 1374.93 1406.07 1387.86
Mean 1417.19 1411.31 1405.28 1398.08 1415.45 1402.32 1401.29 1422.98 1416.74
Std. 16.23 16.32 10.43 7.81 18.76 10.80 13.04 15.41 17.57

Wilcoxon ≈ − − − ≈ − − ≈

2 20 × 10 Min 1904.79 1906.18 1912.58 1910.90 1938.96 1913.57 1910.49 1912.15 1917.31
Mean 1935.60 1934.50 1943.50 1933.69 1971.93 1933.88 1953.81 1944.88 1942.31
Std. 22.77 21.12 13.26 11.98 22.55 17.78 21.83 22.82 22.41

Wilcoxon ≈ ≈ ≈ ≈ + ≈ + ≈

3 20 × 20 Min 2845.92 2844.01 2836.83 2828.02 2866.88 2824.59 2851.64 2875.42 2881.18
Mean 2935.25 2931.72 2879.17 2870.14 2901.16 2869.03 2883.96 2926.00 2925.85
Std. 50.53 39.09 18.86 18.97 22.42 24.15 20.81 36.51 31.86

Wilcoxon ≈ ≈ − − − − − ≈

4 50 × 5 Min 3576.51 3528.83 3683.86 3642.64 3544.32 3581.38 3652.11 3494.77 3488.32
Mean 3612.92 3611.97 3733.72 3704.98 3682.18 3657.06 3723.94 3564.16 3549.49
Std. 33.48 33.22 31.21 31.93 50.00 27.97 31.70 34.53 38.09

Wilcoxon + + + + + + + ≈

5 20 × 9 Min 4794.76 4762.25 4845.85 4788.66 4752.50 4733.64 4846.58 4793.12 4752.44
Mean 4855.40 4851.91 4912.50 4871.81 4878.56 4832.86 4923.75 4837.01 4824.00
Std. 33.58 40.51 30.56 35.14 74.37 49.68 35.33 29.09 39.16

Wilcoxon + + + + + ≈ + ≈

6 50 × 10 Min 7044.37 7033.18 7149.35 7099.14 7026.40 7020.96 7052.65 7003.96 6963.96
Mean 7105.98 7094.31 7195.91 7159.99 7147.39 7114.70 7185.12 7076.00 7067.55
Std. 36.56 34.69 30.66 32.84 53.89 39.90 43.09 33.72 42.41

Wilcoxon + + + + + + + ≈

7 50 × 20 Min 7644.53 7638.80 7811.62 7820.39 7747.91 7693.94 7820.39 7581.37 7495.38
Mean 7710.22 7708.41 7819.69 7820.39 7816.77 7796.97 7820.39 7628.43 7598.21
Std. 32.91 27.53 2.17 0.00 16.21 32.51 0.00 29.79 41.21

Wilcoxon + + + + + + + +

8 100 × 5 Min 9997.27 9980.79 10,258.11 10,233.13 10,121.03 10,164.82 10,188.47 9920.42 9885.14
Mean 10,079.75 10,076.84 10,259.78 10,256.91 10,252.46 10,223.50 10,255.17 10,003.37 9957.90
Std. 67.14 57.67 0.48 6.44 30.98 29.49 16.18 36.87 48.03

Wilcoxon + + + + + + + +

9 100 × 10 Min 13,518.95 13,513.64 13,680.83 13,602.60 13,507.90 13,616.91 13,621.38 13,473.78 13,378.77
Mean 13,614.51 13,611.87 13,719.77 13,711.69 13,683.29 13,677.17 13,718.22 13,530.68 13,497.21
Std. 43.95 42.78 27.66 35.88 73.02 33.36 32.92 26.27 44.54

Wilcoxon + + + + + + + +

10 100 × 20 Min 19,667.65 19,625.42 19,909.16 19,883.45 19,893.75 19,799.03 19,914.51 19,564.39 19,498.81
Mean 19,759.66 19,755.36 19,914.25 19,909.61 19,913.48 19,861.52 19,914.51 19,644.18 19,588.10
Std. 51.08 57.72 1.20 8.54 4.64 28.32 0.00 41.36 60.49

