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Abstract: We quantized the full Einstein equations in a globally hyperbolic spacetime N = Nn+1,
n ≥ 3, and found solutions of the resulting hyperbolic equation in a fiber bundle E which can be ex-
pressed as a product of spatial eigenfunctions (eigendistributions) and temporal eigenfunctions. The
spatial eigenfunctions form a basis in an appropriate Hilbert space while the temporal eigenfunctions
are solutions to a second-order ordinary differential equation in R+. In case n ≥ 17 and provided the
cosmological constant Λ is negative, the temporal eigenfunctions are eigenfunctions of a self-adjoint
operator Ĥ0 such that the eigenvalues are countable and the eigenfunctions form an orthonormal
basis of a Hilbert space.
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1. Introduction

General relativity is a Lagrangian theory and the canonical quantization of a La-
grangian theory is performed with the help of the Legendre transformation, which would
transform the Lagrangian theory to an equivalent Hamiltonian theory, provided that the
Lagrangian is regular, i.e., the second derivatives of the Lagrangian with respect to the time
derivatives of the variables, which form a bilinear form, should be invertible. The Einstein–
Hilbert Lagrangian is not regular. However, in a groundbreaking paper Arnowit, Deser
and Misner (ADM) [1] proved that, with the help of a global time function x0, the Einstein–
Hilbert functional could be expressed in a form which made it possible to define a Hamilto-
nian H and two constraints, the Hamilton constraint and the diffeomorphism constraint.
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Employing the Hamiltonian one could define the Hamilton equations and, combined with
the two constraints, the resulting constrained Hamiltonian system was equivalent to the
Einstein equations. Bryce DeWitt used this constrained Hamiltonian system to perform a
first canonical quantization of the Einstein equations in [2]. The Hamiltonian H would be
transformed to an operator Ĥ which would act on functions u depending on Riemannian
metrics gij and the Hamilton constraint, which could be expressed as an equation

H = 0, (1)

would be transformed to the equation

Ĥu = 0. (2)

The last equation is now known as the Wheeler–DeWitt equation. It could at first only be
solved in highly symmetric cases like in the quantization of Friedman universes, cf. [3–7]
and also the monographs [8,9] and the bibliography therein.

In [10] we quantized a general globally hyperbolic spacetime N = Nn+1, n ≥ 3, where
n is the space dimension, by using the aforementioned papers [1,2]. In that paper, we first
eliminated the diffeomorphism constraint by proving that the Einstein equations, which
are the Euler–Lagrange equations of the Einstein–Hilbert functional, are equivalent to the
Euler–Lagrange equations which are obtained by only considering Lorentzian metrics
which split, i.e., they are of the form

ds̄2 = −w2(dx0)2 + gij(x0, x)dxidxj, (3)

where the function w > 0 and the Riemannian metrics gij are arbitrary, cf. [10] (Theorem
3.2, p. 8 ). Let Gαβ, 0 ≤ α, β ≤ n, be the Einstein tensor and Λ a cosmological constant.
If only metrics of the form (3) are considered, then the resulting Einstein equations can be
split in a tangential part

Gij + Λgij = 0 (4)

and a normal part
Gαβνανβ −Λ = 0, (5)

where ν = (να) is a normal vector field to the Cauchy hypersurfaces

{x0 = t}, t ∈ x0(N). (6)

The mixed Einstein equations are trivially satisfied since

G0j = g0j = 0. (7)

The tangential Einstein equations are equivalent to the Hamilton equations, which
are defined by the Hamiltonian H, and the normal equation is equivalent to the Hamilton
constraint which can be expressed by the Equation (1).

We also introduced a firm mathematical setting by quantizing a globally hyperbolic
spacetime N and working after the quantization in a fiber bundle E with base space S0,
where S0 was a Cauchy hypersurface of the quantized spacetime N. The fibers consisted
of the Riemannian metrics defined in S0. The quantized Hamiltonian Ĥ was a hyperbolic
differential operator of second order in E acting only in the fibers. We solved the Wheeler–
DeWitt equation (2) in E, where u = u(t, x, gij), for given initial values, cf. [10] (Theorem
5.4, p. 18). It is worth noting that the Wheeler–DeWitt equation represents a quantization
of the Hamilton condition, or equivalently, of the normal Einstein equation. The tangential
Einstein equations have been ignored.

In our paper [11] and in the monograph [12], we finally quantized the full Einstein
equations by incorporating the Hamilton condition in the Hamilton equations and we
quantized this evolution equation. There are two possibilities of how the Hamilton con-
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dition can be incorporated into the Hamilton equations, and both modified Hamilton
equations combined with the original Hamilton equations are equivalent to the full Einstein
equations, cf. [12] (Theorem 1.3.3, p. 13, & equ. 1.6.22, p. 41). After quantization of the
modified Hamilton equations, however, the resulting hyperbolic equations are different:
one equation, let us call it the first equation to give it a name, is a hyperbolic equation
wherein the elliptic parts—two Laplacians with respect to certain metrics—act both in
the fibers as well as in the base space of a fiber bundle. The second equation is only a
hyperbolic equation in the base space, since the Laplacian acting in the fiber was eliminated
by the modification.

The first equation has the form

−∆u− (n− 1)ϕ∆̃u− n− 2
2

ϕ(R− 2Λ)u = 0, (8)

cf. [11] (equ. (4.51)) or [12] (equ. (1.4.88)), where the embellished Laplacian ∆̃u is the
Laplacian in the base space S0 with respect to the metric gij if the function

u ∈ C∞
c (E,C) (9)

is evaluated at
(x, gij(x)) ∈ E, (10)

or equivalently, after choosing appropriate coordinates in the fibers,

n
16(n− 1)

t−m ∂

∂t
(
tm ∂u

∂t
)
− t−2∆Mu

+ t2− 4
n {−(n− 1)∆σu− n− 2

2
Rσu}+ n− 2

2
t2Λu = 0,

(11)

where

m =
(n− 1)(n + 2)

2
∧ n = dimS0. (12)

The index σ indicates that the corresponding geometric quantities are defined with
respect to the metric σij ∈ M, where M is the Cauchy hypersurface,

M = {t = 1}. (13)

The term Rσ denotes the scalar curvature of the metric σij and Λ is a cosmological
constant. By choosing a suitable atlas in the base space S0, cf. Lemma 2 on page 12, each
fiber M(x) consists of the positive definite matrices σij(x) satisfying

det σij(x) = 1, (14)

and hence, it is isometric to the symmetric space

SL(n,R)/SO(n) ≡ G/K. (15)

cf. [2] (equ.(5.17), p. 1123) and [13] (p. 3).
In [11,12], we could solve the hyperbolic Equation (11) only abstractly. But due to

the results in our paper [14], we are now able to apply separation of variables to express
the solutions u of (11) as a product of spatial and temporal eigenfunctions, or better,
eigendistributions. There are three types of spatial eigenfunctions: first, the eigenfunctions
of −∆M, for which we choose the elements of the Fourier kernel eλ,b0 such that

−∆Meλ,b0 = (|λ|2 + |ρ|2)eλ,b0 , (16)

see Section 3 on page 11 for details, and then the eigenfunctions of the operator
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−(n− 1)∆σ −
n− 2

2
Rσ. (17)

While the operator in (16) acts in the fibers, and hence, the variables are the metrics
σij ∈ M, the operator in (17) is an elliptic differential operator of second order in S0 for
a fixed σij. Thus, we have to specify a Riemannian metric σij in S0 which is considered
to be important either for physical or mathematical reasons. When a globally hyperbolic
spacetime is quantized, then S0 is a Cauchy hypersurface, usually a coordinate slice,
and it will be equipped with a Riemannian metric χij. It can be arranged that an arbitrary
Riemannian metric χij will be an element of M. Thus, our choice will be provided by the
initial Cauchy hypersurface. In [15], we incorporated the standard model into our model;
hence, we chose S0 = R3 and χij = δij.

