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Abstract: In this study, an automated medical decision support system is presented to assist physi-
cians with accurate and immediate brain tumor detection, segmentation, and volume estimation
from MRI which is very important in the success of surgical operations and treatment of brain tumor
patients. In the proposed approach, first, tumor regions on MR images are labeled by an expert
radiologist. Then, an automated medical decision support system is developed to extract brain tumor
boundaries and to calculate their volumes by using multimodal MR images. One advantage of this
study is that it provides an automated brain tumor detection and volume estimation algorithm that
does not require user interactions by determining threshold values adaptively. Another advantage
is that, because of the unsupervised approach, the proposed study realized tumor detection, seg-
mentation, and volume estimation without using very large labeled training data. A brain tumor
detection and segmentation algorithm is introduced that is based on the fact that the brain consists of
two symmetrical hemispheres. Two main analyses, i.e., histogram and symmetry, were performed to
automatically estimate tumor volume. The threshold values used for skull stripping were computed
adaptively by examining the histogram distances between T1- and T1C-weighted brain MR images.
Then, a symmetry analysis between the left and right brain lobes on FLAIR images was performed
for whole tumor detection. The experiments were conducted on two brain MRI datasets, i.e., TCIA
and BRATS. The experimental results were compared with the labeled expert results, which is known
as the gold standard, to demonstrate the efficacy of the presented method. The performance evalua-
tion results achieved accuracy values of 89.7% and 99.0%, and a Dice similarity coefficient value of
93.0% for whole tumor detection, active core detection, and volume estimation, respectively.

Keywords: histogram analysis; adaptive thresholding; skull stripping; symmetry analysis; fuzzy
c-means clustering

1. Introduction

Magnetic resonance imaging (MRI), which is one of the neuroimaging techniques used
in clinics, has important roles in early diagnosis, treatment planning, and post-therapy
assessment of abnormal brain tissues. MRI provides different image modalities via various
acquisition protocols and parameters, so the same brain tissues can be visualized with
different contrast and high resolution [1,2]. Due to the fact that healthy brain tissues and
abnormal brain regions have similar intensity levels, it is difficult to determine brain tumor
boundary in single-spectral MR images. Multi-spectral MRI scans which possess high
resolution and contrast visualization can be useful for accurate detection of abnormal
tumor boundary.

The first objective tool for radiologic assessment of treatment response in high-grade
gliomas was originally published as the Macdonald criteria in 1990, which is based on the
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evaluation of tumor enhancement through CT. Besides, to standardize the assessment and
reporting of results, objective evaluation of measurable and non-measurable disease relies
on the use of 4 categories to describe response: complete response, partial response, stable
disease, and progressive disease. These categories were introduced as the essential meas-
urement of systemic cancer treatment response in the WHO criteria [3]. Through the years,
the guidelines for brain tumor definition and assessment are defined and standardized by
the Response Assessment in Neuro-Oncology (RANO) working group [3]. According to
this new criteria, MR imaging added fundamental information about the non-enhancing
component of the tumor, depicted on T2-weighted/FLAIR sequences, and became the
standard neuroimaging technique used to assess treatment response in high-grade glio-
mas [4]. However, RANO lacks sufficient detail for consistent implementation in certain
aspects and leaves some issues from the original Macdonald guidelines unresolved. To
provide the most accurate assessment of response to therapeutic intervention currently
possible, it is essential that trial oncologists and radiologists not only have a solid under-
standing of RANO guidelines, but also proper insight into the inherent limitations of
the criteria [3].

Accurate segmentation of brain tumors is crucial for early diagnosis, treatment plan-
ning, and the recovery process of a patient by observing and tracking the size of the brain
lesion [2,5,6]. In [7], manual and semi-automatic brain tumor volume estimation approaches
were proposed. According to inter- and intra-operator agreement, evaluations showed that
the semi-automated method provided faster and reliable results compared to the manual
trace method. So, it was revealed that an automated brain tumor volume estimation for
measuring serial tumor volumes in patients with high-grade brain neoplasms was faster
and reliable compared to manual tracing. According to the World Health Organization
and the Response Evaluation Criteria in Solid Tumors, tumor size measurement is used
internationally as a surrogate marker for overall survival when following current response
assessment protocols [8]. In the study by [8], volumetric, bidimensional, and unidimen-
sional measurements for tumor size were realized by using contrast-enhanced T1-weighted
MR images with recurrent malignant glioma receiving intravenous chemotherapy. The
authors of the study in [9], presented a clinical evaluation of an automated segmentation
approach for longitudinal brain tumor volumetry; they used automatic, machine learning-
based segmentation method by subdividing a glioma into necrosis, edema, enhancing
tumor, and non-enhancing tumor. The potential of an automatic segmentation method for
brain tumor volumetry was confirmed via comparison against manual labeling by experts.

In addition to a multimodal analysis, automatic segmentation is also required for
accurate detection of abnormal regions in brain MR images [6,10–12]. Manual tumor
contouring realized by an expert is tedious work and requires attention, because examining
MR sequences which have 50–200 slices for a patient takes a lot of time and the expert
can be distracted during the long process. The fact that manual contouring depends on
subjective judgements of various observers is also one of the disadvantages of manual
segmentation [2].

