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Abstract: We obtain some properties of a hyperbolic Ricci soliton with certain types of potential
vector fields, and we point out some conditions when it reduces to a trivial Ricci soliton. We also
study those soliton submanifolds whose vector fields are the tangential components of a concurrent
vector field on the ambient manifold, and in particular, we show that a totally umbilical hyperbolic
Ricci soliton is an Einstein manifold. We prove that if the hyperbolic Ricci soliton hypersurface of
a Riemannian manifold of constant curvature and endowed with a concurrent vector field has a
parallel shape operator, then it is a metallic-shaped hypersurface, and we determine some conditions
for it to be minimal. Moreover, we show that it is also a pseudosymmetric hypersurface.
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1. Introduction

Stationary solutions to the hyperbolic Ricci flow [1–3], hyperbolic Ricci solitons, have
been very recently considered in [4], where the authors studied the three-dimensional
homogeneous case of manifolds with Riemannian and Lorentzian metric tensors. When the
potential vector field of a soliton is of a certain type, more information about the geometry
of the manifold can be obtained.

Nevertheless, smooth manifolds can be sometimes characterized by the existence of
certain distinguished vector fields on them. Concircular vector fields are of special interest,
having interesting applications in physics. For instance, in [5], B.-Y. Chen proved that a
Lorentzian manifold is a generalized Robertson–Walker spacetime if and only if it admits a
time-like concircular vector field. Concurrent vector fields are particular cases of concircular
vector fields, such an example being provided by the position vector field in the Euclidean
space. More generally, any warped product I ×s M of an open real interval I, with s as its
arclength, and an arbitrary Riemannian manifold (M, g) endowed with the metric given by
h = ds2 + s2g, admits a concurrent vector field, namely s ∂

∂s .
Having these in mind, the aim of this paper is to present some properties of hyperbolic

Ricci solitons with a torse-forming potential vector field, or with particular cases of it. We
also investigate the geometry of a submanifold, which is a hyperbolic Ricci soliton that is
isometrically immersed into a Riemannian manifold and whose potential vector field is
the tangential component of a concurrent vector field on the ambient space. In particular,
we show that a totally umbilical hyperbolic Ricci soliton is an Einstein manifold. We also
prove that if a hyperbolic Ricci soliton hypersurface of a Riemannian manifold of constant
curvature and endowed with a concurrent vector field has parallel shape operator, then it
is a metallic-shaped hypersurface, and we determine some conditions for it to be minimal.
Moreover, we show that it is also a pseudosymmetric hypersurface.
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2. Hyperbolic Ricci Solitons

Let (M, g) be a Riemannian manifold. We shall denote by χ(M) the set of smooth
sections on M and by ∇ the Levi-Civita connection of g.

We recall that (M, g, ξ, λ, µ) is called a hyperbolic Ricci soliton [4] if the vector field ξ
and the scalars λ, µ ∈ R satisfy

£ξ£ξ g + λ£ξ g + Ric = µg, (1)

where Ric is the Ricci curvature of (M, g).
We remark that if ξ is a Killing vector field, i.e., £ξ g = 0, then the manifold is an

Einstein manifold, and if ξ is a 2-Killing vector field [6], i.e., £ξ£ξ g = 0 and λ = 1
2 , then the

manifold is a Ricci soliton.
Considering particular cases of vector fields, we recover the mixed generalized quasi-

Einstein, generalized quasi-Einstein and Einstein manifolds, whose definitions we shall
briefly recall.

Definition 1. Let (M, g) be a nonflat Riemannian manifold of dimension n ≥ 3. Then, M is said
to be a mixed generalized quasi-Einstein manifold [7] if its Ricci tensor field Ric is not identically
zero and verifies

Ric = αg + βA⊗ A + γB⊗ B + δ(A⊗ B + B⊗ A),

where α, β, γ and δ are smooth functions and A, B are 1-forms on M. In particular, the manifold M
is called

1. generalized quasi-Einstein [8] if β = 0 or γ = 0;
2. quasi-Einstein [9] if β = δ = 0 or γ = δ = 0;
3. Einstein [10] if β = γ = δ = 0.