When we quantize black holes, Schwarzschild-AdS or Kerr-AdS black holes, the inte-
rior region of a black hole can be considered to be a globally hyperbolic spacetime and the
slices {r = const} are Cauchy hypersurfaces with induced Riemannian metrics χij(r) (note
that here r is a label, not a variable). If the event horizon is characterized by r = r0, we
proved that the Riemannian metrics χij(r) converge to a Riemannian metric χij(r0) in an
appropriate coordinate system. Thus, we chose S0 to be the event horizon and χij = χij(r0).
Moreover, S0 could be written as a product

S0 = R ×M0, (18)

where M0 was a compact Riemannian manifold and χ a product metric

χ = δ⊗ σ̄, (19)

where δ is the standard "metric" in R and σ̄ a Riemannian metric on M0.
Following the lead from the black holes, we shall also assume in case of the quanti-

zation of a general globally hyperbolic spacetime N = Nn+1, n ≥ 3, that S0 is a product

S0 = Rn1 ×M0, (20)

at least topologically, and that M0 is a compact manifold of dimension

dim M0 = n− n1. (21)

If N should be a mathematical model of our universe, then we would choose
n1 = 3 and M0 should be a compact manifold, hidden from our observation, of fairly
large dimension. Indeed, we shall see that n ≥ 17 would be preferable if at the same time
the cosmological constant Λ would be negative. Moreover, assuming that N should be
equipped with an Einstein metric, we would choose M0 to be a Calabi–Yau manifold if
Λ = 0, while in the case of Λ < 0, M0 should be a Kähler-Einstein space, and if Λ > 0 then
M0 is supposed to be a round sphere with a given radius. The metric σ which we would
use in the definition of the operator (17) would then be

σ = χ = δ⊗ σ̄, (22)

where δ would be the Euclidean metric in Rn1 and σ̄ the Riemannian metric in M0. The dif-
ferential operator in (17) would then have the form

−(n− 1)∆δ − (n− 1)∆ σ̄ −
n− 2

2
Rσ̄, (23)

which would have eigenfunctions of the form

ζϕ (24)
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where ζ is an eigenfunction of the Euclidean Laplacian and ϕ an eigenfunction of the
remaining part of the operator. Hence, we would have three types of spatial eigenfunctions
which are well-known—both mathematically and physically—and their product will play
the part of the spatial eigenfunctions of the hyperbolic Equation (11). The solution u of that
equation will then be of the form

u = wvζϕ (25)

where
v = eλ,b0 ◦ [g0] (26)

is an eigenfunction of −∆M satisfying

−∆Mv = (|λ|2 + |ρ|2)v (27)

and
v(χ(x)) = 1 ∀ x ∈ S0, (28)

for details, we refer to the arguments following Remark 4 on page 13. The function w
depends only on t and it will solve a second-order ordinary differential equation (ODE).
The functions u will be evaluated at (t, x, χ). More precisely, we proved the following:

Theorem 1. Assume that S0 is a direct product as in (20) endowed with the metric χ in (22). Then,
a solution u = u(x, t, σij) of the hyperbolic Equation (11) can be expressed as a product of spatial
eigenfunctions v = v(σij), ζ = ζ(y), ϕk = ϕk(x), k ∈ N, and temporal eigenfunctions w = w(t);
u is evaluated at σij = χij, where

u = wvζϕk. (29)

The temporal eigenfunction w is a solution of the ODE

n
16(n− 1)

t−m ∂

∂t
(
tm ∂w

∂t
)
+ t−2(|λ|2 + ρ2)w

+ t2− 4
n {(n− 1)|ξ|2 + µ̄k}w +

n− 2
2

t2Λw = 0
(30)

in 0 < t < ∞.

In Section 5 on page 17, we look at the case n ≥ 17 and Λ < 0 and prove that the
Equation (30) can be considered to be an implicit eigenvalue problem where Λ plays the
part of the eigenvalue provided

16(n− 1)
n

|λ|2 < 238. (31)

To understand the corresponding theorem, we need a few remarks and definitions.
First, we multiply Equation (30) by

16(n− 1)
n

; (32)

then, we use the abbreviations

µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2), (33)

m1 =
16(n− 1)

n
{(n− 1)|ξ|2 + µ̄k} (34)

and

m2 =
8(n− 1)(n− 2)

n
(35)
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and define for w ∈ C∞
c (R+)

B̂w = −t−m ∂

∂t
(
tm ∂w

∂t
)
− t−2µ0w. (36)

Remark 1. Note that µ0 > 0, which would in general deprive of success any attempt to solve a
meaningful eigenvalue problem for this operator. But if (31) is satisfied and n ≥ 17, then it is
possible to prove the following theorem in Section 5 on page 17.

Theorem 2. There are countably many solutions (Λi, wi) of the implicit eigenvalue problem

B̂wi −m2Λit2wi = m1t2− 4
n wi (37)

with eigenfunctions wi ∈ Ĥ2 such that

Λi < Λi+1 < 0 ∀ i ∈ N, (38)

lim
i

Λi = 0, (39)

and their multiplicities are one. The transformed eigenfunctions

w̃i(t) = wi(λ
n

4(n−1)
i t), (40)

where
λi = (−Λi)

− n−1
n , (41)

form a basis of Ĥ2 and also of L2(R+, m).

Equation (37) is identical to Equation (30) if Λ is replaced by Λi. The vector spaces Ĥ2
and L2(R+, m) are Hilbert spaces which are defined later.

However, if we consider Λ < 0 to be a fixed cosmological constant and not a parameter
which can also play the role of an implicit eigenvalue, we have to use a different approach.

First, let us express Equation (30) in the equivalent form

ϕ̂−1
0

{
− ∂

∂t
(
tm ∂w

∂t
)
− tm−2µ0w− tm+2m2Λw

}
− 16(n− 1)

n
{(n− 1)|ξ|2 + µ̄k}w = 0,

(42)

where
ϕ̂0(t) = tm+2− 4

n (43)

and where we used the definitions (33) and (35). The term

(n− 1)|ξ|2 + µ̄k (44)

is an eigenvalue of the operator in (23). |ξ|2 with ξ ∈ Rn1 is a continuous eigenvalue while
the sequence µ̄k, k ∈ N, satisfies the relations

µ̄0 < µ̄1 ≤ µ̄2 ≤ · · · (45)

and
lim
k→∞

µ̄k = ∞. (46)

The corresponding eigenfunctions ϕk are smooth and the eigenspaces are finite dimensional.
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On the other hand, the operator

Ĥ0w ≡ ϕ̂−1
0

{
− ∂

∂t
(
tm ∂w

∂t
)
− tm−2µ0w− tm+2m2Λw

}
(47)

is self-adjoint in the Hilbert space Ĥ = L2(R+, dµ̂), cf. (242) on page 24, with a complete
system of eigenfunctions wi, i ∈ N, and corresponding eigenvalues

0 < λ0 < λ1 < λ2 < · · · (48)

The eigenspaces are all one-dimensional and the ground state w0 does not change sign,
cf. Remark 5 on page 21. Thus, in order to solve Equation (42), we have to find for each
pair (wi, λi) eigenvalues µ̄k and ξ ∈ Rn1 such that

16(n− 1)
n

{(n− 1)|ξ|2 + µ̄k} = λi. (49)

This is indeed possible provided either µ̄0 ≤ 0 or

|Λ|
n−1

n ≥ λ̄−1
0

16(n− 1)
n

µ̄0, (50)

cf. Corollary 1 on page 25. Using the eigenvalues on the left-hand side of (49) and the
corresponding eigenfunctions of the operator (23), we then define a self-adjoint operator
H1 in a Hilbert space H having the same eigenvalues λi as Ĥ0 but with higher finite
multiplicities. Relabelling these eigenvalues to include the multiplicities and denoting
them by λ̃i, they satisfy

0 < λ̃0 ≤ λ̃1 ≤ · · · (51)

and
lim
i→∞

λ̃i = ∞. (52)

In Section 6 on page 29, we shall prove that the operator e−βĤ0 , β > 0, is of trace class
from which we conclude that e−βH1 is also of trace class. We are then in a similar situation
as in [12] (Chapter 6.5), where we proved the following:

Lemma 1. For any β > 0, the operator
e−βH1 (53)

is of trace class inH, i.e.,

tr(e−βH1) =
∞

∑
i=0

e−βλ̃i < ∞. (54)

Let
F ≡ F+(H) (55)

be the symmetric Fock space generated byH and let

H = dΓ(H1) (56)

be the canonical extension of H1 to F . Then,

e−βH (57)

is also of trace class in F

tr(e−βH) =
∞

∏
i=0

(1− e−βλ̃i )−1 < ∞. (58)
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Remark 2. In [12] (Chapter 6.5), we also used these results to define the partition function Z by

Z = tr(e−βH) =
∞

∏
i=0

(1− e−βλ̃i )−1 (59)

and the density operator ρ in F by
ρ = Z−1e−βH (60)

such that
tr ρ = 1. (61)

The von Neumann entropy S is then defined by

S = − tr(ρ log ρ)

= log Z + βZ−1 tr(He−βH)

= log Z− β
∂ log Z

∂β

≡ log Z + βE,

(62)

where E is the average energy
E = tr(Hρ). (63)

E can be expressed in the form

E =
∞

∑
i=0

λ̃i

eβλ̃i − 1
. (64)

Here, we also set the Boltzmann constant

kB = 1. (65)

The parameter β is supposed to be the inverse of the absolute temperature T

β = T−1. (66)

For a more detailed analysis and especially for the dependence on Λ, we refer to [12] (Chapter 6.5).

Remark 3. Let us also mention that we use Planck units in this paper, i.e.,

c = G = kB = h̄ = 1. (67)

Moreover, the signature of a Lorentzian metric has the form (−,+, · · · ,+).