Wilcoxon + + + + + + + +

11 200 × 20 Min 26,753.76 26,713.04 26,989.87 26,956.33 27,008.19 26,821.13 27,008.19 26,586.15 26,577.62
Mean 26,839.01 26,823.55 27,006.69 26,997.57 27,008.19 26,919.17 27,008.19 26,719.92 26,652.97
Std. 61.16 68.51 4.73 16.39 0.00 43.78 0.00 51.97 45.25

Wilcoxon + + + + + + + +

12 500 × 20 Min 67,501.67 67,498.71 67,629.04 67,620.43 67,629.04 67,483.90 67,629.04 67,350.62 67,327.82
Mean 67,582.04 67,575.48 67,629.04 67,628.42 67,629.04 67,566.84 67,629.04 67,465.49 67,444.82
Std. 35.89 31.59 0.00 2.06 0.00 31.35 0.00 58.41 55.76

Wilcoxon + + + + + + + ≈

Wilcoxon +/≈/− 9/3/0 9/2/1 9/1/2 9/1/2 10/1/1 8/2/2 10/0/2 5/7/0

It can be seen from the data in Table 5 that the mean value of QL-AO is always better
than that of AO, and it is significant on large-scale cases. This proves the effectiveness of
combining QL and AO. GA, QL-GA, ABC, QL-ABC PSO, CS, and JAYA have excellent
performance than QL-AO, respectively, on the small-scale instances 1–4. However, they
do not do well on other instances. The reason may be that small-scale instances are not
hard, and other algorithms such as CS with strong exploration mechanism may be more
appropriate. Further, it is observed that QL-AO always obtains best mean value and best
min value on the other larger scale instances 5–12, and it is significant under the Wilcoxon

Symmetry 2023, 15, 1600 15 of 18

test on instances 7–11. It shows that QL-AO exploitation and exploration abilities have
been well balanced by adjusting selection probabilities during the search process compared
to other competitors. It can be noted that two advanced algorithms with the involvement
of QL, QL-GA and QL-ABC, have certain improvements compared to the basic algorithms
GA and ABC, respectively. These are due to the dynamic adjustment of GA’s parameters
by QL and dynamic control of ABC’s search dimensions by QL, respectively. However,
under this integration optimization issue they still have certain gaps compared to QL-AO
and need further improvement.

Figures 6 and 7 separately show the boxplots of optimal solutions and the convergence
curves of algorithms on instances 8–9, respectively. It can be concluded that the solution
distribution of QL-AO is significantly better than other algorithms and it converges faster.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 18

 Mean 26,839.01 26,823.55 27,006.69 26,997.57 27,008.19 26,919.17 27,008.19 26,719.92 26,652.97

 Std. 61.16 68.51 4.73 16.39 0.00 43.78 0.00 51.97 45.25

 Wilcoxon + + + + + + + +

12 500 × 20 Min 67,501.67 67,498.71 67,629.04 67,620.43 67,629.04 67,483.90 67,629.04 67,350.62 67,327.82

 Mean 67,582.04 67,575.48 67,629.04 67,628.42 67,629.04 67,566.84 67,629.04 67,465.49 67,444.82

 Std. 35.89 31.59 0.00 2.06 0.00 31.35 0.00 58.41 55.76

 Wilcoxon + + + + + + + ≈

Wilcoxon +/≈/− 9/3/0 9/2/1 9/1/2 9/1/2 10/1/1 8/2/2 10/0/2 5/7/0

Figures 6 and 7 separately show the boxplots of optimal solutions and the conver-

gence curves of algorithms on instances 8–9, respectively. It can be concluded that the

solution distribution of QL-AO is significantly better than other algorithms and it con-

verges faster.

Figure 6. Boxplots of optimal solutions.

Figure 7. Convergence curves of algorithms.

In order to further verify the performance of QL-AO on more hard instances, we

selected seven large-scale instances to test. They are from Ruiz’s new hard benchmark.

The results of each algorithm are shown in Table 6.