2.1. The Trivial Case

It would be interesting to find more relaxed, nontrivial conditions under which a
hyperbolic Ricci soliton reduces to an Einstein manifold. For the compact case, we prove
the following results:

Proposition 1. Let (M, g, ξ, λ, µ) be a compact and connected hyperbolic Ricci soliton with λ 6= 0.
If the second Lie derivative of g in the direction of ξ is divergence-free and the scalar curvature r
is constant on the integral curves of ξ, then ξ is a parallel vector field, i.e., ∇ξ = 0, and M is a
Ricci-flat manifold.

Proof. Since div(£ξ£ξ g) = 0, then tr(£ξ£ξ g) is a constant. By taking the divergence into the

soliton Equation (1) and taking into account that div(Ric) = dr
2 , we infer

λ div(£ξ g) = −dr
2

.

We know [11] that

(div(£ξ g))(ξ) = 2[ξ(div(ξ)) + Ric(ξ, ξ)]

and we obtain
−4λ[ξ(div(ξ)) + Ric(ξ, ξ)] = ξ(r)(= 0).

By means of Bochner’s formula,

1
2

∆(‖ξ‖2) = ‖∇ξ‖2 + ξ(div(ξ)) + Ric(ξ, ξ),
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we obtain

λ

(
1
2

∆(‖ξ‖2)− ‖∇ξ‖2
)
= 0,

which, since λ 6= 0, by integration with respect to the canonical measure, gives∫
M
‖∇ξ‖2 = 0,

hence, ∇ξ = 0. Then, div(ξ) = 0, £ξ g = 0, Ric = µg and since ‖ξ‖2 is a constant, from
Bochner’s formula, we find

2µ‖ξ‖2 = ∆(‖ξ‖2)(= 0),

hence the conclusion.

A compact and connected hyperbolic Ricci soliton reduces to a Ricci-flat manifold in
the following case too:

Proposition 2. Let (Mn, g, ξ, λ, µ) be a compact and connected hyperbolic Ricci soliton with
λ 6= 0. If the second Lie derivative of g in the direction of ξ has a constant trace, the scalar curvature
r is constant on the integral curves of ξ and Ric(ξ, ξ) ≥ 0, then ξ is a parallel vector field and M is
a Ricci-flat manifold.

Proof. By taking the trace into the soliton Equation (1), we infer

λ div(ξ) =
nµ− tr(£ξ£ξ g)

2
− r

2
,

which implies

λξ(div(ξ)) = − ξ(r)
2

(= 0).

Then, Bochner’s formula becomes

1
2

∆(‖ξ‖2) = ‖∇ξ‖2 + Ric(ξ, ξ),

which, by integration with respect to the canonical measure, gives∫
M
(‖∇ξ‖2 + Ric(ξ, ξ)) = 0,

hence, ∇ξ = 0 and Ric(ξ, ξ) = 0. Then, div(ξ) = 0, £ξ g = 0, µ = 0 and Ric = 0, hence
the conclusion.

We end this section by bringing into light the connection between the hyperbolic
Ricci solitons that satisfy div(£ξ£ξ g) = 0 and the Schrödinger–Ricci equation [12]. The
nonlinear Schrödinger equation mathematically describes the wave propagation, modeling
the nonlinear effects, e.g., the like formation of solitons. Closely related to Ricci-type
solitons, the Schrödinger–Ricci equation has, under certain assumptions, the dual 1-form
of the potential vector field ξ as a solution.

Proposition 3. Let (Mn, g, ξ, λ, µ) be a connected hyperbolic Ricci soliton with λ 6= 0. If the
second Lie derivative of g in the direction of ξ is divergence-free, then the dual 1-form η of ξ is a
solution of the Schrödinger–Ricci equation.

Proof. Since div(£ξ£ξ g) = 0, tr(£ξ£ξ g) is a constant. By taking the divergence into the

soliton Equation (1) and taking into account that div(Ric) = dr
2 , we infer

div(£ξ g) = − dr
2λ

. (2)
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Now, taking the trace into the soliton Equation (1), we obtain

tr(£ξ£ξ g) + 2λ div(ξ) + r = nµ,

which, by differentiating, gives

2λd(div(ξ)) + dr = 0. (3)

We know (see, e.g., [13]) that

div(£ξ g) = (∆ + Ric])(η) + d(div(ξ)),

where ∆ is the Laplace–Hodge operator on differential forms with respect to the metric g
and Ric](η)(X) := Ric(ξ, X) for X ∈ χ(M); from (2) and (3), we obtain

(∆ + Ric])(η) = 0,

that is, η is a solution of the Schrödinger–Ricci equation.