Since multimodal MR images, which are obtained via different acquisition protocols,
provide various information about abnormal tissue intensities, different types of MR
sequence combinations have been used in tumor segmentation studies by many researchers.
Refs [5,6,8–11,13–16] using multimodal MR images. Clark et al. [17] proposed a method
segmenting tumor areas automatically via knowledge-based techniques using T1 weighted,
T2 weighted and proton density (PD) images, Dou et al. [5] used fuzzy information fusion
applied on T1 weighted, T2 weighted and PD images, Verma et al. [6] used support
vector machine (SVM) method to segment the abnormal tissues of the brain from T1,
T1C, T2, FLAIR and diffusion tensor imaging (DTI) modalities, Nie et al. [18] presented an
approach based on spatial accuracy weighted hidden Markov random field and expectation
maximization (SHE).

In other studies [2,11,12,19–26] researchers preferred to use single spectral images.
Nabizadeh et al. [2] detected brain tumors from T1 and FLAIR images separately,
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Harati et al. [11] introduced the fuzzy connectedness algorithm to segment tumors from
T1 post Gadolinium images, Dvorak et al. [12] and Prastawa et al. [20] used T2 weighted
images, while Kaus et al. [19], Wang et al. [21] and Khotanlou et al. [22] used T1 weighted
MR images, Khosravanian et al. [25] used fuzzy kernel level set method for 3D brain
tumor seg-mentation from 40 FLAIR MR images, Nanda et al. [24] introduced a hybrid
salien-cy-k-mean segmentation approach to segment brain tumors from FLAIR MRI.

There are some studies defining the importance of the symmetry/asymmetry in human
brain hemispheres [27,28]. By using symmetry analysis in the brain Dvorak et al. [20]
obtained brain tumors by using the SVM method, Khotanlou et al. [22] used spatial con-
strained deformable models in addition to fuzzy classification, Ogretmenoglu et al. [14–16]
introduced a brain tumor detection method using symmetry properties of two halves of the
brain, Kermi et al. [23] proposed a method for brain tumor segmentation handling a hybrid
method composed of fast bounding box, region growing and geodesic level-set methods,
Khalil et al. [29] used a level set segmentation method based on dragonfly algorithm to
segment brain tumors, Barzegar et al. [10] applied symmetry plane detection followed by
similarity comparison.

Recently, in some studies in the literature, deep learning-based methods were used to
detect brain tumors. Chen et al. [30] introduced a deep convolutional neural network which
combines symmetry for brain tumor segmentation taking four modal MRI, Wu et al. [26]
presented a study to segment brain tumors by using symmetric-driven adversarial network
applied on T2 weighted MRI, Latif et al. [13] classify glioma type tumors by using deep
learning, Athisayamani et al. [31] applied residual deep convolutional neural network
(ResNet-152) to classify brain tumors, Pedada et al. [32] proposed a system to segment
and classify brain tumor areas from multimodal MRI by using U-Net structure. Also,
some analytical methods have been presented for symmetry analysis in literature [33–35]
providing the solution of the application in different areas such as medical MRI.

There are many studies on brain tumor segmentation in the literature; however, there
are still some gaps for methodological and clinical use. By eliminating these gaps, a robust
decision support system on brain tumor diagnosis could be provided to the experts that
they could be used in clinics. In the literature, brain tumor segmentation approaches
using traditional segmentation methods generally cannot handle automated marking and
selection of a tumor area from MR images, and they also generally require user assistance.
Additionally, deep learning-based brain tumor detection methods necessitate large labeled
MRI datasets for training. In addition, the studies on brain tumor detection, generally, have
only focused on tumor segmentation or classification instead of tumor volume estimation.
However, to assist the radiologist, volume estimation is a valuable skill of the decision
support system on brain tumor diagnosis.

In this study, automated brain tumor detection and segmentation is proposed using a
symmetry analysis from multimodal MRI. In addition, user interactions in the threshold
assignment are eliminated by using a multimodal histogram analysis, so skull stripping is
realized by an adaptive thresholding method. Tumor detection is realized via a symmetry
analysis, and then segmentation and volume estimation processes are performed.

One of the contributions of this study is that it reveals the distinctiveness of the
mean difference, area difference, and Bhattacharyya coefficient features extracted from
MRI, thus proving that disruption in brain symmetry is one of the indicators of a brain
tumor. Another contribution of this study is that the whole tumor including edema region
and covering active core and necrotic core can be used as the mask to narrow the ROI
(region of interest), thus reducing the search area as well as the algorithm execution time.
Additionally, the unsupervised tumor segmentation method used in this study eliminates
the need to use a large number of MRI data for the training phase required for supervised-
based learning methods such as neural networks or deep learning. Finally, the proposed
method can properly be used as a computer-aided system for assisting physicians with
surgical planning and following the growing rate of brain tumor treatment duration.
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The main novelty of this study is to provide a medical decision support system
that performs all the operations sequentially for detecting MR slices containing tumors,
determines tumor borders in these slices to calculate tumor area, and then estimates the
volume of the tumor holding the contrast agent. Another novelty of this study is the use of
symmetry-based features for brain tumor detection, segmentation, and volume estimation
from MRI.

2. Materials and Methods

The algorithm was developed in the Matlab2021a environment and implemented on
T1, T1C (T1 post gadolinium), and FLAIR modalities of brain MR images. The datasets
used in this study are The Cancer Imaging Archive (TCIA) [36] and Brain Tumor Seg-
mentation (BRATS) datasets. The TCIA dataset contains 529 brain MR images with
256 × 256 resolution and 0.938 mm pixel spacing that had been captured from 10 patients.
Slices are differently weighted images per patient (approximately 53 scans per patient).
Each patient has T1, T1C, and FLAIR MRI slices with 0.3 mm slice spacing and 0.3 mm slice
thickness. The MRI slices in this dataset were labeled by an expert. In addition, the parts
of the tumor that hold the contrast agent, called the active core regions, were drawn by a
specialist on T1C MR images. The BRATS-2018 [37–39] dataset used in this study included
1705 MR images (155 scans per patient) consisting of skull-stripped images with T1, T1C,
and FLAIR modalities.

