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Abstract: Representations of braid group Bn on n ≥ 2 strands by automorphisms of a free group of
rank n go back to Artin. In 1991, Kauffman introduced a theory of virtual braids, virtual knots, and
links. The virtual braid group VBn on n ≥ 2 strands is an extension of the classical braid group Bn by
the symmetric group Sn. In this paper, we consider flat virtual braid groups FVBn on n ≥ 2 strands
and construct a family of representations of FVBn by automorphisms of free groups of rank 2n. It has
been established that these representations do not preserve the forbidden relations between classical
and virtual generators. We investigated some algebraic properties of the constructed representations.
In particular, we established conditions of faithfulness in case n = 2 and proved that the kernel
contains a free group of rank two for n ≥ 3.
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1. Introduction

The foundations of the braid groups theory were laid down in the works of E. Artin in
the 1920s. In [1] he defined the braid group Bn on n ≥ 2 strands as a group with generators
σ1, . . . , σn−1 and defining relations:

σiσj = σjσi, |i− j| ≥ 2, (1)

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2. (2)

A set {σ1, . . . , σn−1} is called the standard generators, or the Artin generators of the braid
group Bn. The generator σi ∈ Bn and its inverse σ−1

i are presented geometrically in Figure 1.
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Figure 1. Generator σi ∈ Bn and its inverse σ−1
i .

There is a useful relation between braid groups and knot theory, see for example, [2–7].
This relation is based on Alexander’s theorem [8], that states that every knot or link in
S3 is ambient isotopic to a closed braid, and on Markov’s theorem [9], that describes
the elementary operations generating the equivalence relations on braids given by the
equivalence of their closures. These operations are said to be Markov moves. Invariants,
arising from representations of braid groups, play an important role in classical knot theory
and its generalizations.
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Artin discovered faithful representation ϕn : Bn → Aut(Fn), where Fn = 〈x1, . . . , xn〉
is the free group of rank n for n ≥ 2. Homomorphism ϕn, known as the Artin representation,
maps generator σi ∈ Bn to the following automorphism ϕn(σi):

ϕn(σi) :


xi 7→ xi+1,
xi+1 7→ x−1

i+1xixi+1,
xj 7→ xj, j 6= i, i + 1.

Note that for each i, 1 ≤ i ≤ n− 1, one has ϕn(σi)(x1 · · · xn) = x1 · · · xn. Therefore
ϕn(β)(x1 · · · xn) = (x1 · · · xn) for every β ∈ Bn. Moreover, it is shown by Artin [1,10]
that an automorphism g ∈ Aut(Fn) is equal to ϕn(β) for some β ∈ Bn if and only if the
following two conditions are satisfied: (i) f (xi) is conjugate of some xj for i = 1, . . . , n− 1;
and (ii) f (x1 · · · xn) = x1 · · · xn.

The braid group Bn can be naturally identified with MCG(Dn, ∂Dn), the relative
mapping class group of the n-punctured disc Dn, and the Artin representation is induced
by the action of Bn on the group π1(Dn) = Fn, where xi is a loop represented by the
boundary of the i-th puncture. Moreover, the Artin representation has the following useful
property. Let L be a link in S3. Suppose L is obtained by closure from an n-strand braid
β ∈ Bn, i.e., L = β̂. Then the link group π1(S3 \ L) is isomorphic to a group Gβ defined by
the following presentation

Gβ = 〈x1, x2, . . . , xn | ϕn(β)(xi) = xi, i = 1, . . . , n〉.

In [11] Wada introduced some other representations {ψn}∞
n=2 of braid groups Bn by

automorphisms of free groups which, in the same way as above, give groups invariants
of links

Gβ(ψn) = 〈x1, x2, . . . , xn | ψn(β)(xi) = xi, i = 1, . . . , n〉. (3)

It is evident that the family of representations {ψn}∞
n=2 should be such that the group

Gβ(ψn) exhibits the property of invariance with respect to Markov moves.
For this purpose, the so-called Wada-type representations or local homogeneous

representations have proven to be a useful tool. Recall that a representation is local
whenever the image of σi, for i = 1, . . . , n− 1, acts non-trivially on the pair of adjacent
generators xi and xi+1, and the image of xi is the word u(xi, xi+1), while the image of xi+1
is a word v(xi, xi+1), where u and v are reduced words in the group generated by xi and
xi+1. In [11], seven types of such representations were discovered, and a hypothesis was
formulated regarding the existence of other local homogeneous representations. Four of
these seven types are faithful. The classification of such representations was provided
in [12].

In [13], new families of representations {ψn}∞
n=2 are considered, for which a similar

group invariant for links can be defined, analogous to (3). By deviating from the require-
ment of local homogeneous representation (see [13]), it is possible to expand the list of
representations of braid groups by automorphisms of free groups. However, in terms of
group invariants, as demonstrated by Ito [13] (Theorem 4.1), no new additions are made.

In what follows, if any automorphism acts on a generator identically, we will not write
this action. We write the composition of automorphisms in the order of their application
from left to right, namely, ϕψ( f ) = ψ(ϕ( f )).

Virtual braids were introduced by Kauffman in his founding paper [14] together with
virtual knots and links. See [15–18] for more information about virtual knots and links,
and [19,20] for their applications to study of proteins. In the same paper, Kauffman defined
the virtual braid group VBn on n ≥ 2 strands, generated by the elements σ1, . . . , σn−1
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similarly to the classical braid group and ρ1, . . . ρn−1 that satisfy braid relations (1)–(2),
symmetric group relations (4)–(6) and mixed relations (7)–(8):

ρ2
i = 1, 1 ≤ i ≤ n− 1, (4)

ρiρj = ρjρi, |i− j| ≥ 2, (5)

ρiρi+1ρi = ρi+1ρiρi+1, 1 ≤ i ≤ n− 2, (6)

ρiσj = σjρi, |i− j| ≥ 2, (7)

ρiρi+1σi = σi+1ρiρi+1, 1 ≤ i ≤ n− 2. (8)

Generator ρi ∈ VBn is presented geometrically in Figure 2.
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Figure 2. Generator ρi ∈ VBn.

