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Abstract: Further exploration into the influence of a memristor on the behavior of chaotic systems
deserves attention. When constructing memristor chaotic systems, it is commonly believed that
increasing the number of memristors will lead to better system performance. This paper proposes
a class of chaotic maps with different discrete memristors, achieved through internal perturbation
based on the Sine map. The I-V curve of the discrete memristor has a symmetrical structure. The
dynamic characteristics of the designed system are analyzed using the chaotic attractor phase diagram,
Lyapunov exponent (LE) spectrum, and bifurcation diagram. Numerical simulations demonstrate
that internal perturbations of discrete memristors enhance the Sine map’s chaotic characteristics,
expand the chaos range, and improve the ergodicity and LE value. Moreover, the type of discrete
memristors has a significant impact on the dynamic characteristics of the system, while the number
of discrete memristors has little influence. Therefore, in this paper, a direction for the design of
a discrete memristor chaotic system is provided. Finally, a discrete memristor chaotic map with
a simple structure and better performance is selected. Based on this, a pseudo-random sequence
generator is designed, and the generated sequence passes the National Institute of Standards and
Technology (NIST) test.
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1. Introduction

The memristor, first proposed by Prof. Chua [1] in 1971, was identified as the fourth
essential component of a circuit, after resistors, inductors, and capacitors. Later, in 1976,
Chua and Kang [2] explored this concept as a generalized memristor. In 2008, HP Lab-
oratory demonstrated that a nanoscale TiO2 device was a real memristor [3]. In 2013,
Adhikari et al. [4] proposed the three fingerprint features that guided the design of general-
ized memristors. Since then, researchers have become increasingly interested in exploring
memristors and applying them to various fields, such as nanotechnology [5], neural net-
works [6–9], circuit design [10], image encryption [11–13], secure communication [14], and
so on. In addition, memristors have the potential to revolutionize data storage by providing
faster access times, higher storage densities, and lower power consumption compared to
traditional solid-state drives. In 2021 [15], the super track method was applied, for the first
time, to an electric circuit, particularly Chua’s circuit with a memristor. The researcher
utilizes both analytical and numerical techniques to explore the realistic model in coupled
identical memristor-based Chua’s circuit [16].

Recently, some scholars and researchers have focused on chaotic systems with mem-
ristors [17–20]. A chaotic system is a non-linear dynamic system that moves in a seemingly
random and irregular motion, and it has been utilized frequently in information security
areas because of its initial sensitivity value and unpredictability [21,22]. Memristors are
commonly used to build nonlinear systems that exhibit complex dynamical behavior. Many
researchers have shown the dynamic phenomena of the chaotic system with memristors,
such as multistability, transient phenomena, bi-stability, symmetry, and dissipation [23–25].
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It is worth noting that memristors can generate chaos and increase the complexity of
chaos, opening up a new line of research for chaos design and improvement [26]. Numerous
theoretical and experimental studies concerning the application of a continuous memristor
in a chaotic system have been discussed in [27–29]. In 2020, He et al. [30] proposed a
mathematical model for discrete memristors based on a different theory. Like a continuous
memristor, the discrete memristor has a symmetric I-V curve. However, discrete memristors
are better suited for discrete chaotic maps and digital circuits, and they can easily be
implemented by hardware circuits. Moreover, discrete chaotic maps are easy to replicate,
which is beneficial for their application. Therefore, the researchers introduced discrete
memristors to construct different chaotic maps, and the advantage of discrete memristors
in chaotic systems has grown significantly [31,32]. Liu et al. [33] introduced discrete
memristors to a chaotic map by coupling with trigonometric functions, which performed
the coexistence of multiple chaotic and hyperchaotic attractors. Peng et al. [34] established
three fractional-order discrete memristor chaotic maps based on Caputo’s fractional-order
difference and analyzed the dynamic behaviors of the systems with different models.
Li et al. [35] designed the Simulink model of the discrete memristor chaotic system to
enhance its chaotic behavior. Ma et al. [36] analyzed the characteristics of coupled memristor
chaotic maps in non-fixed points. Ren et al. [37] constructed a new three-dimensional
hyperchaotic map by coupling the discrete memristor, providing the application of discrete
memristor circuits in chaotic systems. The preceding research studies demonstrate that
discrete memristor models can enhance the dynamic behaviors of chaotic systems.