2. Quantizing the Full Einstein Equations

Let N = Nn+1, n ≥ 3, be a globally hyperbolic Lorentzian manifold with metric
ḡαβ, 0 ≤ α, β ≤ n. The Einstein equations are Euler–Lagrange equations of the Einstein–
Hilbert functional ∫

N
(R̄−Λ), (68)

where R̄ is the scalar curvature, Λ a cosmological constant and where we omitted the
integration density in the integral. In order to apply a Hamiltonian description of general
relativity, one usually defines a time function x0 and considers the foliation of N given by
the slices

M(t) = {x0 = t}. (69)
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We may, without loss of generality, assume that the spacetime metric splits

ds̄2 = −w2(dx0)2 + gij(x0, x)dxidxj, (70)

cf. [10] (Theorem 3.2). Then, the Einstein equations also split into a tangential part

Gij + Λgij = 0 (71)

and a normal part
Gαβνανβ −Λ = 0, (72)

where the naming refers to the given foliation. For the tangential Einstein equations, one
can define equivalent Hamilton equations due to the groundbreaking paper by Arnowitt,
Deser and Misner [1]. The normal Einstein equations can be expressed by the so-called
Hamilton condition

H = 0, (73)

where H is the Hamiltonian used in defining the Hamilton equations. In the canonical
quantization of gravity, the Hamiltonian is transformed to a partial differential operator of
hyperbolic type Ĥ and the possible quantum solutions of gravity are supposed to satisfy
the so-called Wheeler–DeWitt equation

Ĥu = 0 (74)

in an appropriate setting, i.e., only the Hamilton condition (73) has been quantized, or equiva-
lently, the normal Einstein equation, while the tangential Einstein equations have been ignored.

In [10], we solved the Equation (74) in a fiber bundle E with base space S0,

S0 = {x0 = 0} ≡ M(0), (75)

and fibers F(x), x ∈ S0,
F(x) ⊂ T0,2

x (S0), (76)

the elements of which are the positive definite symmetric tensors of order two, the Rieman-
nian metrics in S0. The hyperbolic operator Ĥ is then expressed in the form

Ĥ = −∆− (R− 2Λ)ϕ, (77)

where ∆ is the Laplacian of the DeWitt metric given in the fibers, R the scalar curvature of
the metrics gij(x) ∈ F(x) and ϕ is defined by

ϕ2 =
det gij

det ρij
, (78)

where ρij is a fixed metric in S0 such that, instead of densities, we are considering functions.
The Wheeler–DeWitt equation could be solved in E but only as an abstract hyperbolic equa-
tion. The solutions could not be split in corresponding spatial and temporal eigenfunctions.

The underlying mathematical reason for the difficulty was the presence of the term R
in the quantized equation, which prevents the application of separation of variables, since
the metrics gij are the spatial variables. In a recent paper [14], we overcame this difficulty
by quantizing the Hamilton equations instead of the Hamilton condition.

As a result, we obtained the equation

−∆u = 0 (79)

in E, where the Laplacian is the Laplacian in (77). The lower order terms of Ĥ

(R− 2Λ)ϕ (80)
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were eliminated during the quantization process. However, Equation (79) is only valid
provided n 6= 4, since the resulting equation actually looks like

−(n
2
− 2)∆u = 0. (81)

This restriction seems to be acceptable, since n is the dimension of the base space S0
which, by general consent, is assumed to be n = 3. The fibers add additional dimensions to
the quantized problem, namely

dim F =
n(n + 1)

2
≡ m + 1. (82)

The fiber metric, the DeWitt metric, which is responsible for the Laplacian in (79), can
be expressed in the form

ds2 = −16(n− 1)
n

dt2 + ϕGABdξ AdξB, (83)

where the coordinate system is

(ξa) = (ξ0, ξA) ≡ (t, ξA). (84)

The (ξA), 1 ≤ A ≤ m, are coordinates for the hypersurface

M ≡ M(x) = {(gij) : t4 = det gij(x) = 1, ∀ x ∈ S0}. (85)

We also assumed that S0 = Rn and that the metric ρij in (78) is the Euclidean metric
δij. It is well-known that M is a symmetric space

M = SL(n,R)/SO(n) ≡ G/K. (86)

It is also easily verified that the induced metric of M in E is isometric to the Riemannian
metric of the coset space G/K.

Now, we were in a position to use separation of variables, namely we wrote a solution
of (79) in the form

u = w(t)v(ξ A), (87)

where v is a spatial eigenfunction of the induced Laplacian of M

−∆Mv ≡ −∆v = (|λ|2 + |ρ|2)v (88)

and w is a temporal eigenfunction satisfying the ODE

ẅ + mt−1ẇ + µ0t−2w = 0 (89)

with

µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2). (90)

The eigenfunctions of the Laplacian in G/K are well-known and we chose the kernel of
the Fourier transform in G/K in order to define the eigenfunctions. This choice also allowed
us to use Fourier quantization similar to the Euclidean case such that the eigenfunctions
are transformed into Dirac measures and the Laplacian into a multiplication operator in
Fourier space.

In the present paper, we want to quantize the full Einstein equations by using a
previous result, cf. [11] (Theorem 3.2) or [12] (Theorem 1.3.4), where we proved that the
full Einstein equations are equivalent to the Hamilton equations and a scalar evolution
equation, which we obtained by incorporating the Hamilton condition into the right-hand
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side of the second Hamilton equations and we quantized this evolution equation in fiber
bundle E with base space S0 and fibers

F(x) ∈ T0,2
x (S0), ∀x ∈ S0, (91)

cf. (76).
The quantization of the scalar evolution equation then yielded the following hyperbolic

equation in E:

−∆u− (n− 1)ϕ∆̃u− n− 2
2

ϕ(R− 2Λ)u = 0, (92)

cf. [11] (equ. (4.51)) or [12] (equ. (1.4.88)) where the embellished Laplacian ∆̃u is the
Laplacian in the base space S0 with respect to the metric gij if the function

u ∈ C∞
c (E,C) (93)

is evaluated at
(x, gij(x)) ∈ E. (94)

Let us recall that the time function t in (84) is defined by

t2 = ϕ (95)

and that t is independent of x, cf. [11] (Lemma 4.1, p. 726), and, furthermore, that the fiber
elements gij(x) can be expressed as

gij(x) = t
4
n σij(x), (96)

where the metrics σij(x) are elements of the fibers of the subbundle

E1 = {t = 1} ⊂ E (97)

with fibers
M(x) ⊂ F(x) ∀ x ∈ S0 (98)

consisting of metrics σij(x) satisfying

det σij(x) = det ρij(x) ∀ x ∈ S0. (99)

Now, combining (96), the definition of the fiber metric (83) and the relation between
the scalar curvatures of conformal metrics the hyperbolic Equation (92) can be expressed in
the form

n
16(n− 1)

t−m ∂

∂t
(
tm ∂u

∂t
)
− t−2∆Mu

+ t2− 4
n {−(n− 1)∆σu− n− 2

2
Rσu}+ n− 2

2
t2Λu = 0,

(100)

where the index σ indicates that the corresponding geometric quantities are defined with
respect to the metric σij.

In the following sections, we shall solve Equation (100) by employing separation of
variables to obtain corresponding spatial and temporal eigenfunctions or eigendistributions.

3. Spatial Eigenfunctions

Let us first look for spatial eigenfunctions of the operators

−∆M (101)

and
−(n− 1)∆σ −

n− 2
2

Rσ. (102)
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In the case of the Laplacian in (101), we would want to use the fact that each Cauchy
hypersurface M(x) is isometric to the symmetric space

SL(n,R)/SO(n) ≡ G/K (103)

provided
det ρij(x) = 1. (104)

In our former papers [14,15], we had chosen S0 = Rn and

ρij = δij, (105)

i.e., the condition (104) had been automatically satisfied by choosing Euclidean coordinates.
However, for the quantization of black holes, this choice will not be possible since S0 will
then be the event horizon equipped with a non-flat metric.

To overcome this difficulty, we need the following lemma:

Lemma 2. Let S0 be a Riemannian manifold of dimension n ≥ 2 and of class Ck,α for 0 ≤ k ∈ N
and 0 < α < 1, where Ck,α are the usual Hölder spaces, and let ρij be a metric of class Ck,α in
S0; then, there exists an atlas {(xβ, Uβ)} of Ck+1,α charts such that the metric ρij expressed in an
arbitrary chart (xβ, Uβ) satisfies

det ρij(x) = 1 ∀ x ∈ xβ(Uβ) ⊂ Rn. (106)

Proof. We first prove (106) locally. Let ρij be a local expression of ρ in coordinates x = (xi)
and let x̃ = x̃(x) be a coordinate transformation and ρ̃kl be the corresponding expression
for the metric ρ; then,

ρ̃kl = ρij
∂xi

∂x̃k
∂xj

∂x̃l (107)

and

det ρ̃kl = det ρij

∣∣∣∣∂x
∂x̃

∣∣∣∣2, (108)

where ∣∣∣∣∂x
∂x̃

∣∣∣∣ = det
∂xi

∂x̃k , (109)

the Jacobi determinant.
Let the coordinates x = (xi) be defined in an open set Ω ⊂ Rn with boundary

∂Ω ∈ Ck+1,α; then, due to a result of Dacorogna and Moser, there exists a diffeomorphism
y = y(x), y ∈ Ck+1,α(Ω̄,Rn) such that∣∣∣∣ ∂y

∂x

∣∣∣∣ = λ
√

det ρij in Ω,

y(x) = x in ∂Ω,
(110)

where

λ =

∫
Ω dx∫

Ω

√
det ρij dx

, (111)

cf. [16] (Theorem 1’ and Remark, p. 4).
Hence, the diffeomorphism

x̃ = λ
1
n y (112)

satisfies ∣∣∣∣∂x̃
∂x

∣∣∣∣ = √det ρij, (113)
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or equivalently,

det ρ̃kl = det ρij

∣∣∣∣∂x
∂x̃

∣∣∣∣2 = 1, (114)

where ρ̃kl are the coordinate expressions of ρ in the coordinates x̃.
From the local result, we easily infer the existence of an atlas consisting of local charts

with that property.