Geometric braids corresponding to the mixed relation (8) are presented in Figure 3.
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Figure 3. The mixed relation ρiρi+1σi = σi+1ρiρi+1.

Kamada [21] established that the following Alexander theorem for virtual braids holds:
If L is a virtual link, then for some n there exists a virtual braid β ∈ VBn such that L = β̂ is
the closure of β.

It is shown in [22] that relations

ρiσi+1σi = σi+1σiρi+1, 1 ≤ i ≤ n− 2, (9)

ρi+1σiσi+1 = σiσi+1ρi, 1 ≤ i ≤ n− 2. (10)

do not hold in the VBn group. These relations (9) and (10) are called forbidden relations,
see Figures 4 and 5. The group WBn is obtained from VBn by adding the relation (9)
and is called welded braid group [23]. The same group WBn is obtained by adding the
relation (10) to the group VBn. Adding both relations (9) and (10) to VBn leads to unknotting
transformations for virtual knots and links [21,22,24]. Other unknotting operations for
links, virtual links and welded links are given, for example, in [25–27]. Note that the
representations VBn → Aut(Gn) were constructed, for example, for groups Gn of the
following form: Gn = Fn ∗ Zn+1 in [28], Gn = Fn ∗ Z2 in [29], Gn = Fn ∗ Z2n+1 and
Gn = Fn ∗ Zn in [30]. For structural properties and other representations of the virtual
braid groups see [31,32].

In the last decade many polynomial invariants of virtual knots and links have been
introduced. Among them are affine index polynomial by Kauffman [33], writhe polynomial
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by Cheng and Cao [34], wriggle polynomial by Folwaczny and Kauffman [35], arrow
polynomial by Dye and Kauffman [36], extended bracket polynomial by Kauffman [37],
index polynomial by Im, Lee and Lee [38], zero polynomial by Jeong [39], sequences
of L-polynomials and F-polynomials by Kaur, Prabhakar, and Vesnin [40] and recurrent
generalizations of F-polynomials [41].

In [42], Mihalchishina constructs an extension of Wada representation to the virtual
and welded braid groups. By utilizing the generated representations, she established
the construction of virtual link groups and demonstrated their invariance under link
transformations. The conditions on the representations here for group invariance appear to
be more complex than in the classical case.
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Figure 4. The forbidden relation ρiσi+1σi = σi+1σiρi+1.
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Figure 5. The forbidden relation ρi+1σiσi+1 = σiσi+1ρi.

In [43] the group of flat virtual braids FVBn on n strands was introduced as a result of
adding the relations (11) to the group VBn:

σ2
i = 1, 1 ≤ i ≤ n− 1. (11)

We summarize the above discussions in the following definition.

Definition 1. For n ≥ 2 a group with generators σ1, . . . , σn−1, ρ1, . . . , ρn−1 and the following
defining relations:

σ2
i = 1, ρ2

i = 1, 1 ≤ i ≤ n− 1,
σi σi+1 σi = σi+1 σi σi+1, ρi ρi+1 ρi = ρi+1 ρi ρi+1, 1 ≤ i ≤ n− 2,

σi σj = σj σi, ρi ρj = ρj ρi, |i− j| ≥ 2

and
ρi ρi+1 σi = σi+1 ρi ρi+1, 1 ≤ i ≤ n− 2,

ρi σj = σj ρi, |i− j| ≥ 2.

is called the flat virtual braid group FVBn on n strands.
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Generator σi ∈ FVBn is presented geometrically in Figure 6 and generator ρ ∈ FVBn is
presented geometrically in Figure 2. Flat virtual knots and links arise naturally as closures
of flat virtual braids. In [44] Im, Lee, and Son demonstrate a construction of a polynomial
invariant for flat virtual knots induced from an index polynomial invariant of virtual knots
in [38].
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Figure 6. Generator σi ∈ FVBn.

In [45] the following problem was formulated: Does it exist a representation of the
FVBn group by automorphisms of some group for which the forbidden relations would
not hold? In [46], such representation ηn : FVBn → Aut(F2n) was constructed, here
F2n = 〈x1, . . . , xn, y1, . . . , yn〉 is a free group of rank 2n. The homomorphism ηn maps
generators σi, ρi ∈ FVBn, where i = 1, . . . , n− 1, to the following automorphisms:

ηn(σi) :

{
xi 7→ xi+1yi+1,
xi+1 7→ xiy−1

i+1,
ηn(ρi) :


xi 7→ xi+1,
xi+1 7→ xi,
yi 7→ yi+1,
yi+1 7→ yi.

(12)

It was shown in [46] that the representation η2 : FVB2 → Aut(F4) is faithful.
In this paper we construct a family of representations of the group FVBn by automor-

phisms of the free groupF2n = 〈x1, . . . , xn, y1, . . . , yn〉, which generalize the representation (12).
Namely, we consider a family of homomorphisms Θn : FVBn → Aut(F2n), which are
given by mapping generators σi, ρi ∈ FVBn, where i = 1, . . . , n − 1, to the following
automorphisms:

Θn(σi) :

{
xi 7→ xi+1 ai(yi, yi+1),
xi+1 7→ xi bi(yi, yi+1),

Θn(ρi) :


xi 7→ xi+1 ci(yi, yi+1),
xi+1 7→ xi di(yi, yi+1),
yi 7→ yi+1,
yi+1 7→ yi,

(13)

where the elements ai(yi, yi+1), bi(yi, yi+1), ci(yi, yi+1) and di(yi, yi+1) are words in a free
group of rank two with generators {yi, yi+1} for each i = 1, . . . , n− 1. Thus, the homo-
morphisms Θn depend only on the choice of the words ai, bi, ci, di, which define the locally
nontrivial action of the automorphism corresponding to the generator of the group FVBn,
and in this sense the homomorphisms Θn are local homomorphisms.