This study’s proposal depends on an unsupervised slice-level segmentation algorithm;
thus, the MRI datasets consisted of 529 and 1705 MRI slices per each MRI sequence. The
experimental results, considering the high accuracy of the slice-level algorithm performed
on 2234 MRI slices, showed that the size of the dataset was satisfactory enough to make
conclusions about tumor detection, segmentation, and volume estimation.

The proposed brain tumor detection and volume estimation algorithm consists of
six main stages: median filtering, skull stripping, symmetry analysis, whole tumor seg-
mentation, active core segmentation, and volume estimation. The proposed brain tumor
detection and volume estimation algorithm flowchart is given in Figure 1. Initially, noise
reduction of the T1, T1C, and FLAIR MR images was realized by median filtering, since
an amount of impulsive noises naturally affects MR image slices. The original T1, T1C,
and FLAIR MR slices and median filtering results are shown in Figure 2 as an example.
Secondly, skull parts of the multimodal brain MR slices were extracted by an adaptive
thresholding method. The threshold values were obtained by using histograms of the T1
and T1C images. Third, a symmetry analysis applied on the FLAIR images was performed
to detect and label tumor-containing MR slices according to asymmetry scores. Fourth,
whole tumor segmentation was realized by using fuzzy c-means (FCM) clustering on the
FLAIR MR slices labeled as tumor containing. Fifth, the obtained whole tumor regions were
used as the ROI mask for active core detection and segmentation. Active core segmentation
relies on the FCM clustering method applied on T1C MRI. Finally, after calculating the
areas of the tumor in each MR slice for each patient individually, a volume estimation of
the tumor active core was performed by using the calculated areas and also the spacing
between slices, and the slice thickness parameters were obtained from the Digital Imaging
and Communications in Medicine (DICOM) file.

2.1. Histogram Analysis for Skull Stripping

MR images in the TCIA dataset contained brain skull regions, while the BRATS dataset
consisted of skull-stripped MR images. So, to remove these parts, a histogram analysis was
performed using the T1 and T1C images. The aim of a histogram analysis is to obtain the
threshold values automatically by calculating differences between the histogram values
of the T1- and T1C-weighted MR images. The framework of the histogram analysis is
given in Figure 3. Initially, histogram matching was performed on the T1 and T1C images,
and then differences in the histograms were calculated. The maximum intensity level in
the difference graph was assigned as the threshold value for a skull removal operation.
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Figure 3 also shows the determined threshold value on the histogram difference graph for
a sample brain slice.
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Figure 1. The proposed brain tumor detection and volume estimation algorithm flowchart for
a patient.

Non-brain regions such as the skull, orbital fat, and sclera in the brain MR images led
to confusion in the tumor detection process, because these irrelevant parts have the same
intensity level as tumor regions. In the T1C images, the skull, eyes, and tumor regions
have high intensity level, while in the T1 images, only the skull and eye regions have high
intensity, so the T1 images were used as a skull-stripping mask to remove irrelevant regions.
A skull stripping block diagram is shown in Figure 4. To obtain the skull-stripping mask,
an adaptive thresholding operation was applied to the T1-weighted images by using the
threshold values assigned automatically in the histogram analysis part of the algorithm. A
T1 image and the obtained skull stripping mask are shown in Figure 4. After obtaining the
skull-stripping mask, the skull and eye regions of the FLAIR images were removed by a
masking operation. Figure 5 shows a T1 image, a skull stripping mask, a skull-stripped
T1C image, and a skull-stripped FLAIR image are given.



Symmetry 2023, 15, 1586 6 of 21

Symmetry 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. The proposed brain tumor detection and volume estimation algorithm flowchart for a 
patient. 

 
Figure 2. (a) T1 image; (b) T1C image; (c) FLAIR image; (d) median-filtered T1 image; (e) median-
filtered T1C image; (f) median-filtered FLAIR image. 

Figure 2. (a) T1 image; (b) T1C image; (c) FLAIR image; (d) median-filtered T1 image; (e) median-
filtered T1C image; (f) median-filtered FLAIR image.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 22 
 

 

2.1. Histogram Analysis for Skull Stripping 
MR images in the TCIA dataset contained brain skull regions, while the BRATS da-

taset consisted of skull-stripped MR images. So, to remove these parts, a histogram anal-
ysis was performed using the T1 and T1C images. The aim of a histogram analysis is to 
obtain the threshold values automatically by calculating differences between the histo-
gram values of the T1- and T1C-weighted MR images. The framework of the histogram 
analysis is given in Figure 3. Initially, histogram matching was performed on the T1 and 
T1C images, and then differences in the histograms were calculated. The maximum inten-
sity level in the difference graph was assigned as the threshold value for a skull removal 
operation. Figure 3 also shows the determined threshold value on the histogram differ-
ence graph for a sample brain slice. 

 
Figure 3. Histogram analysis for skull stripping. 