Thus, we are able to identify the fiber M(x) with the symmetric space G/K in (103)
and we may choose the elements of the Fourier kernel eλ,b0 as eigenfunctions of −∆M
such that

−∆Meλ,b0 = (|λ|2 + |ρ|2)eλ,b0 , (115)

see [17] (Chapter III) and [14] (Section 5) for details, where

|ρ|2 =
1
12

(n− 1)2n, (116)

cf. [14] (equ. (5.40)). Here, λ is an abbreviation for λα, where α ∈ (Rn−1)∗ is a character
representing an elementary graviton and λ ∈ R+. There are

α =

{
αi, 1 ≤ i ≤ n− 1
αij, 1 ≤ i < j ≤ n

(117)

special characters. These characters are normalized to have ‖α‖ = 1. They correspond to
the degrees of freedom in choosing the entries of a metric gij satisfying

det gij = 1. (118)

Remark 4. Due to the scalar curvature term Rσ in Equation (102), it is evident that spatial
eigenfunctions for this operator cannot be defined on the full subbundle E1, cf. (97) on page 11,
but only for a fixed metric σij ∈ M, if Rσ = const maybe for that class of metrics. However,
in general, we cannot assume that the scalar curvature is constant, since we shall have to pick a
metric χij that is a natural metric determined by the underlying spacetime which has been quantized.
In the case of a black hole, χij will be a metric on the event horizon. Now, let us recall that χij should
belong to fibers of the subbundle E1; hence, we have to choose ρij, which is still arbitrary but fixed,
to be equal to χij

ρij = χij. (119)

Thus, we evaluate the spatial eigenfunctions at

(x, χij(x)) ∀ x ∈ S0, (120)

especially also eλ,b0 , i.e.,
eλ,b0(χij(x)) (121)

may not depend on x explicitly. Now, it is well known that

eλ,b0(δij(x)) = 1 ∀ x ∈ S0 (122)

and the Laplacian ∆M is invariant under the action of G on M. The action of g ∈ M on
σ ∈ M is defined by

[g]σ = gσg∗, (123)

where g∗ is the transposed matrix. Since every σ ∈ M is also an element of G, we conclude
by choosing

g = g0 ≡
√

χ−1, (124)
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that
[g0]χ = id = (δij), (125)

and, furthermore, that the function

v = eλ,b0 ◦ [g0] (126)

is an eigenfunction of −∆M satisfying

−∆Mv = (|λ|2 + |ρ|2)v (127)

and
v(χ(x)) = 1 ∀ x ∈ S0. (128)

Let us summarize these results in

Theorem 3. Let eλ,b0 be an eigenfunction of−∆M as in (115) and let g0 be defined as in (124); then,

v = eλ,b0 ◦ [g0] (129)

is an eigenfunction of −∆M satisfying (127) as well as (128).

Next, let us consider the operator in (102) with σ = χ. We furthermore assume that S0
is a direct product,

S0 = Rn1 ×M0, (130)

where M0 is a smooth, compact and connected manifold of dimension n− n1,

dim M0 = n− n1 ≡ n0. (131)

The metric χij is then supposed to be a metric product,

χ = δ⊗ σ̄, (132)

where δ is the Euclidean metric in Rn1 and σ̄ a Riemannian metric in M0. In case of a black
hole, n1 will be equal to 1.

Since the scalar curvature of the product metric χ is equal to the scalar curvature of σ̄,

Rχ = Rσ̄, (133)

the operator in (102) can be expressed in the form

−(n− 1)∆δ − (n− 1)∆ σ̄ −
n− 2

2
Rσ̄. (134)

Hence, the corresponding eigenfunctions can be written as a product

ζϕ, (135)

where ζ is defined in Rn1 ,
ζ(y) = ei〈ξ,y〉 ξ, y ∈ Rn1 , (136)

such that
−∆δζ = |ξ|2ζ, (137)

while ϕ ∈ C∞(M0) is an eigenfunction of the operator

A = −(n− 1)∆ σ̄ −
n− 2

2
Rσ̄. (138)
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Since M0 is compact, it is well-known that A is self-adjoint with countably many
eigenvalues µ̄k, k ∈ N, which are ordered

µ̄0 < µ̄1 ≤ µ̄2 ≤ · · · (139)

satisfying
lim
k→∞

µ̄k = ∞. (140)

The corresponding eigenfunctions ϕk are smooth and the eigenspaces are finite dimen-
sional. The eigenspace belonging to µ̄0 is one-dimensional and ϕ0 never vanishes, i.e., if
we consider ϕ0 to be real-valued, it will either be strictly positive or negative.

Let us summarize the results we proved so far in the following theorem:

Theorem 4. Assume that S0 is a direct product as in (130) endowed with the metric χ in (132).
Then, a solution u = u(x, t, σij) of the hyperbolic Equation (100) on page 11 can be expressed as
a product of spatial eigenfunctions v = v(σij), ζ = ζ(y), ϕk = ϕk(x), k ∈ N, and temporal
eigenfunctions w = w(t); u is evaluated at σij = χij, where

u = wvζϕk. (141)

The temporal eigenfunction w is a solution of the ODE

n
16(n− 1)

t−m ∂

∂t
(
tm ∂w

∂t
)
+ t−2(|λ|2 + ρ2)w

t2− 4
n {(n− 1)|ξ|2 + µ̄k}w +

n− 2
2

t2Λw = 0
(142)

in 0 < t < ∞.

In the next sections, we shall solve the ODE and shall also show that, for large n,
n ≥ 17 and negative Λ w can be chosen to be an eigenfunction of a self-adjoint operator
where the cosmological constant plays the role of an implicit eigenvalue.

4. Temporal Eigenfunctions: The Case 3 ≤ n ≤ 16

Let us first divide Equation (142) by n
16(n−1) to obtain what we consider to be a normal form

t−m ∂

∂t
(
tm ∂w

∂t
)
+ t−2 16(n− 1)

n
(|λ|2 + ρ2)w

t2− 4
n

16(n− 1)
n

{(n− 1)|ξ|2 + µ̄k}w +
16(n− 1)

n
n− 2

2
t2Λw = 0

(143)

Using the abbreviations

µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2), (144)

m1 =
16(n− 1)

n
{(n− 1)|ξ|2 + µ̄k} (145)

and

m2 =
8(n− 1)(n− 2)

n
(146)

we can rewrite Equation (143) in the form

t−m ∂

∂t
(
tm ∂w

∂t
)
+ t−2µ0w + t2− 4

n m1w + t2m2Λw = 0. (147)
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We shall use two different approaches in solving this ODE depending on the sign of

µ0 −
(m− 1)2

4
. (148)

Let us recall that

m =
(n− 1)(n + 2)

2
. (149)

and

ρ2 =
(n− 1)2n

12
. (150)

One can easily verify that

16(n− 1)
n

ρ2 − (m− 1)2

4
=

{
> 1, 3 ≤ n ≤ 16,
< −238, 17 ≤ n.

(151)

Hence, in the case 3 ≤ n ≤ 16, the term in (148) will be strictly larger than 1 for all
values of |λ| and, in the case n ≥ 17, strictly negative for small values of |λ|, or more
precisely, for all

16(n− 1)
n

|λ|2 < 238. (152)

Let us first consider the case 3 ≤ n ≤ 16 and let us rewrite Equation (147) in the form

ẅ + mt−1w + t−2{µ0 + m2t4− 4
n + m3Λt4}w = 0 ∀ t > 0. (153)

Then, we look at the more general equation

ẅ + mt−1w + t−2(µ0 + q0(t))w = 0 ∀ t > 0, (154)

for which we proved in [18] (Theorem 1.1) the following theorem:

Theorem 5. Let us assume that the constants m, µ0 and the real function q0 ∈ C1(R+) have
the properties

m > 1, (155)

1 < µ0 −
(m− 1)2

4
≡ 1 + γ, γ > 0, (156)

and
lim
t→0

q0(t) = 0. (157)

Then, any non-trivial solution w of (154) satisfies

lim
t→0

(|w|2 + t2|ẇ|2) = ∞ (158)

as well as
lim sup

t→0
|w|2 = ∞. (159)

We also described the oscillation behavior of w near t = 0, which can be considered to
be a big bang of the solutions, as well as to be asymptotically equal to the oscillations of the
solutions of the ODE

ẅ + mt−1w + µ0t−2w = 0 ∀ t > 0, (160)
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cf. [18] (Theorem 3.2). The solutions of the above equation are

w(t) = t−
(m−1)

2 eiµ log t, µ > 0, (161)

where

µ2 = µ0 −
(m− 1)2

4
, (162)

see [14] (equ. (273)).