The article has the following structure. In Section 2, the existence of local represen-
tations is discussed. Namely, in Theorem 1, we establish for which ai, bi, ci, and di there
exists a local homomorphism Θn of the group FVBn into the automorphism group of the
free group F2n. In Sections 3 and 4, we obtain results about the structure of the kernel of
the homomorphism Θn, in particular, in Theorem 3, we describe the kernel of this homo-
morphism for n = 2. In Theorem 4, it will be established that for n ≥ 3 the kernel of the
homomorphism Θn contains a free group of rank 2. We note it was shown earlier in [46]
that for n ≥ 3 the kernel of the homomorphism ηn, which is a special case of Θn, con-
tains an infinite cyclic group. In Section 5, we present a family of local non-homogeneous
representations, see Theorem 5.
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2. Existence of Local Representations

Let F2n be a free group of rank 2n with free generators x1, . . . , xn, y1, . . . , yn.

Theorem 1. Let n ≥ 2 and ai(yi, yi+1), bi(yi, yi+1), ci(yi, yi+1), di(yi, yi+1) be words in a free
group of rank two with generators {yi, yi+1}, where 1 ≤ i ≤ n− 1. Define the map Θn : FVBn →
Aut(F2n) by mapping σi and ρi to automorphisms:

Θn(σi) :

{
xi 7→ xi+1 ai(yi, yi+1),
xi+1 7→ xi bi(yi, yi+1),

Θn(ρi) :


xi 7→ xi+1 ci(yi, yi+1),
xi+1 7→ xi di(yi, yi+1),
yi 7→ yi+1,
yi+1 7→ yi.

(14)

Then, the following properties hold.

(1) The map Θn is homomorphism iff

bi(yi, yi+1) = a−1
i (yi, yi+1), ci(yi, yi+1) = ymi

i+1, di(yi, yi+1) = y−mi
i ,

where mi ∈ Z for 1 ≤ i ≤ n− 1, and

aj(yj, yj+1) = y
mj
j+1 aj−1(yj, yj+1) y

−mj−1
j , 2 ≤ j ≤ n− 1,

with n ≥ 3, where a1 = w(y1, y2) for some word w(A, B) ∈ F2 = 〈A, B〉.
(2) The map Θn does not preserve the forbidden relations.

Proof. (1) Let us verify that the relations (1)–(8) and the relation (11) are preserved under
the map Θn. Denote si = Θn(σi) ∈ Aut(F2n) and ri = Θn(ρi) ∈ Aut(F2n).

The relations (1), (5), and (7) are preserved because si acts non-trivially only on xi and
xi+1, while ri acts non-trivially only on xi, xi+1, yi and yi+1.

Since

s2
i :

{
xi 7→ xi+1 ai(yi, yi+1) 7→ xi bi(yi, yi+1) ai(yi, yi+1),
xi+1 7→ xi bi(yi, yi+1) 7→ xi+1 ai(yi, yi+1) bi(yi, yi+1),

the relation (11) is preserved if and only if bi(yi, yi+1) = a−1
i (yi, yi+1) for all 1 ≤ i ≤ n− 1.

Further,

r2
i :

{
xi 7→ xi+1 ci(yi, yi+1) 7→ xi di(yi, yi+1) ci(yi+1, yi),
xi+1 7→ xi di(yi, yi+1) 7→ xi+1 ci(yi, yi+1) di(yi+1, yi),

and relation (4) is preserved iff

di(yi, yi+1) = c−1
i (yi+1, yi), 1 ≤ i ≤ n− 1. (15)

Consider the actions of automorphisms riri+1si and si+1riri+1. We have

riri+1si :


xi 7→ xi+1ci(yi, yi+1) 7→ xi+2ci+1(yi+1, yi+2)ci(yi, yi+2),
xi+1 7→ xic−1

i (yi+1, yi) 7→ xic−1
i (yi+2, yi) 7→ xi+1ai(yi, yi+1)c−1

i (yi+2, yi),
xi+2 7→ xi+2 7→ xi+1c−1

i+1(yi+2, yi+1) 7→ xia−1
i (yi, yi+1)c−1

i+1(yi+2, yi+1),

and

si+1riri+1 :



xi 7→ xi+1ci(yi, yi+1) 7→ xi+2ci+1(yi+1, yi+2)ci(yi, yi+2),
xi+1 7→ xi+2ai+1(yi+1, yi+2) 7→ xi+2ai+1(yi, yi+2)

7→ xi+1c−1
i+1(yi+2, yi+1)ai+1(yi, yi+1),

xi+2 7→ xi+1a−1
i+1(yi+1, yi+2) 7→ xic−1

i (yi+1, yi)a−1
i+1(yi, yi+2)

7→ xic−1
i (yi+2, yi)a−1

i+1(yi, yi+1).
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Thus, to fulfill the relation (8), it is necessary and sufficient that

ai+1(yi, yi+1)ci(yi+2, yi) = ci+1(yi+2, yi+1)ai(yi, yi+1), (16)

holds for all 1 ≤ i ≤ n− 2.
A similar consideration of the relations (6) leads to the equalities

ci+1(yi, yi+2)ci(yi+1, yi+2) = ci+1(yi+1, yi+2)ci(yi, yi+2), (17)

for all 1 ≤ i ≤ n − 2. This is only possible if ci(yi, yi+1) = ymi
i+1 for some mi ∈ Z with

1 ≤ i ≤ n− 1. Using (16) and (17) we obtain

ai+1(yi, yi+1) = ymi+1
i+1 ai(yi, yi+1)y

−mi
i , 1 ≤ i ≤ n− 2.

The fulfillment of the relations (2) is checked directly.
(2) Let us now show that the forbidden relations do not hold under the map Θn.