Figure 6. Boxplots of optimal solutions.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 18

 Mean 26,839.01 26,823.55 27,006.69 26,997.57 27,008.19 26,919.17 27,008.19 26,719.92 26,652.97

 Std. 61.16 68.51 4.73 16.39 0.00 43.78 0.00 51.97 45.25

 Wilcoxon + + + + + + + +

12 500 × 20 Min 67,501.67 67,498.71 67,629.04 67,620.43 67,629.04 67,483.90 67,629.04 67,350.62 67,327.82

 Mean 67,582.04 67,575.48 67,629.04 67,628.42 67,629.04 67,566.84 67,629.04 67,465.49 67,444.82

 Std. 35.89 31.59 0.00 2.06 0.00 31.35 0.00 58.41 55.76

 Wilcoxon + + + + + + + ≈

Wilcoxon +/≈/− 9/3/0 9/2/1 9/1/2 9/1/2 10/1/1 8/2/2 10/0/2 5/7/0

Figures 6 and 7 separately show the boxplots of optimal solutions and the conver-

gence curves of algorithms on instances 8–9, respectively. It can be concluded that the

solution distribution of QL-AO is significantly better than other algorithms and it con-

verges faster.

Figure 6. Boxplots of optimal solutions.

Figure 7. Convergence curves of algorithms.

In order to further verify the performance of QL-AO on more hard instances, we

selected seven large-scale instances to test. They are from Ruiz’s new hard benchmark.

The results of each algorithm are shown in Table 6.

Figure 7. Convergence curves of algorithms.

In order to further verify the performance of QL-AO on more hard instances, we
selected seven large-scale instances to test. They are from Ruiz’s new hard benchmark. The
results of each algorithm are shown in Table 6.

From Table 6, it is obvious that the proposed QL-AO is clearly better and more
effective than other comparison algorithms on the hard instances. It can be concluded that
the proposed QL-AO is a new efficient algorithm to solve the integrated scheduling of
blocking flowshop.

Symmetry 2023, 15, 1600 16 of 18

Table 6. Experimental results on Ruiz’s hard benchmark.

Instance n × m GA QL-GA ABC QL-ABC PSO CS JAYA AO QL-AO

13 100 × 20 Min 13,381.89 13,365.69 13,575.12 13,556.27 13,607.59 13,498.32 13,593.09 13,288.05 13,274.52
Mean 13,461.01 13,457.96 13,611.66 13,610.96 13,623.99 13,567.71 13,623.36 13,385.36 13,363.48
Std. 61.51 53.06 18.02 21.90 3.88 23.06 7.12 52.22 58.06

Wilcoxon + + + + + + + +

14 200 × 20 Min 27,058.88 27,084.77 27,335.85 27,296.28 27,367.67 27,204.34 27,363.98 26,959.71 26,904.79
Mean 27,172.23 27,167.89 27,374.07 27,370.44 27,377.79 27,264.71 27,377.60 27,058.02 27,013.08
Std. 71.05 71.38 12.93 20.34 2.38 36.42 3.21 44.85 49.14

Wilcoxon + + + + + + + +

15 300 × 20 Min 40,531.17 40,577.87 40,799.60 40,799.01 40,799.60 40,675.93 40,799.60 40,465.17 40,436.82
Mean 40,669.81 40,662.84 40,799.60 40,798.57 40,799.60 40,729.63 40,799.60 40,564.75 40,515.46
Std. 71.38 38.12 0.00 1.13 0.00 27.69 0.00 62.05 41.60

Wilcoxon + + + + + + + +

16 400 × 20 Min 54,237.72 54,233.34 54,344.92 54,326.63 54,344.92 54,244.88 54,344.92 54,091.23 54,081.69
Mean 54,303.77 54,294.36 54,344.92 54,343.62 54,344.92 54,284.78 54,344.92 54,170.96 54,164.14
Std. 27.75 26.91 0.00 4.09 0.00 20.88 0.00 47.79 52.33

Wilcoxon + + + + + + + ≈

17 500 × 20 Min 68,420.67 68,410.24 68,640.32 68,623.26 68,640.32 68,451.30 68,640.32 68,297.54 68,282.72
Mean 68,562.80 68,531.40 68,640.32 68,638.17 68,640.32 68,544.95 68,640.32 68,418.68 68,399.91
Std. 55.42 38.68 0.00 5.17 0.00 37.85 0.00 55.23 58.95