5. Temporal Eigenfunctions: The Case n ≥ 17
5.1. Treating Λ as an Eigenvalue

Now, let us consider the case n ≥ 17 assuming in addition that (152) on page 16 is
satisfied such that

µ̄ ≡ µ0 −
(m− 1)2

4
< 0 (163)

and also that
Λ < 0. (164)

The last two assumptions shall allow us to consider (147) on page 15 as an implicit
eigenvalue equation where Λ plays the role of the eigenvalue. We shall prove that the
corresponding operator is self-adjoint with a pure point spectrum provided the constant
m1 in (147), which is defined by (145), is strictly positive. This can easily be arranged
by choosing a |ξ| large enough. Notice also that at most finitely, many eigenvalues µ̄k
are negative.

Equation (147) can be written in the equivalent form

−t−m ∂

∂t
(
tm ∂w

∂t
)
− t−2µ0w− t2m2Λw = t2− 4

n m1w ∀ t > 0. (165)

We have a similar equation, or, since the constants, m1, m2, are not specified and
their actual positive values are irrelevant, an identical equation already solved by spectral
analysis in [3] (Sections 4 and 6). Therefore, we shall only outline the proof by giving the
necessary definitions and stating the results but referring the actual proofs to the old paper.

Closely related to Equation (165) is the following equation:

−t−1 ∂

∂t
(
t
∂u
∂t
)
− t−2µ̄u− t2m2Λu = t2− 4

n m1u ∀ t > 0, (166)

where µ̄ is defined in (163). If w ∈ C2(R∗+) is a solution of (165), then

u = t
m−1

2 w (167)

is a solution of (166) and vice versa, as can be easily verified. The operator

Bu = −t−1 ∂

∂t
(
t
∂u
∂t
)
− t−2µ̄u (168)

is known as a Bessel operator.

Definition 1. Let I = (0, ∞) and let q ∈ R. Then, we define

L2(I, q) = { u ∈ L2
loc(I,R) :

∫
I

rq|u|2 < ∞ }. (169)

L2(I, q) is a Hilbert space with scalar product

〈u1, u2〉q =
∫

I
rqu1u2, (170)
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but let us emphasize that we shall apply this definition only for q 6= 2. The scalar product 〈·, ·〉2
will be defined differently.

We consider real-valued functions for simplicity but we could just as well allow for
complex-valued functions with the standard scalar product, or more precisely, sesquilin-
ear form.

Definition 2. For functions w, u ∈ C∞
c (I) define the operators

Â1w = −t−m ∂

∂t
(
tm ∂w

∂t
)
− t−2µ0w− t2m2Λw (171)

and
A1u = −t−1 ∂

∂t
(
t
∂u
∂t
)
− t−2µ̄u− t2m2Λu, (172)

as well as the scalar product

〈u1, u2〉2 = 〈Bu1 + t2m2u1, u2〉1 ∀ u1, u2 ∈ C∞
c (I). (173)

The right-hand side of (173) is an integral. Integrating by parts, we deduce

〈u1, u2〉2 =
∫

I
(tu̇1u̇2 − µ̄t−1u1u2 + t3m2u1u2), (174)

i.e., the scalar product is indeed positive definite due to the assumption (163). Let us define
the norm

‖u‖2
2 = 〈u, u〉2 ∀ u ∈ C∞

c (I) (175)

and the Hilbert spaceH2 = H2(I) as the closure of C∞
c (I) with respect to the norm ‖·‖2.

Proposition 1. The functions u ∈ H2 have the properties

u ∈ C0([0, ∞)), (176)

|u(t)| ≤ c‖u‖2 ∀ t ∈ I, (177)

where c = c(µ̄, m2, |Λ|),
lim
t→0

u(t) = 0 (178)

and
|u(t)| ≤ c‖u‖2t−1 ∀ t ∈ I, (179)

where c is a different constant depending on µ̄, m2 and |Λ|.

Proof. Let us first assume u ∈ C∞
c (I) and let δ > 0; then,

u2(δ) = 2
∫ δ

0
u̇u ≤

∫ δ

0
t|u̇|2 +

∫ δ

0
t−1|u|2. (180)

This estimate is also valid for any u ∈ H2 by approximation, which in turn implies the
relations (177), (178) and also (176) since u is certainly continuous in I.

It remains to prove (179). Let u ∈ H2 and define v = v(τ) by

v(τ) = u(τ−1), (181)

where τ = t−1 for all t > 0. Applying simple calculus arguments, we then obtain∫ ∞

0
{τ|v′|2 − µ̄τ−1|v|2 + m2τ−5|v|2}dτ = ‖u‖2

2 (182)
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as well as ∫ ∞

0
{τ|v′|2 − µ̄τ−1|v|2}dτ =

∫ ∞

0
{t|u̇|2 − µ̄t−1|u|2}dt. (183)

Moreover, first assuming, as before, that u and hence v are test functions, we argue as
in (180) that, for any δ > 0 ,

v2(δ) = 2
∫ δ

0
v′v ≤ 2

( ∫ δ

0
τ|v′|2

) 1
2
( ∫ δ

0
τ−1|v|2

) 1
2

≤ 2
( ∫ δ

0
τ|v′|2

) 1
2
( ∫ δ

0
τ−5|v|2

) 1
2

δ2

≤ c‖u‖2
2δ2,

(184)

where we used (182) for the last inequality and where c = c(µ̄, m2). Setting δ = t−1 for
arbitrary t > 0, we have proved the estimate (179) for test functions and hence for arbitrary
u ∈ H2.

We are now ready to solve the Equation (166) as an implicit eigenvalue equation. First,
we need

Lemma 3. Let K be the quadratic form

K(u) = m1

∫
I

t3− 4
n u2; (185)

then, K is compact inH2, i.e.,

ui ⇁H2
u =⇒ K(ui)→ K(u), (186)

and positive definite, i.e.,
K(u) > 0 ∀ u 6= 0. (187)

For a proof, we refer to [3] (Lemma 6.8). Then, we look at the eigenvalue problem for
u ∈ H2

Bu + m2t2u = λm1t2− 4
n u, (188)

or equivalently,

B̃(u, v) ≡ 〈Bu + m2t2u, v〉1 = λK(u, v) ∀ v ∈ H2, (189)

where K(u, v) is the bilinear form associated with K.

Theorem 6. The eigenvalue problem (189) has countably many solutions (λi, ũi), ũi ∈ H2,
with the properties

λi < λi+1 ∀ i ∈ N, (190)

lim
i

λi = ∞, (191)

K(ũi, ũj) = δij. (192)

The pairs (λi, ũi) are recursively defined by the variational problems

λ0 = B̃(ũ0) = inf
{

B̃(u)
K(u)

: 0 6= u ∈ H2

}
(193)
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and for i > 0

λi = B̃(ũi) = inf
{

B̃(u)
K(u)

: 0 6= u ∈ H2, K(u, uj) = 0, 0 ≤ j ≤ i− 1
}

. (194)

The (ũi) form a Hilbert space basis in H2 and in L2(I, 3− 4
n ), the eigenvalues are strictly

positive and the eigenspaces are one-dimensional.

Proof. This theorem is well-known and goes back to the book of Courant–Hilbert [19],
though in a general separable Hilbert space the eigenvalues are not all positive and the
eigenspaces are only finite dimensional. For a proof in the general case, we refer to [20]
(Theorem 1.6.3, p. 37).

The positivity of the eigenvalues in the above theorem is evident and the fact that
the eigenspaces are one-dimensional is proved by contradiction. Thus, suppose there
exist an eigenvalue λ = λi and two corresponding linearly independent eigenfunctions
u1, u2 ∈ H2. Then, for any t0 > 0, there would exist an eigenfunction u ∈ H2 with
eigenvalue λ satisfying v(t0) = 0 and Equation (188). Multiplying this equation by u and
integrating the result in the interval (0, t0) with respect to the measure t dt we obtain∫ t0

0
−µ̄t−1u2 ≤ t4− 4

n
0

∫ t0

0
λm1t−1u2, (195)

where we used
1 ≤ t0

t
, ∀ t ∈ (0, t0), (196)

yielding a contradiction if t0 is sufficiently small.

The functions

ui(t) = ũi(λ
− n

4(n−1)
i t) (197)

then satisfy the equation

Bui + m2λ
− n

n−1
i t2ui = m1t2− 4

n ui (198)

and they are mutually orthogonal with respect to the bilinear form∫
I

t3uv, (199)

as one can easily verify. Furthermore, the following lemma is valid:

Lemma 4. Let (λ, u) ∈ R∗+ ×H2, be a solution of

Bu + m2λ−
n

n−1 t2u = m1t2− 4
n u; (200)

then, there exists i such that
λ = λi ∧ u ∈ 〈ui〉. (201)

Proof. Define
ũ(t) = u(λ

n
4(n−1) t); (202)

then, the pair (λ, ũ) is a solution of the Equation (188), hence the result.