Non-brain regions such as the skull, orbital fat, and sclera in the brain MR images led 
to confusion in the tumor detection process, because these irrelevant parts have the same 
intensity level as tumor regions. In the T1C images, the skull, eyes, and tumor regions 
have high intensity level, while in the T1 images, only the skull and eye regions have high 
intensity, so the T1 images were used as a skull-stripping mask to remove irrelevant re-
gions. A skull stripping block diagram is shown in Figure 4. To obtain the skull-stripping 
mask, an adaptive thresholding operation was applied to the T1-weighted images by us-
ing the threshold values assigned automatically in the histogram analysis part of the al-
gorithm. A T1 image and the obtained skull stripping mask are shown in Figure 4. After 
obtaining the skull-stripping mask, the skull and eye regions of the FLAIR images were 
removed by a masking operation. Figure 5 shows a T1 image, a skull stripping mask, a 
skull-stripped T1C image, and a skull-stripped FLAIR image are given. 

Figure 3. Histogram analysis for skull stripping.



Symmetry 2023, 15, 1586 7 of 21Symmetry 2023, 15, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 4. Skull stripping block diagram. 

 
Figure 5. (a) T1 image; (b) skull stripping mask; (c) masked T1C image; (d) masked FLAIR image. 

2.2. Symmetry Analysis for Tumor Detection 
The aim of conducting the symmetry analysis is to obtain symmetry properties be-

tween the left and right brain halves. By using this analysis, a possible dissimilarity com-
ing from a defect in a brain part, such as a tumor, can be observed between halves. Brain 
tumors cause edema that surrounds the abnormal region. The edema region is a high in-
tensity level in the FLAIR modality, so the defected area in this region can be clearly ob-
served in FLAIR images. In this study, the symmetry of two halves was examined using 
skull-stripped FLAIR images. A brain hemisphere including a tumor causes symmetry 
anomaly between the left and right parts of the FLAIR images. It is assumed that the mid-
sagittal plane is a vertical line that divides the MR slice into two equal parts, so this vertical 
line is assigned as the geometrical symmetry axis, as shown in Figure 6a. The hemisphere 
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2.2. Symmetry Analysis for Tumor Detection

The aim of conducting the symmetry analysis is to obtain symmetry properties be-
tween the left and right brain halves. By using this analysis, a possible dissimilarity coming
from a defect in a brain part, such as a tumor, can be observed between halves. Brain
tumors cause edema that surrounds the abnormal region. The edema region is a high
intensity level in the FLAIR modality, so the defected area in this region can be clearly
observed in FLAIR images. In this study, the symmetry of two halves was examined using
skull-stripped FLAIR images. A brain hemisphere including a tumor causes symmetry
anomaly between the left and right parts of the FLAIR images. It is assumed that the
mid-sagittal plane is a vertical line that divides the MR slice into two equal parts, so this
vertical line is assigned as the geometrical symmetry axis, as shown in Figure 6a. The
hemisphere containing a whole tumor is found by comparing the symmetry-based features,
which are mean, area, and the Bhattacharyya coefficient (BC). While the Bhattacharyya
coefficient and mean represent gray level characteristics, the area is used for examining
binary characteristics of the MR image.
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The symmetry analysis stage of the algorithm is processed according to the framework
given in Figure 7. Initially, the FCM clustering method is applied on the skull-stripped
FLAIR MR images, then the binary image is divided into two equal parts. The area
difference (AD) is calculated from this binary left and right hemisphere images. In addition,
the gray level, skull-stripped FLAIR MR image is divided into two equal halves, then the
mean difference (MD) of the left and right part is calculated. In addition, histograms of
the gray level parts are calculated, and then BC is calculated. After obtaining MD, BC,
and AD values, L1, L2, and L3 labels are assigned as 1 or −1 according to threshold levels
T1, T2, and T3, respectively. Then, the asymmetry score is obtained by summing these
labels. Whole tumor detection in each FLAIR slice of a patient is realized according to the
asymmetry score.

Area difference, mean difference, and BC asymmetry score graphs for two different
patients are given in Figures 8 and 9. As can be seen in these figures, graphs of all three
features, i.e., MD, BC, and AD, have similar trends for both patients, since MD, BC and
AD values are higher in MR sections containing tumors. The experimental results show
that MD, BC, and AD values increased between FLAIR slices including tumor. So, it was
decided to use these three distinguishing features in the symmetry analysis algorithm to
detect brain tumor.

To find the area difference, the FCM clustering method is applied on the skull-stripped
FLAIR image, then the binary MR slice obtained is separated into two equal halves via the
vertical symmetry axis (Figure 6). Then, the left side area is subtracted from the right side
area. FCM is an unsupervised clustering method, which is frequently used in medical image
segmentation. Similar pixels are grouped into clusters in terms of their fuzzy memberships
via fuzzy c-means clustering technique [40]. FCM is an iterative algorithm for the purpose
of minimizing a cost function that is given in Equation (12). The cost function depends on
the distance of the pixels to the cluster centers. In Equation (1), N, c, and xj represent the
number of pixels, the number of clusters, and the jth pixel intensity, respectively. In this
study, cluster number, c, is assigned as 3, uij represents the membership of the xj which
is in the ith cluster, vj represents the ith cluster center, and m controls the fuzziness and it
takes a constant value. Membership function and cluster centers are recalculated at every
iteration by the formulas given in Equations (2) and (3) [40]:

J = ∑N
j=1∑c

i=1um
ij
∥∥xj − vi

∥∥2, (1)
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uij =
1

∑c
k=1

(
‖xj−vi‖
‖xj−vk‖

)2/(m−1)
, (2)

vi =
∑N

j=1um
ij xj

∑N
j=1um

ij
. (3)
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Figure 7. Framework of the symmetry analysis.