Wilcoxon + + + + + + + +

18 600 × 20 Min 81,641.45 81,637.28 81,744.13 81,716.31 81,744.13 81,624.94 81,744.13 81,562.63 81,504.01
Mean 81,713.28 81,711.14 81,744.13 81,740.62 81,744.13 81,663.04 81,744.13 81,627.96 81,627.42
Std. 23.93 17.62 0.00 8.50 0.00 18.70 0.00 42.29 51.35

Wilcoxon + + + + + + + ≈

19 700 × 20 Min 94,930.95 94,925.67 95,010.06 95,003.24 95,010.06 94,830.38 95,010.06 94,853.35 94,841.62
Mean 94,975.91 94,971.35 95,010.06 95,009.48 95,010.06 94,932.49 95,010.06 94,923.47 94,921.12
Std. 20.54 25.09 0.00 1.83 0.00 35.92 0.00 42.72 37.68

Wilcoxon + + + + + + + +

Wilcoxon +/≈/− 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 5/2/0

5. Conclusions

This study investigates the application of a Q-learning-based aquila optimizer (QL-AO)
for the integrated optimization problem of blocking flowshop scheduling and preventive
maintenance. This QL-AO algorithm can adjust the population update operations during
the iteration process adaptively by using Q-learning to update the selection probabilities of
four update strategies in the basic aquila optimizer. In addition, an NEH based initialization
scheme and five local search methods are employed to further improve the performance
of QL-AO. Based on a series of numeric experiments that are carried out on two groups
of flowshop scheduling benchmark, this QL-AO algorithm performs significantly better
than the other eight comparison algorithms in most test instances. Experimental results
also indicate that the proposed Q-learning and local search strategies do well in improving
the performance of aquila optimizer for the investigated integrated scheduling problem.

However, there are also some limitations of this study. In terms of modeling, the
uncertainty of machine maintenance time, jobs’ arrival time and jobs’ processing time are
not taken into account. And this study is conducted without using actual factory data. In
terms of algorithm, this study adopts a weighted approach to deal with multi-objective
problems, thus unable to obtain non-dominated optimal solutions. In future research,
the following topics will be considered. The first straightforward work is to examine the
validity of QL-AO in solving the real-world scenarios considering that the test instances
are generated from the general flowshop scheduling benchmark in this paper. The second
is the design of a Pareto-based multi-objective AO to obtain a non-dominated set for multi-
objective optimization. Moreover, it is also interesting to apply Q-learning to determine
how to balance the exploration and exploitation period in the aquila optimizer.

Symmetry 2023, 15, 1600 17 of 18

Author Contributions: Writing—original draft preparation, Software, Z.G.; Supervision, H.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is partially supported by the National Science Foundation of China under
Grant Nos. 61973203 and 72271048.

Data Availability Statement: Taillard benchmark: http://mistic.heig-vd.ch/taillard/problemes.dir/
ordonnancement.dir/ordonnancement.html, (accessed on 15 August 2023). Ruiz’s hard benchmark:
http://soa.iti.es/problem-instances, (accessed on 15 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Azimpoor, S.; Taghipour, S.; Farmanesh, B.; Sharifi, M. Joint Planning of Production and Inspection of Parallel Machines with

Two-phase of Failure. Rellab. Eng. Syst. Saf. 2022, 217, 108097. [CrossRef]
2. Ben Ali, M.; Sassi, M.; Gossa, M.; Harrath, Y. Simultaneous scheduling of production and maintenance tasks in the job shop. Int. J.

Prod. Res. 2011, 49, 3891–3918. [CrossRef]
3. Basri, E.I.; Abdul Razak, I.H.; Ab-Samat, H.; Kamaruddin, S. Preventive Maintenance (PM) planning: A review. J. Qual. Maint.

Eng. 2017, 23, 14. [CrossRef]
4. Wang, H.; Yan, Q.; Zhang, S. Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system

using a reinforcement learning approach. Adv. Eng. Inform. 2021, 49, 101339. [CrossRef]
5. Yan, Q.; Wang, H.; Wu, F. Digital twin-enabled dynamic scheduling with preventive maintenance using a double-layer Q-learning

algorithm. Comput. Oper. Res. 2022, 144, 105823. [CrossRef]
6. Liu, L.X.; Shi, L.Y. Automatic Design of Efficient Heuristics for Two-Stage Hybrid Flow Shop Scheduling. Symmetry 2022, 14, 162.