Thus, we have proved

Theorem 7. There are countably many solutions (Λi, ui) of the implicit eigenvalue problem

Bui −m2Λit2ui = m1t2− 4
n ui (203)
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with eigenfunctions ui ∈ H2 such that

Λi < Λi+1 < 0 ∀ i ∈ N, (204)

lim
i

Λi = 0, (205)

and their multiplicities are one. The transformed eigenfunctions

ũi(t) = ui(λ
n

4(n−1)
i t), (206)

where
λi = (−Λi)

− n−1
n , (207)

form a basis ofH2 and also of L2(I, 1).

Remark 5. The eigenfunctions ũ0 resp. u0 corresponding to the smallest eigenvalues λ0 resp. Λ0
do not change sign in I, since

B̃(|u|) ≤ B̃(u) ∀ u ∈ H2, (208)

in view of (168), and hence we deduce that |ũ0| is also an eigenfunction with eigenvalue λ0, i.e., we
may assume ũ0 ≥ 0. But if ũ0 would vanish in a t0 > 0, then its derivative ũ′0 would also vanish in
t0, yielding ũ0, which would completely vanish and represent a contradiction.

In Definition 2, we defined the operators A1 and Â1. The operator A1 can be expressed
with the help of the Bessel operator B as

A1u = Bu− t2m2Λu. (209)

Let us express Â1 similarly as

Â1w = B̂w− t2m2Λw, (210)

where
B̂w = −t−m ∂

∂t
(
tm ∂w

∂t
)
− t−2µ0w. (211)

We claim that B and B̂ are unitarily equivalent.

Lemma 5. Let ϕ be the linear map from L2(I, m) to L2(I, 1) defined by

ϕ(w) = u = t
m−1

2 w. (212)

Then, ϕ is unitary and, if B resp. B̂ are defined in C∞
c (I), the relation

B̂ = ϕ−1 ◦ B ◦ ϕ (213)

is valid.

Since we assume for simplicity the Hilbert spaces to be real Hilbert spaces, it would be
better to call the map ϕ orthogonal, but the result would be the same if we would consider
complex-valued functions and the corresponding scalar products.

For the simple proof of the lemma, we refer to [3] (Lemma 4.1). Moreover, for any
measurable function f = f (t), we have

〈 f ϕ(w), ϕ(v)〉1 = 〈 f w, v〉m ∀ v, w ∈ C∞
c (I). (214)
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Hence, we infer

〈ϕ(w), ϕ(v)〉2 = 〈Bϕ(w) + t2m2 ϕ(w), ϕ(v)〉1
= 〈B̂w + t2m2w, v〉m ∀ v, w ∈ C∞

c (I),
(215)

〈B̂w, v〉m = 〈Bϕ(w), ϕ(v)〉1 (216)

and we deduce, by setting u = ϕ(w) = t
m−1

2 w, that

〈B̂w, w〉m = 〈Bu, u〉1 =
∫

I
(t|u̇|2 − µ̄t−1|u|2) > 0, (217)

or equivalently,∫
I

tm|ẇ|2 =
∫

I
(t|u̇|2 − µ̄t−1|u|2) + µ0

∫
I

tm−2|w|2 ∀w ∈ C∞
c (I). (218)

Let us recall that µ̄ < 0 and µ0 > 0.

Remark 6. Defining the Hilbert space Ĥ2 by

Ĥ2 = {w = t−
m−1

2 u : u ∈ H2 } (219)

with norm
|||w|||2 = ‖u‖2 (220)

and the quadratic form K̂ by

K̂(w) = 〈m1t2− 4
n w, w〉m = 〈m1t2− 4

n u, u〉1 = K(u) ∀w ∈ Ĥ2 (221)

it is fairly easy to verify that all results in Theorem 6 remain valid if B, B̃, K,H2 are replaced by
B̂, ˜̂B, K̂, Ĥ2. The eigenvalues λi are identical and the eigenfunctions are related by

w̃i = t−
m−1

2 ũi, (222)

i.e.,
B̂w̃i + t2m2t2w̃i = λim1t2− 4

n w̃i. (223)

Similarly, the transformed eigenfunctions ui in Theorem 7 correspond to

wi = t−
m−1

2 ui (224)

satisfying
B̂wi −m2Λit2ui = m1t2− 4

n wi, (225)

which is the original ODE (147) on page 15 with Λ = Λi.

For completeness, let us restate Theorem 7 in the new setting

Theorem 8. There are countably many solutions (Λi, wi) of the implicit eigenvalue problem

B̂wi −m2Λit2wi = m1t2− 4
n wi (226)

with eigenfunctions wi ∈ Ĥ2 such that

Λi < Λi+1 < 0 ∀ i ∈ N, (227)
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lim
i

Λi = 0, (228)

and their multiplicities are one. The transformed eigenfunctions

w̃i(t) = wi(λ
n

4(n−1)
i t), (229)

where
λi = (−Λi)

− n−1
n , (230)

form a basis of Ĥ2 and also of L2(I, m).

Finally, let us show how the eigenvalue Equations (188) resp. (223) can be considered
to be eigenvalue equations of an essentially self-adjoint operator in an appropriate Hilbert
space. We shall first demonstrate it for the Equation (188).

Let ϕ0(t) be defined by

ϕ0(t) = m1t3− 4
n ∀ t ∈ I (231)

and define the Hilbert spaceH as L2(I, dµ) with respect to the measure

dµ = ϕ0dt. (232)

Moreover, denote the scalar product inH by 〈·, ·〉 and the corresponding norm by ‖·‖.
Note that, in view of (185),

〈u, v〉 = K(u, v). (233)

The operator

Au = ϕ−1
0
{
− (

∂

∂t
(
t
∂u
∂t
)
− t−1µ̄u + t3m2u

}
∀ u ∈ C∞

c (I) (234)

is densely defined and symmetric inH such that

〈Au, v〉 = 〈u, v〉2 ∀ u, v ∈ C∞
c (I) (235)

The above relation is also valid for all u, v ∈ H2 by partial integration. Hence, the
domain D(A) of A is contained inH2. In view of Equation (188), we infer

Aũi = λiũi, ∀ i ∈ N, (236)

i.e., ũi is an eigenfunction of A in the classical sense. Since A is symmetric A is closable.
Let Ā be the closure of A. If Ā is surjective

R(Ā) = H, (237)

then Ā is self-adjoint and A is essentially self-adjoint. These are well-known facts. Let us
prove (237) for convenience.

Lemma 6. Ā is surjective.

Proof. First, we observe that R(A) is dense inH due to (236). Indeed, the eigenfunctions
(ũi), i ∈ N, are complete and the eigenvalues are strictly positive, cf. Theorem 6.

Next, let v ∈ H be arbitrary and let ui ∈ D(A) be a sequence such that

Aui → v; (238)
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then,
λ0‖ui − uj‖2 = λ0〈ui − uj, ui − uj〉 ≤ 〈A(ui − ui), ui − uj〉

≤ ‖A(ui − uj)‖‖ui − uj‖,
(239)

where 0 < λ0 is the smallest eigenvalue, cf. (193). Hence,

λ0‖ui − uj‖ ≤ ‖A(ui − uj)‖, (240)

i.e., (ui) is a Cauchy sequence which implies v ∈ R(Ā), completing the proof of the lemma.

In case of Equation (223), we define ϕ̂0(t) by

ϕ̂0(t) = m1tm+2− 4
n ∀ t ∈ I (241)

and define the Hilbert space Ĥ as L2(I, dµ̂) with respect to the measure

dµ̂ = ϕ̂0dt. (242)

Moreover, denote the scalar product in Ĥ by 〈〈·, ·〉〉 and the corresponding norm by
||| · |||. Note that, in view of (221),

〈〈w, v〉〉 = K̂(w, v) (243)

The operator

Âw = ϕ̂−1
0
{
− (

∂

∂t
(
tm ∂w

∂t
)
− tm−2µ0w + tm+2m2w

}
∀w ∈ C∞

c (I) (244)

is densely defined and symmetric in Ĥ such that

〈〈Âw1, w2〉〉 = 〈Au1, u2〉 = 〈u1, u2〉2 ∀w1, w2 ∈ C∞
c (I), (245)

where
ui = ϕ(wi) ≡ t

m−1
2 wi, i = 1, 2, (246)

cf. the definition of ϕ in Lemma 5 and also the Equation (215). If Equation (245) would
be valid for all w1, w2 ∈ D(Â), then Â and A would be unitarily equivalent, since ϕ is
evidently a unitary (orthogonal) map between Ĥ andH.