2.2. Solitons with Torse-Forming Vector Field

Definition 2 ([14]). Let (M, g) be a Riemannian manifold. A smooth vector field ξ on M is said to
be torse-forming if ∇ξ = aI + ψ⊗ ξ, where a is a smooth function and ψ is a 1-form; concircular
if ∇ξ = aI; and concurrent if ∇ξ = I, where ∇ is the Levi-Civita connection of g and I is the
identity endomorphism.

Next we will prove the following results concerning torse-forming vector fields:

Proposition 4. Let ξ be a torse-forming vector field satisfying

∇ξ = aI + ψ⊗ ξ,

where a is a smooth function and ψ is a 1-form on the Riemannian manifold (M, g). Then,

a =
ξ(‖ξ‖2)

2‖ξ‖2 − ψ(ξ),

£ξ ψ = ι(∇ξ ζ+(a+ψ(ξ))ζ)g,

£ξ g = 2ag + ψ⊗ η + η ⊗ ψ,

£ξ£ξ g = 2
(
2a2 + ξ(a)

)
g + 2‖ξ‖2ψ⊗ ψ +

(
4a + ψ(ξ)

)
(ψ⊗ η + η ⊗ ψ)

+ (£ξ ψ)⊗ η + η ⊗ (£ξψ),

where ζ is the dual vector field of ψ and η is the dual 1-form of ξ.

Proof. We have
ξ(‖ξ‖2) = 2g(∇ξ ξ, ξ) = 2

(
a + ψ(ξ)

)
‖ξ‖2,

hence,

a =
ξ(‖ξ‖2)

2‖ξ‖2 − ψ(ξ).

We also have

(£ξψ)X : = ξ(ψ(X))− ψ([ξ, X])

= ξ(g(ζ, X))− g(ζ,∇ξ X) + g(ζ,∇Xξ)

= g(∇ξ ζ, X) + ag(ζ, X) + ψ(X)g(ζ, ξ)

= g(∇ξ ζ, X) + ag(ζ, X) + g(ζ, X)ψ(ξ)
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for any X ∈ χ(M). Also,

(£ξ g)(X, Y) : = ξ(g(X, Y))− g([ξ, X], Y)− g(X, [ξ, Y])

= g(∇Xξ, Y) + g(X,∇Yξ)

= 2ag(X, Y) + ψ(X)g(ξ, Y) + ψ(Y)g(X, ξ)

for any X, Y ∈ χ(M). Finally, we obtain the expression of the second Lie derivative of g in
the direction of ξ:

(£ξ£ξ g)(X, Y) : = ξ((£ξ g)(X, Y))− (£ξ g)([ξ, X], Y)− (£ξ g)(X, [ξ, Y])

= ξ(2ag(X, Y) + ψ(X)η(Y) + ψ(Y)η(X))

− 2ag([ξ, X], Y)− ψ([ξ, X])η(Y)− ψ(Y)η([ξ, X])

− 2ag(X, [ξ, Y])− ψ(X)η([ξ, Y])− ψ([ξ, Y])η(X)

= 2ξ(a)g(X, Y) + ψ(X)(ξ(g(Y, ξ))− g([ξ, Y], ξ))

+ ψ(Y)(ξ(g(X, ξ))− g([ξ, X], ξ))

+ η(Y)(ξ(ψ(X))− ψ([ξ, X])) + η(X)(ξ(ψ(Y))− ψ([ξ, Y]))
+ 2a(g(aX + ψ(X)ξ, Y) + g(aY + ψ(Y)ξ, X))

= 2ξ(a)g(X, Y) + ψ(X)(g(Y, aξ + ψ(ξ)ξ) + g(aY + ψ(Y)ξ, ξ))

+ ψ(Y)(g(X, aξ + ψ(ξ)ξ) + g(aX + ψ(X)ξ, ξ))

+ η(Y)(£ξ ψ)X + η(X)(£ξψ)Y + 4a2g(X, Y)

+ 2a(ψ(X)η(Y) + ψ(Y)η(X))

= 2
(

2a2 + ξ(a)
)

g(X, Y) + (4a + ψ(ξ))(ψ(X)η(Y) + ψ(Y)η(X))

+ 2ψ(X)ψ(Y)‖ξ‖2 + η(Y)(£ξ ψ)X + η(X)(£ξψ)Y

for any X, Y ∈ χ(M), and we obtain the conclusion.