Indeed, we have:
yi

ri7−→ yi+1
si+17−→ yi+1

si7−→ yi+1,

yi
si+17−→ yi

si7−→ yi
ri+17−→ yi,

therefore, risi+1si 6= si+1siri+1. Similarly

yi
si7−→ yi

si+17−→ yi
ri7−→ yi+1,

yi
ri+17−→ yi

si7−→ yi
si+17−→ yi,

therefore, sisi+1ri 6= ri+1sisi+1.

Thus the representation Θn given by the formula (14) depends on the word a1(A, B) =
w(A, B) ∈ F2 = 〈A, B〉, into which we substitute yi and yi+1 instead of A and B respec-
tively, and a set of integers m = (m1, . . . , mn−1). To emphasize this dependence of the
representation on w and m, we denote it Θw,m

n :

Θw,m
n (σi) :


xi 7→ xi+1

2

∏
k=i

ymk
i+1 w(yi, yi+1)

i−1

∏
k=1

y−mk
i ,

xi+1 7→ xi

1

∏
k=i−1

ymk
i (w(yi, yi+1))

−1
i

∏
k=2

y−mk
i+1 ,

(18)

and

Θw,m
n (ρi) :


xi 7→ xi+1ymi

i+1,
xi+1 7→ xiy

−mi
i ,

yi 7→ yi+1,
yi+1 7→ yi,

(19)

where in the products
2

∏
k=i

and
1

∏
k=i−1

it is assumed that i ≥ 2 and the indices are decreasing,

and in the products
i−1

∏
k=1

and
i

∏
k=2

it is assumed i ≥ 2 and the indices are increasing.
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The word w is called the defining word for the homomorphism Θw,m
n . In the par-

ticular case when mi = 0 for all i = 1, . . . , n− 1, we will write Θw
n : FVBn → Aut(F2n)

assuming that

Θw
n (σi) :

{
xi 7→ xi+1w(yi, yi+1),
xi+1 7→ xi(w(yi, yi+1))

−1,
Θw

n (ρi) :


xi 7→ xi+1,
xi+1 7→ xi,
yi 7→ yi+1,
yi+1 7→ yi.

(20)

Note that the homomorphism (12) constructed in [46] can be represented as ηn = Θw
n for

w(A, B) = B.
Let β ∈ FVBn and x ∈ F2n. Further, to simplify the notation, by β(x) we mean

Θw,m
n (β)(x), where the word w and the set m are assumed to be clear from the context.

3. The Kernel of Homomorphism Θ
w,m
n and FVKn Group

In this section we show that the kernel of the homomorphism Θw,m
n lies in the intersec-

tion of the group of flat virtual pure braids and the group of flat virtual kure braids group
FVKn defined below.

Consider the subgroup Sn = 〈σ1 . . . σn−1〉 of FVBn, which is isomorphic to the permu-
tation group of an n-element set. The map πn : FVBn → Sn defined on the generators σi, ρi
according to the rule:

πn(σi) = σi, 1 ≤ i ≤ n− 1,

πn(ρi) = σi, 1 ≤ i ≤ n− 1,

is obviously a homomorphism.

Definition 2. Denote FVPn = Ker(πn) and call it flat virtual pure braid group on n strands.

Similarly, the subgroup S′n = 〈ρ1 . . . ρn−1〉 of FVBn is isomorphic to the permutation
group of an n-element set, and the map νn : FVBn → S′n defined on generators σi, ρi
as follows:

νn(σi) = 1, 1 ≤ i ≤ n− 1,

νn(ρi) = ρi, 1 ≤ i ≤ n− 1,

is also a homomorphism.

Definition 3. Denote FVKn = Ker(νn) and call it flat virtual kure braid group on n strands.

Here, we use the term flat virtual kure braid since the term kure virtual braid group
was used in [47] for kernel of the map πK : VBn → Sn which is defined analogously to
νn : FVBn → S′. The group FVKn = Ker(νn) also was denoted by FHn in [46] since it is
the flat analog of the Rabenda’s group Hn from [48] (Prop. 17).

Lemma 1 ([46]). (Prop. 4) The group FVKn admits a presentation with generators xi,j, 1 ≤ i 6=
j ≤ n and defining relations

x2
i,j = 1, xi,j xk,l = xk,l xi,j, xi,k xk,j xi,k = xk,j xi,k xk,j, (21)

where different letters stand for different indices.

Corollary 1. The group FVKn is a Coxeter group with generators xi,j, 1 ≤ i 6= j ≤ n and
defining relations

x2
i,j = 1, (xi,j xk,l)

2 = 1, (xi,k xk,j)
3 = 1, (22)
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where different letters stand for different indices.

The following property is a generalization of the property established in [46] (Prop. 9)
for the word w(A, B) = B.

Lemma 2. Let n ≥ 2. For any word w ∈ F2 and any set of integers m = (m1, . . . , mn−1)
Ker(Θw,m

n ) ≤ FVPn ∩ FVKn.

Proof. Let g ∈ Ker(Θw,m
n ). Then yi = g(yi) = νn(g)(yi), since all σi act identically on yi.

But then νn(g) is the identity permutation of the set {y1, . . . , yn}, which by definition means
g ∈ FVKn.

Next, we show that g ∈ FVPn. Denote by G the normal closure of the subgroup
〈y1, . . . , yn〉 in F2n. It is clear that G is a Θw,m

n (FVBn)–invariant subgroup. Then Θw,m
n in-

duces a homomorphism Ψw,m
n : FVBn → Aut(F2n/G) = Aut(Fn), where Fn = 〈x1, . . . , xn〉.

From Formulas (14) we can write out the action of Ψw,m
n on the generators of the group FVBn:

Ψw,m
n (σi) :

{
xi 7→ xi+1,
xi+1 7→ xi,

Ψw,m
n (ρi) :

{
xi 7→ xi+1,
xi+1 7→ xi,

1 ≤ i ≤ n− 1.

Now it is easy to see that the image of FVBn under the map Ψw,m
n is a permutation of the

set {x1, . . . , xn}. It remains to note that if g ∈ Ker(Θw,m
n ), then g ∈ Ker(Ψw,m

n ) = FVPn.