In many instances of chaotic system construction in research studies, researchers have
chosen the sine function as the seed because it is one of the simplest chaotic maps. Sun et al.
[38], based on the Sine map, proposed a memristive seed chaotic map by a quadratic mem-
ristor combination that can generate hyperchaos. Hua et al. [39] proposed the chaotification
model for enhancing the chaos complexity of the system on the Sine map, and Li et al. [40]
investigated the fractional difference form of this model to improve its chaotic behavior.
Dong et al. [41] focused on constructing and modulating a high-dimensional chaotic system
using a Sine map, but they did not consider the impact of the type and quantity of discrete
memristors on the Sine map system as its internal perturbation model. Building upon
their work, we incorporate a discrete memristor into the Sine map to create an internal
perturbation model. Additionally, we investigate how the type and number of discrete
memristors affect the system’s performance. It is important to note that the complexity of
the chaotic system is not solely determined by the quantity of memristors used, but rather
by the specific type of memristor employed. In this paper, we select a discrete memristor
chaos model with a simple structure and enhanced performance for the application. These
offer valuable guidance for designing discrete memristor chaotic systems.

The remainder of this paper is organized as follows: Section 2 describes a discrete
memristor and proposes internal perturbation models. In Section 3, the single discrete
memristor perturbation models are analyzed. In Section 4, the multiple discrete memristor
perturbation models are studied. In Section 5, a pseudo-random sequence generator is
designed based on a simple and superior discrete memristor perturbation model. The
conclusion is presented in Section 6.

2. Design of a Memristor Model with Internal Perturbation
2.1. The Discrete Memristor

Based on existing continuous memristors [42] and difference theories, four mathemati-
cal representations of discrete memristors are deduced. The discrete memristors include
the quadratic discrete memristor (Q-DM), absolute value discrete memristor (A-DM), si-
nusoidal discrete memristor (S-DM), and exponential discrete memristor (E-DM). The
mathematical expressions of these four discrete memristors are described as follows [43]:

M(qn) = q2
n − 1 (1)
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M(qn) = |qn| − 1 (2)

M(qn) = sin(πqn) + c (3)

M(qn) = e− cos(πqn) − 1 (4)

where c is a parameter, M(qn) represents the memristance of the discrete memristor, and
qn is the charge contained in discrete memristors at the n-th iteration. According to Ohmś
law and the forward Euler difference algorithm, the relationship between the voltage Vn
and current (in) at both ends of a discrete memristor is shown in Equation (5) [44].{

Vn = M(qn)in

q(n+1) = qn + in
, (5)

where Vn and in are the sample of output v(t) and input i(t) at the n-th iteration, respectively.
In discrete memristors, the charge amount that passes through the component is measured
at specific intervals or iterations. Setting q0 = 0, a bipolar periodic sinusoidal current signal
in = 0.01 sin (ωπ) with variable frequencies passes through the discrete memristors. The
voltage and current planes of the Q-DM, A-DM, S-DM, and E-DM are plotted in Figure 1,
where c = 0.5 is for S-DM. As shown in Figure 1, the four discrete memristors all match
the three fingerprint characteristics: (1) a hysteresis curve of the ”∞” shape on the voltage
and current planes; (2) a monotonic decrease in the area of the hysteresis curve beyond
a certain critical frequency with an increase in excitation frequency; (3) the shrinking of
the hysteresis curve to a single-valued function at infinity frequency ω. The I-V curves
of these four discrete memristors are symmetric around the origin. They are generalized
memristors.