From the above proposition, we deduce the following:

Theorem 1. If (M, g, ξ, λ, µ) is a hyperbolic Ricci soliton with a torse-forming potential vector
field ξ, then

Ric =
(
µ− 4a2 − 2ξ(a)− 2aλ

)
g− 2‖ξ‖2ψ⊗ ψ

−
(
4a + ψ(ξ) + λ

)
(ψ⊗ η + η ⊗ ψ)

− (ι(∇ξ ζ+(a+ψ(ξ))ζ)g)⊗ η − η ⊗ (ι(∇ξ ζ+(a+ψ(ξ))ζ)g). (4)

From (4), we conclude the following:

Proposition 5. (i) If ξ is concircular (i.e., ψ = 0; hence, ζ = 0), then

Ric =
(
µ− 4a2 − 2ξ(a)− 2aλ

)
g,

hence, (M, g) is an Einstein manifold provided that dim(M) > 2.
Even more generally, if ξ is a conformal vector field, £ξ g = 2ag, for a a smooth function on M,

then £ξ£ξ g = 2
(
2a2 + ξ(a)

)
g, and we obtain the same conclusion as before.

(ii) If η = ψ, and hence ζ = ξ, then

Ric =
(
µ− 4a2 − 2ξ(a)− 2aλ

)
g− 2

(
4‖ξ‖2 + 6a + λ

)
η ⊗ η,

hence, (M, g) is a quasi-Einstein manifold.
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(iii) If £ξ ψ = kψ with k a smooth function on M, then

Ric =
(
µ− 4a2 − 2ξ(a)− 2aλ

)
g− 2‖ξ‖2ψ⊗ ψ

−
(
4a + ψ(ξ) + λ + k

)
(ψ⊗ η + η ⊗ ψ),

hence, (M, g) is a generalized quasi-Einstein manifold.
(iv) If £ξ ψ = hη + kψ with h and k smooth functions on M, then

Ric =
(
µ− 4a2 − 2ξ(a)− 2aλ

)
g− 2‖ξ‖2ψ⊗ ψ− 2hη ⊗ η

−
(
4a + ψ(ξ) + λ + k

)
(ψ⊗ η + η ⊗ ψ),

hence, (M, g) is a mixed generalized quasi-Einstein manifold.

Lemma 1. If the second Lie derivative of g in the direction of a torse-forming vector field ξ is
traceless; ξ is torqued, i.e., ψ(ξ) = 0; and a is constant on the integral curves of ξ, then ξ is a
parallel vector field.

Proof. By taking the trace of £ξ£ξ g, we obtain

tr(£ξ£ξ g) = 2n
(

2a2 + ξ(a)
)
+ 2‖ξ‖2‖ζ‖2 + 2(2a− ψ(ξ))ψ(ξ) + 2ξ(ψ(ξ))

= 4na2 + 2‖ξ‖2‖ζ‖2,

hence, a = 0 and ζ = 0, so ∇ξ = 0.

Using the above lemma, we can state the following:

Proposition 6. Let (M, g, ξ, λ, µ) be a hyperbolic Ricci soliton with a torqued potential vector field
ξ. If the second Lie derivative of g in the direction of ξ is traceless and a is constant on the integral
curves of ξ, then ξ is a parallel vector field and M is a Ricci-flat manifold.

Proof. We get ∇ξ = 0, which implies div(ξ) = 0, £ξ g = 0 and Ric = µg, and since ‖ξ‖2 is
a constant, from Bochner’s formula, we find

2µ‖ξ‖2 = ∆(‖ξ‖2)(= 0),

hence the conclusion.

Now we shall provide a characterization for the Einstein case.

Proposition 7. Let (M, g, ξ, λ, µ) be a hyperbolic Ricci soliton with a torse-forming potential
vector field ξ satisfying ∇ξ = I ± η ⊗ ξ such that ‖ξ‖2 6= n, where n = dim(M). Then, M is an
Einstein manifold if and only if the scalar curvature r of M is r = ±n(n− 1).