Since S′n ≤ FVBn, then the decomposition of FVBn = FVKn o S′n follows directly
from the definition of FVKn. Considering the restriction of the homomorphism πn to FVKn,
we obtain the homomorphism ξn : FVKn → Sn. Note that its kernel is Xn = Ker(ξn) =
FVPn ∩ FVKn. Further, since S′n ≤ FVKn, we obtain the decomposition FVKn = Xn o Sn.
Thus, we have the following decomposition of the group of flat virtual braids:

FVBn = (Xn o Sn)o S′n.

As it invented in [48], we denote

λi,i+1 = ρiσi, 1 ≤ i ≤ n− 1,

λi,j = ρj−1ρj−2 . . . ρi+1λi,i+1ρi+1 . . . ρj−2ρj−1, j− i ≥ 2.

Element λi,j is presented geometrically in Figure 7,

Lemma 3 ([48]). The group FVPn is generated by the elements λi,j, 1 ≤ i < j ≤ n and the
defining relations are:

λi,jλk,l = λk,lλi,j, (23)

λk,iλk,jλi,j = λi,jλk,jλk,i, (24)

where i, j, k, l correspond to different indices.

Let us consider the case n = 3 in more details. As shown in [48],

FVP3 = 〈a, b, c | [a, c] = 1〉, (25)

where a = λ2,3λ1,3, b = λ2,3 and c = λ2,3λ−1
1,2 . These elements presented geometrically in

Figure 8.
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i i + 1 i + 2 j− 2 j− 1 j
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Figure 7. Element λi,j ∈ FVBn.
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r r r

r r r
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Figure 8. Elements a = λ2,3λ1,3, b = λ2,3, c = λ2,3λ−1
1,2 ∈ FVB3.

Theorem 2. We have the following decomposition

X3 = Z2 ∗ F3 ∗ Γ,

where F3 is a free group of rank 3 and Γ = 〈x, y, u, v, p, q | xy = uv, vu = pq, qp = yx〉.

Proof. Consider the restriction of the homomorphism ν3 : FVB3 → S′3 to FVP3. Let us
denote it by ϕ : FVP3 → S′n. Then X3 = Ker(ϕ).

To find the generators and relations of the X3 group, we use the Reidemeisetr–Schreier
rewriting process, see for example [49]. Let us write out the system of Schreier representa-
tives for Ker(ϕ) using the generators indicated in the presentation (25): T = {1, a, ab, c, cb, b}.
For an element g, we denote its representative in T by g. Then the kernel Ker(ϕ) is gener-
ated by the following elements:
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a · a · (a2)−1 = a2c−1 = t, a · c · (ac)−1 = ac = m,

ab · a · (aba)−1 = abab−1 = v, ab · b · (ab2)−1 = ab2a−1 = w,

ab · c · (abc)−1 = abcb−1c−1 = p, c · a · (ca)−1 = ca = r,

c · c · (c2)−1 = c2a−1 = g, cb · a · (cba)−1 = cbab−1a−1 = q,

cb · b · (cb2)−1 = cb2c−1 = h, cb · c · (cbc)−1 = cbcb−1 = y,

b · a · (ba)−1 = bab−1c−1 = x, b · b · (b2)−1 = b2 = f ,

b · c · (bc)−1 = bcb−1a−1 = u.

Further, the relations taca−1c−1t−1 for t ∈ T must be rewritten in new generators. For
example, for t = ab we obtain:

ab(aca−1c−1)b−1a−1 = vbca−1c−1b−1a−1 = vuaba−1c−1b−1a−1

= vuq−1cbc−1b−1a−1 = vuq−1 p−1.

The rest of the relations are found similarly. As a result, we obtain:

m = r, m = tg, r = gt,

xy = uv, vu = pq, qp = yx.

It is now clear that the elements g, t generate Z2, the elements w, h, f generate F3, and the
group generated by the elements x, y, u, v, p, and q we denote by Γ.

Lemma 4 ([46]). Let Gn be a subgroup of FVPn generated by the elements:

ti,j =λ2
i,j, 1 ≤ i < j ≤ n, (26)

di,j,k =λ−1
j,k λ−1

i,j λj,kλi,k, 1 ≤ i < j < k ≤ n, (27)

ei,j,k =λ−1
j,k λ−1

i,j λi,kλi,j, 1 ≤ i < j < k ≤ n. (28)

Then the normal closure of Gn in FVPn coincides with Xn.

Let us describe the action of Θw
n on the generators indicated in Lemma 4.

Lemma 5. The homomorphism Θw
n : FVBn → Aut(F2n), defined by the word w ∈ F2, maps the

generators of the group Gn to the following automorphisms:

Θw
n (ti,j) :

{
xi 7→ xi w−1

i,j w−1
j,i ,

xj 7→ xj wi,j wj,i,
1 ≤ i < j ≤ n, (29)

Θw
n (di,j,k) :

{
xj 7→ xj w−1

j,i w−1
i,k wj,k,

xk 7→ xk wi,k wj,i w−1
j,k ,

1 ≤ i < j < k ≤ n, (30)

Θw
n (ei,j,k) :

{
xi 7→ xi w−1

i,j w−1
j,k wi,k,

xj 7→ xj wi,j w−1
i,k wj,k,

1 ≤ i < j < k ≤ n. (31)

where wi,j = w(yi, yj) for all i, j.
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Proof. Let, as before, si = Θw
n (σi) and ri = Θw

n (ρi). First of all, let us establish some
auxiliary formulas. Let 1 ≤ i < j− 1 ≤ n− 1, then

bi,j := Θw
n (ρj−1 . . . ρi+1) :



xi+1
ri+17−→ xi+2,

...

xj−1
rj−17−→ xj,

xj
rj−17−→ xj−1

rj−27−→ xj−2 . . .
ri+17−→ xi+1,

yi+1
ri+17−→ yi+2,

...

yj−1
rj−17−→ yj,

yj
rj−17−→ xj−1

rj−27−→ xj−2 . . .
ri+17−→ yi+1.