(a) (b)
Figure 1. Cont.
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(c) (d)
Figure 1. The hysteresis loop of the discrete memristor with different frequencies at q0 = 0 (a) Q-DM,
(b) A-DM, (c) S-DM, (d) E-DM.

2.2. The Sine Map

A Sine map is expressed in [45] as follows:

xn+1 = a sin(ωxn) (6)

where a is the system parameter that is greater than zero. Figure 2 displays the chaotic
attractor of the original Sine map at a = 3.4, ω = π, x0 = 0.1, and indicates that the system
in a chaotic state exhibits low ergodicity. By varying a from 0 to 4 with a step size of
0.02, the LE and bifurcation diagram of the Sine map are plotted in Figure 3. As shown
in Figure 3a, the periodic windows and chaotic intervals appear alternately with varying
system parameters a. In addition, Figure 3b shows that the LE value is smaller than 2
throughout the parameter range.

Figure 2. Chaotic attractor diagram of the Sine map at a = 3.4 and ω = π.

(a) (b)
Figure 3. (a) The bifurcation diagram of the Sine map, (b) the LEs of the Sine map.
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2.3. Chaotic Maps with Discrete Memristor Perturbations

The proposed internal perturbation model (IPM) aims to enhance the chaotic com-
plexity of the seed map. Figure 4 shows the block diagram structure of the IPM based on a
discrete memristor with a single internal perturbation, where D represents a unit delay. In
this design, the Sine map serves as the basic map, while a discrete memristor is used as the
perturbation. The memristor regulates the input of the Sine map, providing perturbation
terms that generate and regulate the system. The equation of a single perturbation model
is expressed as follows:

xn+1 = a sin(ω(xn − bM(qn)xn)) (7)

where b is the control parameter of the discrete memristor, and M(qn) is a type of memristor.

Figure 4. The block diagram of IPM with a single memristor.

In this study, we explore the impacts of the type and number of discrete memristors
on the system performance. Therefore, an internal perturbation model with multiple
discrete memristors is proposed by connecting memristors in parallel, which modulates
the dynamics of a high-dimensional chaotic system. The block diagram of the proposed
model is shown in Figure 5. Specifically, the system is modulated by N discrete memristors,
and each provides a different perturbation model. The general equation for the N internal
perturbation memristors is as follows:

xn+1 = a sin(ω(xn − b
N

∑
k=1

Mk(qn)xn)) (8)

where Mk(qn) is a memristor with k = 1, 2, 3, · · · , N.

Figure 5. The block diagram of the internal perturbation model with multiple memristors.
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3. Dynamics of the Sine Map with Single Internal Perturbation

In this section, IPM with a single perturbation is applied to the Sine map. To evaluate
the effectiveness of the different discrete memristors in improving the dynamic behavior of
the system, we add the different discrete memristors expressed by Equations (1)–(4). The
block diagram of IPM with a single internal perturbation is displayed in Figure 4, based on
this system diagram, applying Equation (7) as a single internal perturbation. The various
single internal perturbation models are listed in Table 1. Based on these equations, chaotic
attractor diagrams, bifurcation diagrams, and LE spectra for each model are analyzed.

Table 1. Multiple internal perturbation models of the memristor.

Model Memristor Equation

Model 1 Q-DM
{

xn+1 = a sin(ω(xn − b(q2
n − 1)xn))

qn+1 = qn + xn

Model 2 A-DM
{

xn+1 = a sin(ω(xn − b(|qn| − 1)xn))

qn+1 = qn + xn

Model 3 S-DM
{

xn+1 = a sin(ω(xn − b(sin(πqn) + c)xn))

qn+1 = qn + xn

Model 4 E-DM
{

xn+1 = a sin(ω(xn − b(e− cos(πqn) − 1)xn))