The mean difference and the BC values are obtained from gray level skull-stripped
FLAIR images by using (4) and (5), respectively. The operation of dividing an image into
left and right halves is also applied on the gray level FLAIR image (Figure 6). Means of
both halves are calculated, then the mean differences of the two halves are obtained via a
subtraction operation. BC values are obtained using the histograms of the left and right
parts of the MR slice. M, which is given in Equation (11), represents the total number of
pixels, while x represents pixel intensity. I, which is given in Equation (12), represents the
highest intensity value, while p(i) and q(i) represent normalized histogram values.

µ =
1
M ∑M

i=1xi, (4)
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BC(p, q) = ∑I
i=1

√
p(i)q(i). (5)
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2.3. Whole Tumor Segmentation

Edema associated with brain tumors includes the tumor and its boundaries, so to
restrict the area of the tumor segmentation process, the whole tumor mask is obtained
from FLAIR images at this stage. A flowchart of the whole tumor segmentation process is
presented in Figure 10. Initially, fuzzy c-means clustering is applied on a skull-stripped
FLAIR image, so three main clusters are obtained, i.e., the whole tumor region, the brain
region excluding the whole tumor, and the background region. Secondly, each cluster
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is labeled via connected-component labeling in terms of pixel 8-connectivity, then the
areas of each of the labeled regions are calculated. Since the whole tumor region has the
smallest area, the region with smallest area is assigned as the whole tumor mask. Finally,
the morphological opening operation is applied on the edema mask to remove residuals.
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2.4. Active Core Segmentation and Volume Estimation

Active core segmentation and the volume estimation stage involve masking and
FCM clustering operations, as outlined in Figure 11. The T1C image is converted to a
binary image via FCM and a morphological opening operation (Figure 12c), and then skull
stripping and whole tumor masks (Figure 12d,e) are applied on this image to obtain the
enhancing/active core (Figure 12f). To obtain the necrotic/cystic core, a morphological
closing operation is applied on the active core region (Figure 13c), then the active core is
subtracted from this image (Figure 13d).
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After extracting tumor regions, areas of these regions are calculated using the formula
given in Equation (6). It is assumed that all the segmented tumor regions of a patient are
superimposed, so these layers compose the volumetric structure of the tumor. Volume
estimation is realized using the calculated real tumor areas and information, which are slice
thickness, spacing between slices, and pixel spacing obtained from the DICOM header. In
this work, 0.938 mm pixel spacing, 3 mm slice thickness, and 3 mm spacing between slices
were used according to the DICOM file of the MR images of TCIA dataset. Real tumor area
(A) is calculated via Equation (6) and volume estimation formula is given in Equation (7) in
which N represents the number of slices:

A = (pixel spacing)2 × white pixel number, (6)

Volume = ∑N
i=1 Ai × (slice thickness + spacing between slicess). (7)
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3. Results

The proposed algorithm was implemented on MATLAB 2021a, and the process took
258.75 s per patient (258.75/53 = 4.88 s per slice). The computer used for implementation
was an Intel Core i7, 2.60 GHz processor with 16.0 GB RAM. The proposed algorithm was
applied on TCIA and BRATS-2018 datasets; 529 T1, 529 T1C, and 529 FLAIR modality axial
brain MR images of 10 patients, and 1705 T1, 1705 T1C, and 1705 FLAIR modality axial brain
MR images of 11 patients were used from the TCIA [36] and BRATS-2018 [37–39] datasets,
respectively. An expert radiologist labeled all test MRI data manually, over approximately
a month. The datasets consisted of slices with no tumor and included tumors that were
in different locations, with different shapes and sizes. The algorithm developed was
implemented on MATLAB 2021a. Boundary drawings of the active core area and labeling
of each MR slice by detecting slices containing tumor were prepared by an expert, which is
regarded to be a gold standard for evaluation of the proposed system. The performance
analysis investigated sensitivity, specificity, the Jaccard coefficient (overlap fraction), and
the Dice similarity coefficient. Performance metric formulas are given in Equations (8)–(12),
and the TP, TN, FP, and FN terms used in these equations represent true positive, true
negative, false positive, and false negative, respectively:

Sensitivity =
TP

TP + FN
, (8)

Speci f icity =
TN

TN + FP
, (9)

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

Jaccard Coe f f icient =
TP

FP + TP + FN
, (11)

Dice Similarity Coe f f icient =
2 TP

2 TP + FP + FN
. (12)

The detection of slices containing active core tumor and the volume estimation results,
which were compared with the manual segmentations of an expert, are displayed via
performance metrics. Performance metrics quantify the degree of congruence between
the manual labeling and segmentation of an expert and the labeling and segmentation by
the proposed system. Slices with the tumor identification algorithm evaluation depend
on a slice-level analysis, while the volume estimation evaluation is based on a pixel-level
analysis. The results and performance analysis of the detection of slices containing tumor
algorithm are displayed in Tables 1 and 2, respectively. For the tumor detection algorithm,
the threshold values of the MD, BC, and AD features, represented by T1, T2, and T3, were
assigned as 0.02, 0.02, and 600. These threshold values were determined experimentally. In
Table 1, the total number of slices and the number of slices containing tumor per patient
labeled by the expert are shown.

In addition, in Table 1, true positive (TP) represents the number of slices labeled as
tumor by the expert and the proposed system; false negative (FN) represents the number
of slices that the expert labels as containing tumor while the proposed system labels as no
tumor; false positive (FP) represents the number of slices that the proposed system labels
as containing tumor while the expert labels as no tumor; and true negative (TN) represents
the number of slices labeled as no tumor by the expert and the proposed system.