Further,

ai,i+1 := Θw
n (λi,i+1) = Θw

n (ρiσi) :


xi

ri7−→ xi+1
si7−→ xi w−1

i,i+1,

xi+1
ri7−→ xi

si7−→ xi+1 wi,i+1,

yi
ri7−→ yi+1

si7−→ yi+1,

yi+1
ri7−→ yi

si7−→ yi.

Let us show that for 1 ≤ i < j ≤ n the formulas

Θw
n (λi,j) :


xi 7→ xi w−1

i,j ,

xj 7→ xj wi,j,
yi 7→ yj,
yj 7→ yi,

Θw
n (λ

−1
i,j ) :


xi 7→ xi wj,i,
xj 7→ xj w−1

j,i ,

yi 7→ yj,
yj 7→ yi

hold. Indeed, we have

Θw
n (λi,j) :



xi
bi,j7−→ xi

ai,i+17−→ xi w−1
i,i+1

b−1
i,j7−→ xi w−1

i,j ,

xi+1
bi,j7−→ xi+2

ai,i+17−→ xi+2
b−1

i,j7−→ xi+1,
...

xj−1
bi,j7−→ xj

ai,i+17−→ xj
b−1

i,j7−→ xj−1,

xj
bi,j7−→ xi+1

ai,i+17−→ xi+1 wi,i+1
b−1

i,j7−→ xj wi,j,

yi
bi,j7−→ yi

ai,i+17−→ yi+1
b−1

i,j7−→ yj,

yi+1
bi,j7−→ yi+2

ai,i+17−→ yi+2
b−1

i,j7−→ yi+1,
...

yj−1
bi,j7−→ yj

ai,i+17−→ yj
b−1

i,j7−→ yj−1,

yj
bi,j7−→ yi+1

ai,i+17−→ yi
b−1

i,j7−→ yi.
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We are now ready to prove Formulas (29)–(31). For example, let us establish (29):

Θw
n (ti,j) = Θw

n (λ
2
i,j) :



xi
λi,j7−→ xi w−1

i,j
λi,j7−→ xi w−1

i,j w−1
j,i ,

xj
λi,j7−→ xi wi,j

λi,j7−→ xi wi,j wj,i,

yi
λi,j7−→ yj

λi,j7−→ yi,

yj
λi,j7−→ yi

λi,j7−→ yj.

The Formulas (30) and (31) are proved in the same way.

The following statement answers the question about the faithfulness of the representa-
tions Θw,m

n in the case n = 2.

Theorem 3. The nontrivial representation Θw,m
2 : FVB2 → Aut(F4) is not exact if the defining

word w is
w(A, B) = Ak1 Bk2 . . . Akm B−km . . . A−k2 B−k1 Am1 ,

where all ki are nonzero integers except possibly only for k1 and km. In this case, Ker(Θw,m
2 ) =

X2 ' Z. The representation of Θw,m
2 is exact for other w.

Proof. Lemma 2 implies that Ker(Θw,m
2 ) ≤ X2. It is easy to show that X2 is generated by

the element t1,2.
In the case of n = 2, the set m consists of a single integer m = {m1}. For any k ∈ Z

Θw,m
n (tk

1,2) :

{
x1 7→ x1 (w−1

1,2 ym1
2 w−1

2,1 ym1
1 )k,

x2 7→ x2 (w1,2 y−m1
1 w2,1 y−m1

2 )k.

Thus Θw
n (tk

1,2) = id iff either k = 0 or

w−1
1,2 ym1

2 w−1
2,1 ym1

1 = 1,

i.e., f (y1, y2) = f−1(y2, y1) for the word f (y1, y2) = w(y1, y2)y
−m1
1 .

Let f (A, B) = Ak1 Bk2 . . . Bks Aks+1 . Then

Ak1 Bk2 . . . Bks Aks+1 = B−ks+1 A−ks . . . A−k2 B−k1 ,

therefore f (A, B) = Ak1 Bk2 . . . Akm B−km . . . A−k2 B−k1 , where all ki — nonzero integers
except maybe k1 and km. But then

w(A, B) = Ak1 Bk2 . . . Akm B−km . . . A−k2 B−k1 Am1 .

This completes the proof.

4. Nontriviality of the Kernel Ker(Θ
w,m
n ) for n ≥ 3

Consider the following subgroups of the FVBn group:

Qi
n = 〈ti,i+1, ei,i+1,i+2〉, 1 ≤ i ≤ n− 2, (32)

Mi+1
n = 〈ti+1,i+2, di,i+1,i+2〉, 1 ≤ i ≤ n− 2, (33)

Pi+2
n = 〈ti,i+2〉, 1 ≤ i ≤ n− 2. (34)

Lemma 6. Let n ≥ 3 and w(A, B) ∈ F2(A, B). Then, for all i, 1 ≤ i ≤ n − 2, we obtain
the inclusion [

Qi
n,
[
Mi+1

n , Pi+2
n
]]
≤ Ker(Θw

n ). (35)
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Proof. Note that Qi
n acts non-trivially only on generators xi and xi+1, Mi+1

n acts non-
trivially only on xi+1 and xi+2, while Pi+2

n acts non-trivially only on xi and xi+2. Consider
the element

h = q(mpm−1 p−1)q−1(mpm−1 p−1)−1,

where q ∈ Qi
n, m ∈ Mi+1

n and p ∈ Pi+2
n . This element acts non-trivially only on the

generators xi, xi+1 and xi+2. Write out its action:

h : xi
q7−→ qxi

m7−→ qxi
p7−→ pqxi

m−1
7−→ pqxi

p−1

7−→ qxi
q−1

7−→ xi
p7−→ pxi

m7−→ pxi
p−1

7−→ xi
m−1
7−→ xi;

h : xi+1
q7−→ qxi+1

m7−→ mqxi+1
p7−→ mqxi+1

m−1
7−→ qxi+1

p−1

7−→ qxi+1
q−1

7−→ xi+1
p7−→ xi+1

m7−→ mxi+1
p−1

7−→ mxi+1
m−1
7−→ xi+1;

h : xi+2
q7−→ xi+2

m7−→ mxi+2
p7−→ pmxi+2

m−1
7−→ m−1 pmxi+2

p−1

7−→ p−1m−1 pmxi+2
q−1

7−→

p−1m−1 pmxi+2
pmp−1m−1

7−→ xi+2

Thus, h ∈ Ker(Θw
n ) and the inclusion (35) is proved.