This is indeed the case as one can easily infer from Remark 6; hence,

Âw̃i = λiw̃i, (247)

where
w̃i = t−

m−1
2 ũi (248)

and ũi an eigenfunction A with eigenvalue λi. The domain of Â satisfies

D(Â) = ϕ−1(D(A)). (249)

5.2. Treating Λ as a Fixed Cosmological Constant

If we want to define a partition function and entropy for our quantum system, we
have to consider Λ to be a fixed cosmological constant and not a parameter which can also
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play the role of an implicit eigenvalue. Our approach to solve the ODE (147) on page 15,
then, is similar but different. First, let us express Equation (147) in the equivalent form

ϕ̂−1
0

{
− ∂

∂t
(
tm ∂w

∂t
)
− tm−2µ0w− tm+2m2Λw

}
− 16(n− 1)

n
{(n− 1)|ξ|2 + µ̄k}w = 0,

(250)

where
ϕ̂0(t) = tm+2− 4

n (251)

and where we used the definition (145) on page 15 of m1. The term

(n− 1)|ξ|2 + µ̄k (252)

is an eigenvalue of the operator in (134) on page 14. |ξ|2 with ξ ∈ Rn1 is a continuous
eigenvalue while the sequence µ̄k, k ∈ N satisfies the relations (139) and (140). The operator

Ĥ0w ≡ ϕ̂−1
0

{
− ∂

∂t
(
tm ∂w

∂t
)
− tm−2µ0w− tm+2m2Λw

}
(253)

is identical to the operator Â defined in (244) if Λ = −1. The properties we proved for
Â are also valid for Ĥ0 by simply replacing −m2Λ by a positive constant m′2. Thus, we
know that Ĥ0 is essentially self-adjoint in the Hilbert space Ĥ = L2(I, dµ̂), cf. (242) with a
complete system of eigenfunctions wi, i ∈ N, and corresponding eigenvalues

0 < λ0 < λ1 < λ2 < · · · (254)

The eigenspaces are all one-dimensional and the ground state w0 does not change sign,
cf. Remark 5 on page 21.

Note that we denote the eigenfunctions by wi and not by w̃i since they will not be
transformed to obtain the final solutions of the ODE. Instead, they will be the solutions of
the ODE satisfying

Ĥ0wi = λiwi ∀ i ∈ N. (255)

But wi is a solution of the ODE (250) if and only if there exist j and ξ such that

λi =
16(n− 1)

n
{(n− 1)|ξ|2 + µ̄j} (256)

Evidently, the previous equation can only be satisfied for all λi if

λ0 ≥
16(n− 1)

n
µ̄0. (257)

In [12] (Lemma 6.4.9, p. 172), we proved the following lemma:

Lemma 7. Let λi be the temporal eigenvalues depending on Λ < 0 and let λ̄i be the corresponding
eigenvalues for

Λ = −1; (258)

then,
λi = λ̄i|Λ|

n−1
n . (259)

Thus, we deduce
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Corollary 1. Suppose that µ̄0 > 0 and define Λ0 < 0 by

|Λ0|
n−1

n = λ̄−1
0

16(n− 1)
n

µ̄0; (260)

then, the inequality (257) is satisfied provided

|Λ| ≥ |Λ0|. (261)

The inequality (257) is always satisfied if µ̄0 ≤ 0.
The eigenvalues on the right-hand side of Equation (256), i.e., the sum inside the

braces, are the eigenvalues of the operator defined in (134) on page 14 which can be written
as the sum

−(n− 1)∆δ + A, (262)

where A is a uniformly elliptic operator on a compact Riemannian manifold, cf. Equation (138)
on page 14. Hence, we can interpret the right-hand side of (256) as eigenvalues of the operator

H1 = −16(n− 1)2

n
∆δ +

16(n− 1)
n

A. (263)

To facilitate a comparison with former results in [12] (Sections 6.4 and 6.5), let us define

Ã =
16(n− 1)

n
A (264)

and

µ̃j =
16(n− 1)

n
µ̄j; (265)

then, Ã has the same eigenfunctions as A with eigenvalues µ̃j instead of µ̄j and the condi-
tion (256) can be rephrased in the form

λi =
16(n− 1)2

n
|ξ|2 + µ̃j (266)

and the inequality (257) can now be expressed as

λ0 ≥ µ̃0. (267)

In [12] (equ. (6.4.67), p.166), we considered an operator H1 which was similarly defined
as the operator in (263); the only difference was that the Laplacian ∆δ was defined in R,
i.e., the dimension n1 was equal to one. In this case, it is fairly simple to determine the
tempered eigendistributions ζijk in S ′(R) satisfying

−ζ ′′ijk = ω2
ijζijk, k = 1, 2, (268)

where
ζij1(τ) =

1√
2π

eiωijτ (269)

and
ζij2(τ) =

1√
2π

e−iωijτ , (270)

where
ωij ≥ 0 (271)

is defined by the relation

λi = µ̃j +
16(n− 1)2

n
ω2

ij. (272)
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In the higher dimensional case, n1 > 1, we have a whole continuum of vectors ξ ∈ Rn1

satisfying (266), and hence, a whole continuum of eigendistributions which we cannot
handle—neither physically nor mathematically. Therefore, let us pick a finite numbers of unit
vectors ξk ∈ Rn1 , 1 ≤ k ≤ k1 which are fixed. Then, the eigendistributions are defined by

ζijk(y) = (2π)−
n1
2 eiωij〈ξk ,y〉, 1 ≤ k ≤ k1, (273)

where

λi = µ̃j +
16(n− 1)2

n
ω2

ij (274)

if µ̃j < λi. We consider the eigendistributions ζijk to be mutually orthogonal since their
Fourier transforms

ζ̂ijk = δωijξ , (275)

which are Dirac measurers, have disjoint supports.
Now, we are able to define the eigenfunctions of the operator H1 in (263).

Theorem 9. Let ϕj ∈ L2(M) be the mutually orthogonal unit eigenvectors of Ã with corresponding
eigenvalues µ̃j and assume either that µ̄0 ≤ 0 or that Λ satisfies the condition (261) in Corollary 1.
Then, for any eigenvalue λi, we define

Ni = {j ∈ N : µ̃j ≤ λi} (276)

and ωijk ≥ 0 such that

16(n− 1)2

n
ω2

ijk + µ̃j = λi, 1 ≤ k ≤ k1, (277)

provided µ̃j < λi. If µ̃j = λi, then we choose ωijk = 0 and the multiplicity will be only the
multiplicity of µ̃j.

Note that
0 ∈ Ni ∀ i ∈ N, (278)

since
µ̃0 ≤ λ̃0, (279)

For j ∈ Ni, define the eigenfunctions vijk of H1 by

vijk = ζijk ϕj, (280)

where this distinction only occurs if
µ̃j < λi, (281)

such that
H1vijk = λivijk. (282)

Remark 7. H1 has the same eigenvalues λi as Ĥ0 but with finite multiplicities m(λi) in general
different from one which can be estimated from above by

m(λi) ≤ k1 card Ni ≡ k1n(λi). (283)

Recall that we labelled the eigenvalues µ̃j by including their multiplicities, cf. (139) on page 15.
Hence, if

µ̃j < λi ∀ j ∈ Ni (284)

then
m(λi) = k1n(λi). (285)
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Let us now define a separable Hilbert spaceH such that H1 is essentially self-adjoint
inH and its eigenvectors with eigenvalues λi form an ONB, an orthonormal basis.

First we declare the countable eigenvectors in (282) to be mutually orthogonal unit
vectors and we consider them to be the Hamel basis of the complex vector spaceH′. Since
the basis vectors are mutually orthogonal unit vectors, they also define a unique hermitian
scalar product in H′. Let H be the completion of H′ with respect to that scalar product.
Since the eigenvalues λi are positive and bounded from below by λ0, we could prove in [12]
(Lemma 6.5.1, p. 174) the following lemma:

Lemma 8. The linear operator H1 with domainH′ is essentially self-adjoint inH. Let H̄1 be its
closure; then, the only eigenvectors of H̄1 are those of H1.

Remark 8. In the following, we shall write H1 instead of H̄1 and we also let λ̃i be a relabelling of
the eigenvalues λi of H1 to include the multiplicities.

In [12] (Lemma 6.5.3, p. 175), we also proved

Lemma 9. For any β > 0, the operator
e−βH1 (286)

is of trace class inH, i.e.,

tr(e−βH1) =
∞

∑
i=0

e−βλ̃i < ∞. (287)

Let
F ≡ F+(H) (288)

be the symmetric Fock space generated byH and let

H = dΓ(H1) (289)

be the canonical extension of H1 to F . Then,

e−βH (290)

is also of trace class in F

tr(e−βH) =
∞

∏
i=0

(1− e−βλ̃i )−1 < ∞, (291)

where λ̃i is a relabelling of the eigenvalues λi to include the multiplicities.

The proof relies on the fact that a temporal Hamiltonian H0, which is similarly defined
as the operator Ĥ0 in (253), has these properties.

For the present operator Ĥ0, it is also valid that e−βĤ0 is of trace class and the proof of
this property is very similar to the proof we gave in [12] (Theorem 6.2.8, p. 148); however,
the structure of the operator in (253) is slightly different so that we cannot simply refer to
the previous result. We shall give a proof in the next section instead.