In Table 2, sensitivity is the probability that the proposed method identifies the slices
with tumor in which the tumor is present. Specificity is the probability that the proposed
method designates the slices without tumor in which the tumor is absent in reality. Accuracy
is the ratio of the number of correct identifications to the total number of slices. The
sensitivity, specificity, and accuracy of the detection of slices containing tumor algorithm
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are 97%, 100%, and 99%, respectively. For explaining clearly, the values in Table 2 were
re-plotted in Figure 14. It can be seen from this figure that the smallest accuracy and
sensitivity are obtained for Patient 2. The reason for this low accuracy result is that the
related MR images do not have enough resolution by comparing the other examples in the
dataset. Moreover, this active core tumor region cannot be discriminated easily from the
background in these images because of insufficient contrast agent hold at that area.

Table 1. Results of the detection of the slices containing tumor active core algorithm.

Patient Number
of Slices

Number of Slices
Containing Tumor TP FN FP TN

1 49 18 17 1 0 31
2 54 10 8 2 0 44
3 54 16 16 0 0 38
4 55 9 9 0 0 46
5 53 22 20 1 0 32
6 51 11 11 0 0 40
7 55 9 9 0 0 46
8 58 14 14 0 0 44
9 50 16 16 0 0 34

Total 479 125 120 4 0 355

Table 2. Tumor active core detection results.

Patient Sensitivity (%) Specificity (%) Accuracy (%)

1 94 100 98
2 80 100 96
3 100 100 100
4 100 100 100
5 95 100 98
6 100 100 100
7 100 100 100
8 100 100 100
9 100 100 100

Average 97 100 99
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The area estimation results for each MR slice of two patients from our dataset are
reported in Tables 3 and 4 as examples. As can be seen from Tables 3 and 4, the cross-section
area of the tumor increases towards the MR image showing the mid-section of the brain,
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while it decreases towards the lower sections, with the same logic. The tumor cross-section
area in the 31st MR section of the patient in Example 1 (Table 3) is larger than that in the
37th section.

Table 3. Results of the tumor active core volume estimation algorithm for a patient (Example 1).

MR Slice Area Calculated by
the Algorithm (mm2)

Area Calculated by
the Expert (mm2)

Jaccard
Coefficient (%) Sensitivity (%) Dice Similarity

Coefficient (%)

16 470.27 464.11 99 100 99
17 583.66 574.87 98 100 99
18 660.13 669.8 99 99 99
19 697.05 707.6 99 99 99
20 617.94 634.64 97 97 99
21 857.03 807.8 93 100 97
22 1034.6 1086.4 93 94 96
23 1271 1298.3 97 97 99
24 1566.4 1523.3 97 100 98
25 1385.3 1422.2 97 97 99
26 1560.2 1584.8 98 98 99
27 1620.9 1600 99 100 99
28 1657.8 1705.3 97 97 99
29 0 1476.7 0 0 99
30 1679.8 1713.2 98 98 99
31 1858.2 1799.3 97 100 98
32 1714.1 1743.1 98 98 99
33 1630.1 1578.7 97 100 98
34 1050 1025.8 98 100 99
35 705.84 701.44 97 99 99
36 428.07 430.71 97 98 98
37 173.16 175.8 99 99 99

Table 4. Results of the tumor active core area calculation for a patient (Example 2).

MR Slice Area Calculated by
the Algorithm (mm2)

Area Calculated by
the Expert (mm2)

Jaccard
Coefficient (%) Sensitivity (%) Dice Similarity

Coefficient (%)

21 627.61 614.42 98 100 99
22 959.87 958.99 100 100 100
23 1052.2 1030.2 98 100 99
24 714.63 703.2 98 100 99
25 846.48 842.08 99 100 100
26 719.02 756.46 95 95 97
27 936.14 932.62 100 100 100
28 738.36 728.69 99 100 99
29 890.43 902.73 99 99 99
30 731.33 740.12 99 99 99
31 515.97 478.18 93 100 96
32 174.04 172.28 99 100 99
33 43.95 47.47 93 93 96
34 105.48 99.33 94 100 97

In these tables (Tables 3 and 4), TP values represent the number of pixels in which
both the expert and the proposed system label the same pixels as a tumor. FN values
represent the number of pixels in which the expert labels the pixels as a tumor while the
proposed system labels them as a background pixel. FP values represent the number of
pixels in which the proposed system labels the pixels as a tumor while the expert labels
them as a background pixel; and TN values represent the number of pixels in which
both the expert and the proposed system label the pixels as a background. Sensitivity
indicates the probability that the proposed system detects the tumor pixels that are also
detected by the expert. Jaccard coefficient is the ratio of the intersection set of tumor



Symmetry 2023, 15, 1586 16 of 21

pixels labeled by both the expert and the proposed system to their union set. The Dice
similarity coefficient measures the portion of the correctly detected tumor pixels in the
overall detected tumor pixels.

Table 5 shows the overall performance of the volume estimation algorithm. Tumor
volumes of each patient estimated via the proposed system and the expert are also dis-
played in this table. The average percentage volume overlap fraction (Jaccard coefficient),
sensitivity, and Dice similarity coefficient of the volume estimation algorithm are obtained
as 89%, 91%, and 93%, respectively. It can be seen from Table 5 that the smallest Jaccard
coefficient, sensitivity, and Dice similarity coefficient values are obtained in tumor volume
estimation of Patient 2. In addition, graphs of tumor active core volumes obtained by the
proposed algorithm and by the expert and the tumor active core volume estimation results
for each patient are shown in Figure 15.