Proof. In this case, a = 1, ψ = ±η, ζ = ±ξ and we have

£ξ g = 2(g− η ⊗ η), £ξ£ξ g = 4(g− η ⊗ η), £ξ η = 0.

Then, (4) becomes

Ric =
(
µ− 2λ− 4

)
g + 2(λ + 2)η ⊗ η, (5)

hence, (M, g) is a quasi-Einstein manifold. Also, by a direct computation, we obtain

R(X, Y)ξ = ±
(

η(Y)X− η(X)Y
)

,

Ric(Y, ξ) = ±(n− 1)η(Y),
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for any X, Y ∈ χ(M), hence,

Ric(ξ, ξ) = ±(n− 1)‖ξ‖2.

But from the soliton equation, we have

Ric(ξ, ξ) = µ‖ξ‖2,

hence, µ = ±(n− 1). By taking the trace in (5), we find

λ =
r

2(‖ξ‖2 − n)
− 4‖ξ‖2 − n(4∓ (n− 1))

2(‖ξ‖2 − n)
.

Replacing λ and µ in (5), we infer

Ric =
r∓ (n− 1)‖ξ‖2

n− ‖ξ‖2 g− r∓ n(n− 1)
n− ‖ξ‖2 η ⊗ η,

and we obtain the conclusion.

A particular case of torse-forming vector field is the Reeb vector field of a Ken-
motsu manifold.

Example 1. If (Mn, φ, ξ, η, g, λ, µ) (for n ≥ 3 odd) is a Kenmotsu hyperbolic Ricci soliton with
the Reeb potential vector field ξ, since ‖ξ‖2 = 1, we obtain λ = −2 and µ = −(n− 1).

Based on Theorem 3.1. from [4], we shall give another two examples of nontrivial
hyperbolic Ricci solitons.

Example 2. Let G1 be the three-dimensional unimodular Lorentzian Lie algebra described by

[e1, e2] = e1, [e2, e3] = e2 + e3, [e3, e1] = e1,

where {e1, e2, e3} is a suitable pseudo-orthonormal basis with e3 a time-like vector field on the
Minkowski space. Then, (ξ, 1, 0) defines a hyperbolic Ricci soliton for ξ = e2 + e3.

Example 3. Let G1 be the three-dimensional unimodular Lorentzian Lie algebra described by

[e1, e2] = e1 −
√

2e3, [e2, e3] =
√

2e1 + e2 + e3, [e3, e1] = e1 +
√

2e2,

where {e1, e2, e3} is a suitable pseudo-orthonormal basis with e3 a time-like vector field on the
Minkowski space. Then, (ξ, 0,−1) defines a hyperbolic Ricci soliton for ξ =

√
2e1.

3. Submanifolds as Hyperbolic Ricci Solitons

Let M be an isometrically immersed submanifold of a Riemannian manifold (M̄, ḡ)
and denote the induced metric on M with g. Let ∇ and ∇̄ be the Levi-Civita connections
on (M, g) and (M̄, ḡ), respectively. Then, the Gauss and Weingarten formulas are

∇̄XY = ∇XY + h(X, Y), ∇̄X N = −AN X +∇⊥X N,

where h is the second fundamental form and AN is the shape operator in the direction of
the normal vector field N, defined by g(AN X, Y) = ḡ(h(X, Y), N) for X, Y ∈ χ(M) [15].

We assume now that ξ ∈ χ(M̄) is a concurrent vector field, i.e., ∇̄ξ = I. Then, for any
X ∈ χ(M), we have:

∇Xξ> + h(X, ξ>)− Aξ⊥X +∇⊥X ξ⊥ = X,
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hence,
∇Xξ> = X + Aξ⊥X.