[CrossRef]
7. Merchan, A.F.; Maravelias, C.T. Preprocessing and tightening methods for time-indexed chemical production scheduling models.

Comput. Chem. Eng. 2016, 84, 516–535. [CrossRef]
8. Gong, H.; Tang, L.; Duin, C.W. A two-stage flow shop scheduling problem on a batching machine and a discrete machine with

blocking and shared setup times. Comput. Oper. Res. 2010, 37, 960–969. [CrossRef]
9. Elmi, A.; Topaloglu, S. A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots. Comput. Oper. Res.

2013, 40, 2543–2555. [CrossRef]
10. Miyata, H.H.; Nagano, M.S. The blocking flow shop scheduling problem: A comprehensive and conceptual review. Expert. Syst.

Appl. 2019, 137, 130–156. [CrossRef]
11. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and approximation in deterministic sequencing and

scheduling: A survey. ADM 1979, 5, 287–326.
12. Hall, N.G.; Sriskandarajah, C. A survey of machine scheduling problems with blocking and no-wait in process. Oper. Res. 1996,

44, 510–525. [CrossRef]
13. Jiang, J.; An, Y.; Dong, Y.; Hu, J.; Li, Y.; Zhao, Z. Integrated optimization of non-permutation flow shop scheduling and

maintenance planning with variable processing speed. Reliab. Eng. Syst. Saf. 2023, 234, 109143. [CrossRef]
14. Caraffa, V.; Ianes, S.; Bagchi, T.P.; Sriskandarajah, C. Minimizing makespan in a blocking flowshop using genetic algorithms.

Int. J. Prod. Econ. 2001, 70, 101–115. [CrossRef]
15. Liang, J.J.; Pan, Q.K.; Chen, T.J.; Wang, L. Dynamic Multi-swarm Particle Swarm Optimizer for blocking flow shop scheduling. In

Proceedings of the IEEE International Conference on Fuzzy Systems, Changsha, China, 23–26 September 2010.
16. Li, M.B.; Xiong, H.; Lei, D.M. An Artificial Bee Colony with Adaptive Competition for the Unrelated Parallel Machine Scheduling

Problem with Additional Resources and Maintenance. Symmetry 2022, 14, 1380. [CrossRef]
17. Liu, H.; Zhang, X.; Zhang, H.; Li, C.; Chen, Z. A reinforcement learning-based hybrid Aquila Optimizer and improved Arithmetic

Optimization Algorithm for global optimization. Expert. Syst. Appl. 2023, 224, 119898. [CrossRef]
18. Ait-Saadi, A.; Meraihi, Y.; Soukane, A.; Ramdane-Cherif, A.; Gabis, A.B. A novel hybrid Chaotic Aquila Optimization algorithm

with Simulated Annealing for Unmanned Aerial Vehicles path planning. Comput. Electr. Eng. 2022, 104, 108461. [CrossRef]
19. Bas, E. Binary Aquila Optimizer for 0–1 knapsack problems. Eng. Appl. Artif. Intel. 2023, 118, 105592. [CrossRef]
20. Agarwal, N.; Gokilavani, M.; Nagarajan, S.; Saranya, S.; Alsolai, H.; Dhahbi, S.; Abdelaziz, A.S. Intelligent aquila optimization

algorithm-based node localization scheme for wireless sensor networks. CMC-Comput. Mater. Con. 2023, 74, 141–152. [CrossRef]
21. Li, R.; Zhang, X.; Jiang, L.; Yang, Z.; Guo, W. An adaptive heuristic algorithm based on reinforcement learning for ship scheduling

optimization problem. Ocean. Coast. Manage. 2022, 230, 106375. [CrossRef]
22. Mao, J.; Hu, X.L.; Pan, Q.K.; Miao, Z.; Tasgetiren, M.F. An improved discrete artificial bee colony algorithm for the distributed

permutation flowshop scheduling problem with preventive maintenance. In Proceedings of the 39th Chinese Control Conference,
Shenyang, China, 27–29 July 2020.