Table 5. Performance of the tumor volume estimation algorithm.

Patient Volume Estimated by
the Algorithm (mm2)

Volume Estimated by
the Expert (mm2)

Jaccard
Coefficient (%) Sensitivity (%) Dice Similarity

Coefficient (%)

1 65,212 67,442 82 86 88
2 12,250 18,838 67 68 72
3 51,518 53,257 87 92 93
4 19,577 19,011 94 98 97
5 122,415 130,393 93 94 99
6 27,105 27,488 92 94 96
7 22,192 21,832 96 98 98
8 47,759 47,502 97 99 99
9 54,073 57,345 93 94 96

Average 89 91 93
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Figure 15. Graph of tumor active core volumes obtained by the proposed algorithm and by the expert
for all patients.

Accuracies of 89.7% and 87.6% are achieved by using the TCIA and BRATS datasets,
respectively. An accuracy value of 99.0% and Dice similarity. Coefficient value of 93.0% are
obtained for the proposed active core detection and volume estimation algorithm applied
on the cancer imaging archive dataset. A summary of the performance of the proposed
algorithm is given in Table 6. These experimental results show that the proposed approach
achieved high accuracy in all tasks of the algorithm proposed for detection, segmentation,
and volume estimation of brain tumors.
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Table 6. Summary of the performance of the proposed algorithm.

Algorithm Dataset Number of Patients (Number of MRI Slices) Accuracy (%)

Whole tumor detection
TCIA 10 (529) 89.7

BRATS 11 (1705) 87.6
Active core detection TCIA 9 (479) 99.0

Active core volume estimation TCIA 9 (479) 93.0 (Dice similarity tcoefficient)

Table 7 displays a comparison of the proposed method and related studies in the
literature. In this table, performances of the brain tumor segmentation studies by using
both traditional image segmentation methods and deep learning-based methods are listed.
It can be seen from this table that deep learning-based brain tumor detection methods
generally provide higher accuracy than traditional segmentation methods. This comparison
table also demonstrates that the proposed brain tumor detection and volume estimation
method from multimodal MRI provides relatively high accuracy compared with traditional
image segmentation and deep learning-based brain tumor segmentation methods.

Table 7. Comparison of the proposed volume estimation method and alternative methods in
the literature.

Author Dataset MRI Modality Approach Results (%)

Ho et al. [41] Their study database T1 and T1C Level set evaluation; snake Jaccard coefficient: 89

Prastawa et al. [20] Their study database T2 Level-set evaluation;
outlier detection Jaccard coefficient: 77

Fletcher et al. [42] Their study database T1, T2, and Proton
Density (PD)

Unsupervised fuzzy clustering,
knowledge-based system Jaccard coefficient: 74

Zhang et al. [43] Their study database T2 Support vector machine (SVM) Jaccard coefficient: 72

Clarc et al. [17] Their study database T1, T2, and Proton
Density (PD)

Knowledge-based (KB)
segmentation, histogram tanalysis Jaccard coefficient: 70

Corso et al. [44] Their study database T1, T1C, FLAIR, and T2 Multilevel Bayesian segmentation Jaccard coefficient: 69

Prastawa et al. [45] Their study database T1, T1C, and T2
Expectation-maximization (EM)
method guided by a spatial
probabilistic atlas

Jaccard coefficient: 59

Nanda et al. [24] Kaggle (Dataset-1),
BRATS (Dataset-2) FLAIR Hybrid salience-K-mean

segmentation

Segmentation accuracy
(Dataset-1): 96
(Dataset-2): 92

Pedada et al. [32] BRATS-2017 (Dataset-1)
BRATS-2018 (Dataset-2) T1, T1C, and FLAIR U-Net model

Segmentation accuracy
(Dataset-1): 93.4
(Dataset-2): 92.2

Athisayamani et al. [31]

Figshare
(Dataset-1)
BRATS 2019 (Dataset-2)
MICCAI BRATS
(Dataset-3)

(Information does not
exist in the paper.)

Residual deep convolutional neural
network (ResNet-152) and the
Canny Mayfly algorithm

Segmentation accuracy
(Dataset-1): 97
(Dataset-2): 98
(Dataset-3): 99

Khosravanian et al. [25] BRATS 2017 FLAIR Fuzzy kernel level set (FKLS) for
3D brain tumor segmentation

Dice: 97.62%
Jaccard: 95.41%
Sensitivity: 98.79%
Specificity: 99.85%

Wu et al. [26] BRATS 2012
BRATS 2018 T2 Symmetric-driven

adversarial network

Dice: 64.6%
Sensitivity: 80.2%
Specificity: 70.1%

Barzegar et al. [10]
BRATS 2015
BRATS 2017
BRATS 2019

T1, T1C, FLAIR, and T2 Symmetry plane detection
followed by similarity comparison

Segmentation accuracy
(Dataset-1):
Dice score: 86.3
Jaccard: 80.5
(Dataset-2):
Dice score: 92.7
Jaccard: 82.3
(Dataset-3):
Dice score: 91.3
Jaccard: 84.1
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Table 7. Cont.