We consequently obtain

(£ξ>g)(X, Y) = g(∇Xξ>, Y) + g(X,∇Yξ>)

= 2g(X, Y) + 2g(Aξ⊥X, Y),

ξ>((£ξ>g)(X, Y)) = 2ξ>(g(X, Y)) + 2ξ>(g(Aξ⊥X, Y))

= 2g(∇ξ>X, Y) + 2g(X,∇ξ>Y)

+ 2g(∇ξ>(Aξ⊥X), Y) + 2g(Aξ⊥X,∇ξ>Y),

(£ξ>g)([ξ>, X], Y) = 2g([ξ>, X], Y) + 2g(Aξ⊥ [ξ
>, X], Y)

= 2g(∇ξ>X, Y)− 2g(∇Xξ>, Y)

+ 2g(Aξ⊥(∇ξ>X), Y)− 2g(Aξ⊥(∇Xξ>), Y)

= 2g(∇ξ>X, Y)− 2g(X, Y)− 2g(Aξ⊥X, Y)

+ 2g(Aξ⊥Y,∇ξ>X)− 2g(Aξ⊥X, Y)− 2g(A2
ξ⊥X, Y),

(£ξ>g)(X, [ξ>, Y]) = 2g(∇ξ>Y, X)− 2g(X, Y)− 2g(Aξ⊥X, Y)

+ 2g(Aξ⊥X,∇ξ>Y)− 2g(Aξ⊥X, Y)− 2g(A2
ξ⊥X, Y)

for any X, Y ∈ χ(M). Then,

(£ξ>£ξ>g)(X, Y) = 4g(X, Y) + 4g(A2
ξ⊥X, Y) + 8g(Aξ⊥X, Y)

+ 2g((∇ξ>Aξ⊥)X, Y) (6)

for any X, Y ∈ χ(M).
From the above computations, we obtain the following:

Theorem 2. Let M be a submanifold that is isometrically immersed into a Riemannian manifold
(M̄, ḡ), and let ξ be a concurrent vector field on M̄. Then, (M, g, ξ>, λ, µ) is a hyperbolic Ricci
soliton if and only if the Ricci tensor field of M satisfies

RicM(X, Y) = (µ− 4− 2λ)g(X, Y)− 4g(A2
ξ⊥X, Y)− 2(4 + λ)g(Aξ⊥X, Y)

− 2g((∇ξ>Aξ⊥)X, Y) (7)

for any X, Y ∈ χ(M).

Obviously, if Aξ⊥ = 0 (in particular, if M is totally geodesic, i.e., AN = 0 for any
normal vector field N), then it is an Einstein manifold provided that n = dim(M) > 2, of
scalar curvature rM = n(µ− 4− 2λ).

If M is totally umbilical, then Aξ⊥ = f I, where f is a smooth function on M and I is
the identity map. So,

g(A2
ξ⊥X, Y) = f 2g(X, Y),

g(∇ξ>(Aξ⊥X), Y) = ξ>( f )g(X, Y) + f g(∇ξ>X, Y),

g(Aξ⊥X, Y) = f g(X, Y),

g(Aξ⊥Y,∇ξ>X) = f g(∇ξ>X, Y),

and we have
RicM =

(
µ− 4− 2λ− 4 f 2 − 2 f (4 + λ)− 2ξ>( f )

)
g.
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Then, we conclude the following:

Proposition 8. A totally umbilical hyperbolic Ricci soliton (M, g, ξ>, λ, µ) that is isometrically
immersed into a Riemannian manifold (M̄, ḡ) with a concurrent vector field ξ is an Einstein
manifold provided that dim(M) > 2.

From (6), we notice that if ξ> is a 2-Killing vector field and ∇Aξ⊥ = 0, then

g(X, Y) + g(A2
ξ⊥X, Y) + 2g(Aξ⊥X, Y) = 0

for any X, Y ∈ χ(M). By taking the trace, we find

n + tr
(

A2
ξ⊥

)
+ 2 tr

(
Aξ⊥

)
= 0,

and we can state the following:

Proposition 9. There does not exist a 2-Killing vector field ξ> on a minimal submanifold with
parallel shape operator that is isometrically immersed into a Riemannian manifold endowed with a
concurrent vector field ξ.