qn+1 = qn + xn

3.1. Chaotic Attractor of a Single Perturbation Model

Here, we set the initial value x0 = 0.1, q0 = 0.2, step size h = 0.02, parameters
a = 3.4, b = 1, c = 0.5, and ω = π. Figure 6 displays the chaotic attractor diagram of the
Sine map with four different single internal perturbation models. Compared with Figure 2,
the original Sine map, the single internal perturbation models exhibit better ergodicity and
more complex topology. Furthermore, as shown in Figure 6, different memristors have
different effects on the shapes of the chaotic attractors. Model 1 and Model 2 demonstrate
superior ergodicity than the other two models. To further investigate the impacts of
different discrete memristors on the attractor phase diagram, we vary the value of the
control parameter at b = 1× 10−5. The chaotic attractor diagrams of the four corresponding
models are shown in Figure 7. We can see that Model 1 has better ergodicity and a more
complex topology compared to the other three models.

(a) (b)
Figure 6. Cont.



Symmetry 2023, 15, 1574 7 of 15

(c) (d)

Figure 6. Chaotic attractors of a single perturbation with a = 3.4 and b = 1 (a) Model 1, (b) Model 2,
(c) Model 3, (d) Model 4.

(a) (b)

(c) (d)
Figure 7. Chaotic attractors of a single perturbation with a = 3.4 and b = 1× 10−5 (a) Model 1,
(b) Model 2, (c) Model 3, (d) Model 4.

3.2. Bifurcation and LE of a Single Perturbation Model

The LE is an important index to measure chaos. It represents the separation rate
of adjacent trajectories in the phase space. The initial conditions are the same as those
in Figure 6. The bifurcation diagram and LEs of the four models are exhibited in Figure 8.
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Compared with Figure 2, the single IPM has higher LE values and a wider range of
chaos. The analysis shows that after the addition of a discrete memristor as an internal
perturbation, the chaotic performance of the system is improved, as mainly reflected in
the reduction of the period windows and the increase of the LE values. However, the
degree of improvement in each model is different. It is obvious that among the four models,
Model 1 has the largest LE value and the widest chaotic range, which indicates that the
discrete memristor choice can significantly affect the dynamic behavior and complexity of
the system.

(a) (b)

(c) (d)

(e) (f)
Figure 8. Cont.
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(g) (h)
Figure 8. Bifurcation diagram and LEs of the single IPM with a = 3.4 and b = 1. (a) The bifurcation
diagram of Model 1, (b) The LEs of Model 1, (c) The bifurcation diagram of Model 2, (d) The LEs of
Model 2, (e) The bifurcation diagram of Model 3, (f) The LEs of Model 3, (g) The bifurcation diagram
of Model 4, (h) The LEs of Model 4.

4. Dynamics of Sine Map with Multi-Internal Perturbation

In this section, we analyze the dynamical behaviors of multiple internal perturbation
models, which are constructed based on Equation (8), and the block diagram is shown
in Figure 5. Three types of discrete memristors are selected (Q-DM, A-DM, and E-DM)
because there is a greater impact on the system in the single internal perturbation models.
We use these three types of discrete memristors in Equation (8) and Figure 5. Thus, the
multiple internal perturbation model of the memristor is constructed as shown in Table 2.

Table 2. Multiple internal perturbations of the memristor.

Model Memristor Equation

Model 5 Q-DM &A-DM
{

xn+1 = a sin
(
ω
(
xn − b(q2

n − 1)xn − b(|qn| − 1)xn
))