Author Dataset MRI Modality Approach Results (%)

Chen et al. [30] BRATS 2015 T1, T1c, T2, and Flair Deep convolutional neural network
which combines symmetry Dice similarity coefficient: 85.2

Khalil et al. [29] BRATS 2017 T1 or T1c or T2 or Flair Level set segmentation based on
the dragonfly algorithm

Accuracy: 98.2
Recall: 95.13
Precision: 93.21

Kermi et al. [23] BRATS 2017 FLAIR or T2
Symmetry analysis based on the
fast bounding box, region growing,
and geodesic level-set methods

Sensitivity: 81.59 (T2)
89.01 (FLAIR)
Kappa: 76.82 (T2)
83.04 (FLAIR)

Proposed Method Cancer imaging archive
T1, T1C, and FLAIR

Histogram Analysis, Adaptive
thresholding, Symmetry
Analysis, FCM

Accuracy:
89.7 (whole
tumor detection)
Accuracy:
99 (active core detection)
Sensitivity:
97 (active core detection)
Jaccard coefficient:
89 (active core
volume estimation)
Sensitivity:
91 (active core
volume estimation)
Dice similarity coefficient:
93 (active core
volume estimation)

BRATS 2018 Accuracy: 87.6 (whole
tumor detection)

4. Discussion

The algorithm proposed in this study is applied on multimodal brain MR images,
which are FLAIR, T1-, and T1C-weighted, obtained from the TCIA and BRATS datasets.
The image modality in which each brain tissue can be clearly observed differs due to
differences in contrast and resolution. While the whole tumor and edema region are visible
in the FLAIR modality, active core and cystic core are clearly visible in T1C modality. A
multimodal analysis provides different brain tissues that can be observed in detail. The
skull and non-brain regions removal process is realized by using a histogram analysis of
T1 and T1C sequences, and whole tumor region segmentation is performed by using a
symmetry analysis from FLAIR images. T1C images were masked with the binary image
and represented the whole tumor area to narrow the ROI and to increase active core tumor
segmentation success. In our study, deterioration of brain symmetry due to tumor was
used as a sign, and in this way, it was possible to determine if a tumor was present in the
relevant MRI slice. Therefore, in our study, the high accuracy of tumor detection based on
a cross-sectional MRI slice is due to the fact that asymmetry in the brain is a distinguishing
feature for tumor detection. An accuracy value of 99.0% and Dice similarity coefficient
value of 93.0% are obtained in active core detection and volume estimation algorithms,
respectively. The experimental results show that the proposed study provides high accuracy
in brain tumor detection, segmentation, and volume estimation tasks as compared with
the traditional image segmentation and deep learning-based brain tumor segmentation
methods mentioned above.

In the literature, brain tumor detection studies have been performed using traditional
image segmentation methods [12,14–16,23,25] and deep learning algorithms [26,30,31,46,47].
Ho et. al. [41] developed a method for automatic brain tumor segmentation by using
level-set snakes, and they obtained a Jaccard coefficient value of 89%. Fletcher et al. [42]
presented an automatic segmentation method to separate non-enhancing brain tumors from
healthy tissues in MR images. Their algorithm achieved a Jaccard coefficient value of 77%.
Nanda et al. [24] proposed a brain tumor classification approach using a hybrid salience-K-
mean segmentation technique that depended on a deep learning method. They obtained
segmentation accuracy of 96%. Chen et al. [30] proposed a brain tumor segmentation
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method based on a deep convolutional symmetric neural network with a Dice similarity co-
efficient value of 85.2%. The proposed brain tumor detection algorithm achieved accuracies
of 89.7% and 87.6% by using the TCIA and BRATS datasets, respectively.

As previously mentioned, there are some studies with high accuracy in the literature.
We did not implement or try their algorithms, but we used the same dataset (BRATS) in
order to compare our results with those in the literature. As a result, the advantages of
our study, which explain the high accuracy, are that the skull stripping stage is included
in the preprocessing part and also the slices including tumor are detected before active
core segmentation. In addition, the volume of the tumor is calculated after the tumor
segmentation step. In our study, high success was achieved not only in the tumor detection
stage, but also in the segmentation and volume estimation stages.

A limitation of the proposed study may be the execution time of the algorithm. In the
current study, the execution time was computed as 258.75 s per patient for our computer
specifications mentioned in the Section 3. A more powerful CPU for a computer may
provide fast execution close to real-time tumor detection and volume estimation and also
real-time applications in clinics. As a comparison, in a study by [48], a deep learning-
based tumor segmentation algorithm with a computer configuration similar to our study
was proposed. They evaluated their algorithm on the BRATS 2018 dataset by randomly
choosing 48 patients’ data. They trained their network on an i7 processor, 8 GB RAM, and
4 GB NVIDIA GTX 1650 GPU. They reported that the time required to only train the given
input images was almost 96 h.

One of the advantages of the proposed study is that brain tumor detection and volume
estimation were performed automatically without using any user interactions and threshold
values were also determined adaptively. Another advantage is that the proposed study was
based on the unsupervised segmentation method, so there was no need for a very large
dataset for training.

5. Conclusions

In this paper, we present a fully automated brain tumor detection, segmentation,
and volume estimation method from multimodal brain MRI. The proposed algorithm
was developed based on the fact that the human brain has symmetrical characteristics;
however, anomalies such as a tumor in the brain cause this symmetry to be disrupted.
Contributions of the current study include the following: (1) A symmetry-based method
is used dynamically for large variations in tumor size, location, and shape. (2) This
unsupervised tumor segmentation method eliminates the need to use a large number of
MRI data required for the training phase in the supervised-based learning algorithms such
as neural networks or deep learning. (3) The proposed method can accurately be used as a
computer-aided system to assist physicians in surgical planning and following the growing
rate of brain tumor treatment duration. (4) In addition to whole tumor segmentation,
active core and cystic core segmentation and volume estimation, which are useful for the
treatment plan of a patient, are possible by using this method.
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