3.1. Submanifolds of Manifolds with Constant Curvature

We shall further consider hyperbolic Ricci solitons Mn that are isometrically immersed
into a Riemannian manifold (M̄(c), ḡ) of constant curvature c. From (7), since

RicM(X, Y) = (n− 1)cg(X, Y) + nḡ(h(X, Y), H)−
n

∑
i=1

ḡ(h(X, ei), h(Y, ei))

for any X, Y ∈ χ(M), where {ei}1≤i≤n is a local orthonormal frame field on M and H is the
mean curvature vector field defined by H := 1

n ∑n
i=1 h(ei, ei), we obtain the following:

Proposition 10. If Mn is a submanifold that is isometrically immersed into a Riemannian manifold
(M̄(c), ḡ) of constant curvature c, and ξ is a concurrent vector field on M̄, then (M, g, ξ>, λ, µ) is
a hyperbolic Ricci soliton if and only if

nḡ(h(X, Y), H)−
n

∑
i=1

ḡ(h(X, ei), h(Y, ei)) = (µ− 4− 2λ− (n− 1)c)g(X, Y)

− 4g(A2
ξ⊥X, Y)− 2(4 + λ)g(Aξ⊥X, Y)− 2g((∇ξ>Aξ⊥)X, Y)

for any X, Y ∈ χ(M).

Then, we have the following:

Corollary 1. Let Mn be a totally geodesic submanifold that is isometrically immersed into a
Riemannian manifold (M̄(c), ḡ) of constant curvature c, and let ξ be a concurrent vector field on
M̄. Then, (M, g, ξ>, λ, µ) is a hyperbolic Ricci soliton if and only if

µ− 2λ = 4 + (n− 1)c.

Now we will assume that M is a hypersurface with parallel shape operator A that
is isometrically immersed into a Riemannian manifold (M̄n+1, ḡ), and we consider ξ a
concurrent vector field on M̄. If M has parallel shape operator, i.e., ∇Aξ⊥ = 0, then
Equation (7) can be written as

RicM(X, Y) = (µ− 4− 2λ)g(X, Y)− 4g(A2
ξ⊥X, Y)− 2(4 + λ)g(Aξ⊥X, Y)
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for any X, Y ∈ χ(M), and we can state the following:

Proposition 11. Let M be a hypersurface that is isometrically immersed into a Riemannian
manifold (M̄n+1(c), ḡ) of constant curvature c, and let ξ be a concurrent vector field on M̄. If M
has parallel shape operator, then

A2
ξ⊥ =

(
−2(4 + λ)ρ2 − tr

(
Aξ⊥

))
4ρ2 − 1

Aξ⊥ +
(µ− 4− 2λ− (n− 1)c)ρ2

4ρ2 − 1
I (8)

provided that ρ(x) 6= 1
2 for any x ∈ M, where ρ := ‖ξ⊥‖.

If ρ = 1
2 , then Aξ⊥ =

(µ− 4− 2λ− (n− 1)c)
4
(

4 + λ + 2 tr
(

Aξ⊥

)) I provided that λ 6= −2
(

tr
(

Aξ⊥

)
+ 2
)

or

λ = −2
(

tr
(

Aξ⊥

)
+ 2
)

and µ = −4
(

tr
(

Aξ⊥

)
+ 1
)
+ (n− 1)c.

3.2. Metallic-Shaped Hypersurfaces

We recall that a hypersurface M is called a metallic-shaped hypersurface (see [16]) if its
shape operator A satisfies

A2 = pA + qI, (9)

where p, q ∈ R. For certain values of p and q, they are called golden shaped (p = q = 1)
(see [17]), silver shaped (p = 2 and q = 1), bronze shaped (p = 3 and q = 1), copper shaped
(p = 1 and q = 2) and nickel shaped (p = 1 and q = 3) (see [16]).

By using (8) and (9), we have the following:

Proposition 12. Let M be a connected hypersurface that has parallel shape operator that is iso-
metrically immersed into a Riemannian manifold (M̄(c), ḡ) of constant curvature c, and let ξ be a
concurrent vector field on M̄ such that ‖ξ⊥‖ is constant. If (M, g, ξ>, λ, µ) is a hyperbolic Ricci
soliton, then it is a metallic-shaped hypersurface.