23. Cheng, L.; Tang, Q.; Zhang, L.; Meng, K. Mathematical model and enhanced cooperative co-evolutionary algorithm for scheduling
energy-efficient manufacturing cell. J. Clean. Prod. 2021, 326, 129248. [CrossRef]

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://soa.iti.es/problem-instances
https://doi.org/10.1016/j.ress.2021.108097
https://doi.org/10.1080/00207543.2010.492405
https://doi.org/10.1108/JQME-04-2016-0014
https://doi.org/10.1016/j.aei.2021.101339
https://doi.org/10.1016/j.cor.2022.105823
https://doi.org/10.3390/sym14040632
https://doi.org/10.1016/j.compchemeng.2015.10.003
https://doi.org/10.1016/j.cor.2009.08.001
https://doi.org/10.1016/j.cor.2013.01.024
https://doi.org/10.1016/j.eswa.2019.06.069
https://doi.org/10.1287/opre.44.3.510
https://doi.org/10.1016/j.ress.2023.109143
https://doi.org/10.1016/S0925-5273(99)00104-8
https://doi.org/10.3390/sym14071380
https://doi.org/10.1016/j.eswa.2023.119898
https://doi.org/10.1016/j.compeleceng.2022.108461
https://doi.org/10.1016/j.engappai.2022.105592
https://doi.org/10.32604/cmc.2023.030074
https://doi.org/10.1016/j.ocecoaman.2022.106375
https://doi.org/10.1016/j.jclepro.2021.129248

Symmetry 2023, 15, 1600 18 of 18

24. Zhang, Z.; Tang, Q. Integrating preventive maintenance to two-stage assembly flow shop scheduling: MILP model, constructive
heuristics and meta-heuristics. Flex. Serv. Manuf. J. 2022, 34, 156–203. [CrossRef]

25. Sun, L.H.; Ge, C.C.; Zhang, W.; Wang, J.B.; Lu, Y.Y. Permutation flowshop scheduling with simple linear deterioration. Eng. Optim.
2019, 51, 1281–1300. [CrossRef]

26. Wang, S.; Liu, M. Two-machine flow shop scheduling integrated with preventive maintenance planning. Int. J. Syst. Sci. 2016, 47,
672–690. [CrossRef]

27. Ruiz, R.; García-Díaz, J.C.; Maroto, C. Considering scheduling and preventive maintenance in the flowshop sequencing problem.
Comput. Oper. Res. 2007, 34, 3314–3330. [CrossRef]

28. Grabowski, J.; Pempera, J. The permutation flow shop problem with blocking. A tabu search approach. Omega 2007, 35, 302–311.
[CrossRef]

29. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization
algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

30. Bean, J.C. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 1994, 6, 154–160. [CrossRef]
31. Yang, X.S. Swarm intelligence based algorithms: A critical analysis. Evol. Intell. 2014, 7, 17–28. [CrossRef]
32. Wineberg, M.; Oppacher, F. The underlying similarity of diversity measures used in evolutionary computation. In Proceedings of

the Genetic and Evolutionary Computation Conference, Chicago, IL, USA, 12–16 July 2003.
33. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
34. Vallada, E.; Ruiz, R.; Framinan, J. New hard benchmark for flowshop scheduling problems minimising makespan. Eur. J. Oper.

Res. 2017, 240, 666–677. [CrossRef]
35. Chen, R.; Yang, B.; Li, S. A Self-Learning Genetic Algorithm based on Reinforcement Learning for Flexible Job-shop Scheduling

Problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]
36. Long, X.; Zhang, J.; Zhou, K. Dynamic Self-Learning Artificial Bee Colony Optimization Algorithm for Flexible Job-Shop

Scheduling Problem with Job Insertion. Processes 2022, 10, 571. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10696-021-09403-0
https://doi.org/10.1080/0305215X.2018.1519558
https://doi.org/10.1080/00207721.2014.900137
https://doi.org/10.1016/j.cor.2005.12.007
https://doi.org/10.1016/j.omega.2005.07.004
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1007/s12065-013-0102-2
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/j.ejor.2014.07.033
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.3390/pr10030571

	Introduction
	Problem Description
	The Proposed Algorithm
	Basic Aquila Optimizer
	Individual Representation
	Q-Learning-Based Strategies Selection
	Local Search Strategies
	The Framework of Proposed Algorithm

	Computational Experiments
	Test Instance Settings
	Key Parameter Settings
	Comparison of the Components on QL-AO
	Algorithm Comparison

	Conclusions
	References