;
qn+1 = qn + xn

Model 6 E-DM& A-DM
{

xn+1 = a sin
(

ω
(

xn − b(e− cos(πqn) − 1)− b(|qn| − 1)xn

))
;

qn+1 = qn + xn

Model 7 Q-DM& E-DM
{

xn+1 = a sin
(

ω
(

xn − b(q2
n − 1)xn − b(e− cos(πqn) − 1)xn

))
;

qn+1 = qn + xn

Model 8 Q-DM, E-DM&A-DM
{

xn+1 = a sin
(

ω
(

xn − b(q2
n − 1)xn − b(e− cos(πqn) − 1)xn − b(|qn| − 1)xn

))
;

qn+1 = qn + xn

4.1. Chaotic Attractor of Multi-Internal Perturbation

Setting the same initial condition as Figure 6, the chaotic attractor diagrams of multiple
internal perturbation models are shown in Figure 9. It is obvious that all three models
exhibit chaotic behaviors and have better ergodicity compared to Figure 6c,d. This suggests
that the perturbations of multiple discrete memristors can enhance the chaotic behavior
of the system and increase its complexity. Furthermore, we change b = 1× 10−5, and the
initial condition of the system is consistent with Figure 7. The chaotic attractor diagrams are
shown in Figure 10. The results indicate that the ergodicity of the system decreases because
parameter b decreases. However, compared with Model 6, Model 5 and Model 7 have
more ergodicity and a more complex topology, like Figure 6a. Comparing the equations in
Table 2, it was found that both Model 5 and Model 7 contain the Q-DM.
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(a) (b) (c)

Figure 9. Chaotic attractors with a = 3.4 and b = 1 (a) Model 5, (b) Model 6, (c) Model 7.

The attractor phase diagram of Model 8, which contains three discrete memristors, is
shown in Figure 11. When the parameter a = 3.4 and b = 1, the corresponding attractor
maintains good ergodicity, as shown in Figure 11a. Moreover, when the value of a remains
unchanged and b = 1× 10−5, the chaotic attractor diagram is shown in Figure 11b. As
we can see in the figure, the ergodicity of the system and its complexity remain similar to
Model 1, Model 5, and Model 7. For models that contain the Q-DM, either single or multiple
perturbations have similar ergodicity. This indicates that the attractor depends on the type
of discrete memristor rather than the number of discrete memristors. In Figure 7, 10, and 11,
it is revealed that except for parameter b, the type of discrete memristor used has a greater
impact on improving the ergodicity of the chaotic attractors. Specifically, models that
contain the Q-DM have more ergodicity and complex topology. Among the four discrete
memristors, the Q-DM appears to be the most effective for improving the ergodicity of
chaotic attractors.

(a) (b) (c)
Figure 10. Chaotic attractors with a = 3.4 and b = 1× 10−5 (a) Model 5, (b) Model 6, (c) Model 7.

(a) (b)
Figure 11. Chaotic attractor of Model-8 with three memristors (a) a = 3.4, b = 1 (b) a = 3.4,
b = 1× 10−5.

4.2. Bifurcation and LE of Multi-Internal Perturbations

We analyze the bifurcation and LE of multiple internal perturbation models, which
consist of two and three discrete memristors. We set the initial value x0 = 0.1, q0 = 0.2,
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a step size of 0.02, and parameters a = 3.4 and b = 1. The bifurcation diagrams and LEs
of Model 5, Model 6, and Model 7 are plotted in Figure 12. The results show that these
models exhibit a reduction in period windows compared to the Sine map and Models 1−4.
Moreover, the LE values of Model 5 and Model 7 are similar to Model 1 because they all
contain the Q-DM. Moreover, the performance of Model 8, which consists of three internal
perturbations, is analyzed, and the LEs and bifurcation diagram is shown in Figure 13.
The results indicate that the period windows are further reduced by the addition of three
discrete memristor perturbations. Meanwhile, the values of the LEs are similar to Model
1, Model 5, and Model 7. From Figures 8, 12, and 13, in the internal perturbation model
with multiple memristors, the number of discrete memristors has little effect on the system
performance. However, the type of discrete memristor used has a great influence on the
system characteristics. From the four discrete memristors, the models containing the Q-DM
have the largest LE values.