Theorem 4. Let n ≥ 3. For any defining word w(A, B) ∈ F2(A, B) the kernel Ker(Θw
n ) contains

a subgroup isomorphic to a free group of rank 2.

Proof. Denote a free group of rank 2 by F2. By Lemma 6, it suffices to show that F2 ≤[
Q1

3,
[
M2

3, P3
3
]]
≤ FVP3.

Consider the elements

h0 =
[
t1,2, [t2,3, t1,3]

]
and h1 =

[
t1,2, [d1,2,3, t1,3]

]
.

We write them down in terms of the generators of FVP3 group, see (25):

h0 =
[
(c−1b)2, [b2, (b−1a)2]

]
and h1 =

[
(c−1b)2, [b−2ca, (b−1a)2]

]
. (36)

Let us prove that h0 and h1 generate F2. To achieve this, it suffices to show that there
are no relations between them. Let ψ : FVP3 → 〈a, b〉 be the homomorphism given by the
mapping ψ(a) = a, ψ(b) = b and ψ(c) = 1. Denote h̄0 = ψ(h0) and h̄1 = ψ(h1). Then

h̄0 = b3ab−1ab−2a−1ba−1b−2ab−1ab2a−1ba−1b−1,

h̄1 = ab−1aba−1ba−1b−2ab−1ab−1a−1ba−1b2.

The elements h̄0 and h̄1 lie in the free group 〈a, b〉. Hence the group 〈h̄0, h̄1〉 is either
isomorphic to Z or isomorphic to F2. The first case means that h̄0 and h̄1 must be powers
of the same element, i.e., h̄0 = g(a, b)k and h̄1 = g(a, b)s for some word g(a, b) ∈ 〈a, b〉
and nonzero k, s ∈ Z. Let g(a, b) = f · w · f−1, where w(a, b) is the cyclic reduced word in
〈a, b〉. Then gs = f ws f−1 = h̄1 and since h̄1 is itself cyclically reduced, we obtain f = 1.
But then gk = f wk f−1 = wk = h̄0 must be cyclically reduced, which is not the case. Thus
〈h̄0, h̄1〉 ∼= F2 and hence 〈h0, h1〉 ∼= F2.

Corollary 2. Let n ≥ 3, then Ker(Θw,m
n ) contains a subgroup isomorphic to a free group of rank 2

for any integer tuple m = (m1, . . . , mn−1) and arbitrary defining word w(A, B) ∈ F2(A, B).

Proof. There are three points which are sufficient to prove the corollary:

• t1,2 acts non-trivially only on generators x1 and x2,
• t2,3 and d1,2,3 act non-trivially only on elements x2 and x3,
• t1,3 acts non-trivially only on x1 and x3.
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Recall we have ti,i+1 = λ2
i,i+1 = (ρiσi)

2 by Formula (26). Therefore, t1,2 and t2,3 satisfy
property above.

Let us check that t1,3 = (ρ2ρ1σ1ρ2)
2 leaves x2, y1, y2 and y3 in place. The element t1,3

acts trivially on the generators yi for 1 ≤ i ≤ 3, because using Formulas (18) and (19) we
obtain t1,3 · yi = (ρ2ρ1ρ2)

2 · yi = 1 · yi = yi. The trivial action on x2 follows from the fact
that ρ2ρ1σ1ρ2 leaves this element in place. Indeed, according to (18) and (19), we obtain

x2
ρ27−→ x3ym2

3
ρ17−→ x3ym2

3
σ17−→ x3ym2

3
ρ27−→ x2y−m2

2 ym2
2 = x2.

Similarly, we check the action for

x1
σ2ρ27−→ x1

σ17−→ x2w(y1, y2)
ρ17−→ x1y−m1

1 w(y2, y1)
ρ27−→ x1y−m1

1 w(y3, y1)
σ27−→

σ27−→ x1y−m1
1 w(y3, y1)

ρ27−→ x1y−m1
1 w(y2, y1)

ρ17−→
ρ17−→ x2ym1

2 y−m1
2 w(y1, y2)

σ17−→ x1w−1(y1, y2)w(y1, y2)
ρ27−→ x1,

d1,2,3 · yi = ρ1ρ2ρ1ρ1ρ2ρ1 · yi = yi, 1 ≤ i ≤ 3.

This completes the proof.

5. Examples of Non-Homogeneous Representations

Following [12,13] we recall the concept of a local representation of the braid group by
automorphisms of the free group. Let Fn be the free group of rank n generated by x1, . . . , xn.
For i = 1, . . . , n − 1, an automorphism Ti : Fn → Fn is said to be i-local if Ti(xj) = xj
for j 6= i, i + 1 and Ti(〈xi, xi+1〉) = 〈xi, xi+1〉, where 〈xi, xi+1〉 denotes the subgroup of Fn
generated by xi and xi+1. In other words, an automorphism Ti ∈ Aut(Fn) is i-local if and
only if there exists an automorphism ti ∈ Aut(F2) of the free group F2 = 〈A, B〉 of rank 2
such that

Ti = idFi−1 ∗ti ∗ idFn−i−1 : Fn = Fi−1 ∗ F2 ∗ Fn−i−1 → Fi−1 ∗ F2 ∗ Fn−i−1 = Fn.