Remark 9. In [12] (Chapter 6.5), we used these results to define the partition function Z by

Z = tr(e−βH) =
∞

∏
i=0

(1− e−βλ̃i )−1 (292)

and the density operator ρ in F by
ρ = Z−1e−βH (293)
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such that
tr ρ = 1. (294)

The von Neumann entropy S is then defined by

S = − tr(ρ log ρ)

= log Z + βZ−1 tr(He−βH)

= log Z− β
∂ log Z

∂β

≡ log Z + βE,

(295)

where E is the average energy
E = tr(Hρ). (296)

E can be expressed in the form

E =
∞

∑
i=0

λ̃i

eβλ̃i − 1
. (297)

Here, we also set the Boltzmann constant

kB = 1. (298)

The parameter β is supposed to be the inverse of the absolute temperature T

β = T−1. (299)

For a more detailed analysis and especially for the dependence on Λ, we refer to [12] (Chapter 6.5).

6. Trace Class Estimates for e−βˆH0

Let us first consider the operator

H0u = ϕ−1
0
{
− (

∂

∂t
(
t
∂u
∂t
)
− t−1µ̄u + t3m2|Λ|u

}
∀ u ∈ C∞

c (I) (300)

which is unitarily equivalent to the operator in (253) on page 25. H0 is essentially self-
adjoint in

H = L2(R+, dµ), (301)

where
dµ = ϕ0dt (302)

with
ϕ0(t) = t3− 4

n . (303)

We shall use the same symbol for its closure, i.e., we shall assume that H0 is self-adjoint
in H with eigenvectors ui ∈ H2, cf. the remarks following (236) on page 23, and with
eigenvalues λi satisfying the statements in Theorem 6 on page 19, where now we denote
the eigenvectors by ui, since they will not be transformed.

Remark 10. The norm
〈H0u, u〉

1
2 (304)

is equivalent to the norm ‖u‖2 inH2, cf. (174) and (175) on page 18.
Let us also assume that all Hilbert spaces are complex vector spaces with a positive definite

sesquilinear form (hermitian scalar product).
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We shall now prove that
e−βH0 , β > 0, (305)

is of trace class inH. The proof is essentially the proof given in [12] (Chapter 6.2) with the
necessary modifications due to the different structure of the operator.

First, we need two lemmata:

Lemma 10. The embedding

j : H2 ↪→ H0 = L2(R+, dµ̃), (306)

where
dµ̃ = (1 + t)−2dt, (307)

is Hilbert–Schmidt, i.e., for any ONB (ei) inH2, the sum

∞

∑
i=0
‖j(ei)‖2

0 < ∞ (308)

is finite, where ‖·‖0 is the norm in H0. The square root of the left-hand side of (308) is known as
the Hilbert–Schmidt norm |j| of j and it is independent of the ONB.

Proof. Let w ∈ H2; then, assuming that w is real-valued,

|w(t)|2 = 2
∫ t

0
ẇw ≤

∫ ∞

o
t|ẇ|2 +

∫ ∞

0
t−1|w|2

≤ c‖w‖2
2

(309)

for all t > 0, where ‖·‖2 is the norm inH2. To derive the last inequality in (309), we used
(174) and (163) on page 17. The estimate

|w(t)| ≤ c‖w‖2 ∀ t > 0 (310)

is of course also valid for complex-valued functions from which we infer that, for any t > 0,
the linear form

w→ w(t), w ∈ H2, (311)

is continuous; hence, it can be expressed as

w(t) = 〈ϕt, w〉, (312)

where
ϕt ∈ H2 (313)

and
‖ϕt‖2 ≤ c. (314)

Now, let
ei ∈ H2 (315)

be an ONB; then,
∞

∑
i=0
|ei(t)|2 =

∞

∑
i=0
|〈ϕt, ei〉|2 = ‖ϕt‖2

2 ≤ c2. (316)

Integrating this inequality over R+ with respect to dµ̃, we infer

∞

∑
i=0

∫ ∞

0
|ei(t)|2dµ̃ ≤ c2 (317)
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completing the proof of the lemma.

Lemma 11. Let ui be the eigenfunctions of H0; then, there exist positive constants c and γ such that

‖ui‖2 ≤ c|1 + λi|γ‖ui‖0 ∀ i ∈ N, (318)

where ‖·‖0 is the norm inH0.

Proof. We have
〈H0ui, ui〉 = λi〈ui, ui〉 (319)

and hence, in view of Remark 10,

‖ui‖2
2 ≤ c1λi

∫ ∞

0
ϕ0(t)|ui|2

≤ c1λi

{ ∫ 1

0
ϕ0(t)|ui|2 + c2

∫ ∞

1
t3− 4

n |ui|2
}

.
(320)

To estimate the second integral in the braces, let us define p = 3 and observe that

3− 4
n
≤ p− p

n
, (321)

and hence,
t3− 4

n ≤ tp− p
n ∀ t ≥ 1. (322)

Then, choosing small positive constants δ and ε, we apply Young’s inequality, with

q =
p

p− pδ
=

1
1− δ

(323)

and
q′ = δ−1 (324)

to estimate the integral from above by

1
q

εq
∫ ∞

1

{
tp− p

n (1 + t)
p
n−pδ

}q|ui|2

+
1
q′

ε−q′
∫ ∞

1
(1 + t)−(

p
n−pδ)q′ |ui|2.

(325)

Choosing, now, δ so small such that

(
p
n
− pδ)δ−1 > 2 (326)

the preceding integrals can be estimated from above by

1
q

εq
∫ ∞

1
(1 + t)p|ui|2 +

1
q′

ε−q′
∫ ∞

0
(1 + t)−2|ui|2 (327)

which in turn can be estimated by

1
q

εqc‖ui‖2
2 +

1
q′

ε−q′‖ui‖2
0, (328)

in view of Remark 10.
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The first integral in the braces on the right-hand side of (320) can be estimated by∫ 1

0
ϕ0(t)|ui|2 ≤

1
2

cε2
∫ 1

0
|ui|2

+
1
2

ε−2
∫ ∞

0
(1 + t)−2|ui|2

≤ c̃ε2‖ui‖2
2 +

1
2

ε−2‖ui‖2
0.

(329)

Choosing now ε, γ and c appropriately, the result follows.

We are now ready to prove:

Theorem 10. Let β > 0; then, the operator

e−βH0 (330)

is of trace class inH, i.e.,

tr(e−βH0) =
∞

∑
i=0

e−βλi = c(β) < ∞. (331)

Proof. In view of Lemma 10, the embedding

j : H2 ↪→ H0 (332)

is Hilbert–Schmidt. Let
ui ∈ H (333)

be an ONB of eigenfunctions; then,

e−βλi = e−βλi‖ui‖2 ≤ e−βλi cλ−1
i ‖ui‖2

2

≤ e−βλi λ−1
i c|λi + 1|2γ‖ui‖2

0,
(334)

in view of (318), but
‖ui‖2

0 = ‖ui‖2
2 ‖ũi‖2

0 ≤ cλi‖ũi‖2
0, (335)

where
ũi = ui‖ui‖−1

2 (336)

is an ONB inH2, yielding

∞

∑
i=0

e−βλi ≤ cβ

∞

∑
i=0
‖ũi‖2

0 < ∞, (337)

since j is Hilbert–Schmidt. Here, we also used that λ0 > 0.

Since the operator in (253) on page 25 has the same eigenvalues as the operator in (300),
we have also proved the following:

Theorem 11. The operator Ĥ0 in (253), which is self-adjoint in the Hilbert space Ĥ, has the
property that

e−βĤ0 , β > 0, (338)

is of trace class in Ĥ.

7. Conclusions

We quantized the full Einstein equations and found solutions to the resulting hy-
perbolic equation in a fiber bundle E which can be expressed as a product of spatial
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eigenfunctions (eigendistributions) and temporal eigenfunctions. The spatial eigenfunc-
tions form a basis in an appropriate Hilbert space, while the temporal eigenfunctions are
solutions to a second-order ODE in R+.

The base space S0 with dimension n ≥ 3 is a Cauchy hypersurface of the quantized
spacetime N. The solutions u of the hyperbolic equation in E are evaluated at (t, x, χ(x)),
where χ is the metric of the Cauchy hypersurface. The main assumptions for proving the
existence of spatial eigenfunctions that also form a basis of a Hilbert space is that S0 is a
metric product as described in (130) and (132) on page 14, where the compact part M0 of
the product may in general be hidden from observations. In case of Schwarzschild and
Kerr-AdS black holes being considered in [21,22], these assumptions are satisfied.

For large n, n ≥ 17 and negative Λ, the temporal eigenfunctions are also the eigen-
functions of a self-adjoint operator, the eigenvalues are countable and either Λ plays the
role of an implicit eigenvalue, cf. Theorem 9 on page 27, or Λ < 0 is considered to be a fixed
cosmological constant, in which case the temporal eigenfunctions are eigenfunctions of a
self-adjoint operator Ĥ0 and a subset of the spatial eigenfunctions are eigenfunctions of a
self-adjoint operator H1 acting in S0 such that Ĥ0 and H1 have the same eigenvalues but
with different multiplicities. The operators

e−βĤ0 ∧ e−βH1 (339)

are of trace class in their respective Hilbert spaces and also in the corresponding symmetric
Fock spaces. The latter result makes it possible to define a partition function Z, a density
operator ρ, the von Neumann entropy S and the average energy E of the quantum system,
cf. Lemma 9 on page 28 and [12] (Chapter 6.5).
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