(a) (b)

(c) (d)

(e) (f)
Figure 12. Bifurcationdiagrams and LEs of multi-IPM with two discrete memristors. (a) The bifurca-
tion diagram of Model 5, (b) the LEs of Model 5, (c) the bifurcation diagram of Model 6, (d) the LEs
of Model 6, (e) the bifurcation diagram of Model 7, (f) the LEs of Model 7.



Symmetry 2023, 15, 1574 12 of 15

(a) (b)
Figure 13. Bifurcationdiagrams and LEs of multi-IPM with three discrete memristors, (a) the bifurca-
tion diagram of Model 8, (b) the LEs of Model 8.

5. Pseudo-Random Sequence Generator

Based on the above analysis and comparison, Model 1—with a simpler structure and
better performance—is a good choice in practical applications. One of the most important
applications of a chaotic map is the pseudo-random sequence generator. It is worth noting
that the quantization algorithm is an essential aspect that determines the efficiency of the
operation. Therefore, to demonstrate the randomness of chaotic sequences themselves, we
choose a simple quantization algorithm, as shown in Equation (9):

y =

{⌊
105 · qn

⌋
mod 256, if qn > 0;⌊

106 · qn
⌋

mod 256, if qn ≤ 0
(9)

where y is the pseudo-random sequence generated based on Model 1 and Equation (9).
With setting parameters, a = 3.4, b = 1,, and initial values, x0 = 0.1, q0 = 0.2, the gener-
ated pseudo-random sequence y is tested by NIST. The 100 groups are tested, with each
consisting of 106 binary numbers. The test results, listed in Table 3, show that y passes all
15 indicators of NIST SP800-22, indicating that Model 1 with a single discrete memristor
perturbation has good chaotic characteristics and complexity.

Table 3. NIST test results.

No. Test Index Number
of Test p Value a Proportion Result

1 Frequency 1 0.304126 0.99 pass
2 Block frequency 1 0.032923 1 Pass
3 Cumulative sums 2 0.514124 0.98 Pass
4 Runs 1 0.798139 1 Pass
5 Longest test 1 0.779188 0.98 Pass
6 Rank 1 0.759756 1 Pass
7 FFT 1 0.383827 1 Pass
8 Non-overlapping template 148 0.401199 0.99 Pass
9 Overlapping template 1 0.455937 1 Pass
10 Universal 1 0.554420 0.98 Pass
11 Approximate entropy 1 0.236810 1 Pass
12 Random excursions 8 0.455937 0.98 Pass
13 Random excursion variant 18 0.534146 0.99 Pass
14 Serial 2 0.494392 0.99 Pass
15 Linear complexity 1 0.115387 0.98 Pass

a The results of multiple are averaged.
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6. Conclusions

This paper proposes a class of chaotic maps by introducing single and multiple discrete
memristors as internal perturbations based on the Sine map. We analyze the dynamic
behaviors of these models through chaotic attractors, LEs, and bifurcation diagrams. Our
numerical simulations demonstrate the discrete memristors as the internal perturbation
models of the Sine map not only expand the range of chaos but also significantly improve
the LE values and enhance the ergodicity of the system. Additionally, the degree of
improvement does not increase significantly with the number of discrete memristors;
instead, it depends on the specific type of discrete memristor chosen. As a result, increasing
the number of memristors does not always result in a more complex system. In our
study with four discrete memristors, we determine that the Q-DM offers the best choice
for enhancing the ergodicity of chaotic attractors and improving LEs, providing valuable
guidance for designing discrete memristor chaotic systems and emphasizing the importance
of selecting the type of memristor used. Furthermore, the pseudo-random sequence
generator is designed by utilizing the discrete memristor chaotic map, and the generated
sequence is subjected to the National Institute of Standards and Technology (NIST) test.
Next, we will implement the proposed discrete memristor chaotic maps, which have a
simple structure and better performance on the hardware platform.
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