For particular cases, we deduce the following:

Corollary 2. Let M be a connected hypersurface that has parallel shape operator that is isometrically
immersed into a Riemannian manifold of constant curvature (M̄n+1(c), ḡ), and let ξ be a concurrent
vector field on M̄ such that ‖ξ⊥‖ is constant. If (M, g, ξ>, λ, µ) is a hyperbolic Ricci soliton, and if
one of the following cases occurs:

1. M is golden shaped and µ = (n− 1)c− 4;

2. M is silver shaped and µ = (n− 1)c + 1− 8ρ2

ρ2 ;

3. M is bronze shaped and µ = (n− 1)c + 2− 12ρ2

ρ2 ;

4. M is copper shaped and µ = (n− 1)c− 1
ρ2 ;

5. M is nickel shaped and µ = (n− 1)c− 2− 4ρ2

ρ2 ;

then M is minimal, i.e., H = 0.

Remark 1. In the above cases, we obtain the following values for λ: 1− 12ρ2

2ρ2 for the golden-,

copper- and nickel-shaped hypersurfaces; 1− 8ρ2

ρ2 for the silver-shaped hypersurface; and 3− 20ρ2

2ρ2

for the bronze-shaped hypersurface.
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3.3. Pseudosymmetric Hypersurfaces

Let (Mn, g), n > 2, be a Riemannian manifold and R be its Riemannian curvature
tensor field. Let R · R and Q(g, R) be the tensor fields defined by

(R(X, Y) · R)(U1, U2, U3, U4) :=− R(R(X, Y)U1, U2, U3, U4)− . . .

− R(U1, U2, U3, R(X, Y)U4)

and

Q(g, R)(U1, U2, U3, U4; X, Y) :=− R((X ∧Y)U1, U2, U3, U4)− . . .

− R(U1, U2, U3, (X ∧Y)U4),

respectively, where X ∧Y is given by

(X ∧Y)Ui := g(Y, Ui)X− g(X, Ui)Y

for X, Y, Ui ∈ χ(M), 1 ≤ i ≤ 4 (see [18]). Then, (M, g) is called pseudosymmetric if
the condition

R · R = fRQ(g, R)

is satisfied on the set

VR =

{
x ∈ M :

(
R− r

n(n− 1)
G
)
6= 0 at x

}
,

where fR is some function on VR, the (0, 4)-tensor field G is defined by

G(U1, U2, U3, U4) := g((U1 ∧U2)U3, U4),

r is the scalar curvature and Ui ∈ χ(M), 1 ≤ i ≤ 4 [18]. If R · R = 0, then (M, g) is called
semisymmetric [19].

R. Deszcz, L. Verstraelen and Ş. Yaprak proved the following result:

Lemma 2 ([20]). Let (M, g) be a hypersurface that is isometrically immersed into a Riemannian
space of constant curvature (M̄n+1(c), ḡ), n ≥ 3. If at a point x ∈ VR ⊂ M, the shape operator A
of M satisfies the condition

A2 = pA + qI

where p, q ∈ R, then the relation

R · R = (c− q)Q(g, R)

holds at x.

Using the above lemma, we can state the following:

Proposition 13. Let M be a hypersurface with parallel shape operator that is isometrically immersed
into a Riemannian manifold of constant curvature (M̄n+1(c), ḡ), and let ξ be a concurrent vector
field on M̄. If (M, g, ξ>, λ, µ) is a hyperbolic Ricci soliton, then it is pseudosymmetric.

In particular, if µ− 2λ = 4 + (n + 3)ρ2 − 1
ρ2 c, then M is semisymmetric.

4. Conclusions

The theory of solitons, which are stationary solutions to geometric flows on Rieman-
nian manifolds, has been continuously developed in the last decades. Still insufficiently
investigated, hyperbolic Ricci solitons, corresponding to the hyperbolic Ricci flow, have
been very recently considered [4]. The aim of the present study is to point out some
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properties of hyperbolic Ricci soliton submanifolds whose potential vector fields are the
tangential components of a concurrent vector field on the ambient space. Since concircular
(in particular, concurrent) vector fields play an important role in general relativity, this
paper, being among the first ones in this direction, could generate further studies of large
interest, with possible applications in physics.
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17. Crâşmăreanu, M.; Hreţcanu, C.-E.; Munteanu, M.-I. Golden and product-shaped hypersurfaces in real space forms. Int. J. Geom.

Methods Mod. Phys. 2013, 10, 1320006. [CrossRef]
18. Deszcz, R. On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A 1992, 44, 1–34.
19. Sinyukov, N.S. On geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces. Dokl. Akad. Nauk SSSR 1954, 98,

21–23.
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