In this case we say that ti is the core of Ti.
A representation Θ : Bn → Aut(Fn) is said to be local if the automorphism Θ(σi) is

i-local for all i = 1, . . . , n− 1. If a local representation Θ is such that t1 = . . . = tn−1, then it
is said to be a homogeneous representation or Wada representation.

We introduce the concept of a local representation of the group of flat virtual braids by
automorphisms of the free group as follows. Let F2n be the free group of rank 2n generated
by x1, . . . , xn, y1, . . . , yn. For i = 1, . . . , n− 1, an automorphism Ti : F2n → F2n is said to be
i-local if:

• Ti(xj) = xj and Ti(yj) = yj for j 6= i, i + 1;
• Ti(〈yi, yi+1〉) = 〈yi, yi+1〉;
• Ti(xi) ∈ 〈xi+1, yi, yi+1〉 and Ti(xi+1) ∈ 〈xi, yi, yi+1〉.

A representation Θ : FVBn → Aut(F2n) is said to be local if the automorphisms Θ(σi)
and Θ(ρi) are i-local for all i = 1, . . . , n− 1. In this case, each automorphism Θ(σi) and
Θ(ρi) of F2n corresponds to automorphism ti and τi of F4 = 〈A, B, C, D〉. In this case we
say that ti and τi are i-cores of Θ. A local representation Θ : FVBn → Aut(F2n) is said to
be homogeneous if t1 = . . . = tn−1 and τ1 = . . . = τn−1.

Below we will focus on the non-homogeneous representations of the group FVB3
by automorphisms of the free group F6 = 〈x1, x2, x3, y1, y2, y3〉 of rank 6. Recall that
in this case, a representation Θ : FVB3 → Aut(F6) is locally non-homogeneous if the
automorphisms corresponding to the generators σ1, σ2, and ρ1, ρ2 are induced by distinct
automorphisms of the free group F4.

Above, we considered representations of the group of flat virtual braids FVBn in
which the image of the generator σi acted trivially on y, and yi+1 for all 1 ≤ i ≤ n− 1, see
formulae (18) and (19). Now we relax this condition. Taking into account Ito’s classification
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result in [13] and the involutiveness of generators of FVBn, we obtain two possible scenarios
for the action of the image of the generators σi or ρi on yi and yi+1:{

yi 7→ yi+1,
yi+1 7→ yi,

or

{
yi 7→ y−1

i+1,
yi+1 7→ y−1

i .

The following result can be considered as an analog of Theorem 1 in the case of local
non-homogeneous representations of the group FVB3.

Theorem 5. Let ei, εi, αi, ai ∈ {±1} for 1 ≤ i ≤ 2 and coefficients βi,j, γi,j, bi,j, gi,j ∈ Z for
1 ≤ i, j ≤ 2. Consider the map Φ3 : FVB3 → Aut(F6), defined on the generators as follows:

Φ3(σ1) :


x1 7→ yβ11

2 xα1
2 yβ12

2 ,

x2 7→ yβ21
1 xα1

1 yβ22
1 ,

y1 7→ yε1
2 ,

y2 7→ yε1
1 ,

Φ3(ρ1) :


x1 7→ yγ11

2 xα2
2 yγ12

2 ,
x2 7→ yγ21

1 xα2
1 yγ22

1 ,
y1 7→ yε2

2 ,
y2 7→ yε2

1 ,

Φ3(σ2) :


x2 7→ yb11

3 xa1
3 yb12

3 ,
x3 7→ yb21

2 xa1
2 yb22

2 ,
y2 7→ ye1

3 ,
y3 7→ ye1

2 ,

Φ3(ρ2) :


x2 7→ yg11

3 xa2
3 yg12

3 ,
x3 7→ yg21

2 xa2
2 yg22

2 ,
y2 7→ ye2

3 ,
y3 7→ ye2

2 ,

Then Φ3 is a representation if and only if e1e2 = ε1ε2 and one of the following conditions is satisfied:

(1) α1 = α2 = a1 = a2 = 1 or α1 = α2 = −a1 = −a2 = 1, where

b11 − g11 = e2β11 − e1γ11,

b12 − g12 = e2β12 − e1γ12,

(2) α1 = −α2 = a1 = −a2 = 1 or α1 = −α2 = −a1 = a2 = 1, where

b11 + g12 = −e2β12 + e1γ12,

b12 + g11 = −e2β11 + e1γ11,

(3) −α1 = α2 = a1 = −a2 = 1 or −α1 = α2 = −a1 = a2 = 1, where

b11 + g12 = e2β11 − e1γ11,

b12 + g11 = e2β12 − e1γ12,

(4) −α1 = −α2 = a1 = a2 = 1 or −α1 = −α2 = −a1 = −a2 = 1, where

b11 − g11 = −e2β12 + e1γ12,

b12 − g12 = −e2β12 + e1γ11.

In all cases, the condition of involutiveness uniquely determines the coefficients

β21, β22, γ21, γ22

in terms of the remaining coefficients.

Proof. The condition ε1ε2 = e1e2 follows directly from relation ρ1ρ2σ1 = σ2ρ1ρ2.
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The homomorphism Φ3 induces an action Φ̃3 on the quotient group of F2n by relations
y1 = y2 = y3 = 1:

Φ̃3(σ1) :

{
x1 7→ xα1

2 ,
x2 7→ xα1

1 ,
Φ̃3(ρ1) :

{
x1 7→ xα2

2 ,
x2 7→ xα2

1 ,

Φ̃3(σ2) :

{
x2 7→ xa1

3 ,
x3 7→ xa1

2 ,
Φ̃3(ρ2) :

{
x2 7→ xa2

3 ,
x3 7→ xa2

2 .

Then, the condition α1a2 = a1α2 follows similarly from relation ρ1ρ2σ1 = σ2ρ1ρ2.
Further, we consider a case e1 = e2 = ε1 = ε2 = 1 and a1 = a2 = α1 = α2 = 1. In this

case, we have the following formulae for Φ3:

Φ3(σ1) :


x1 7→ yβ11

2 x2yβ12
2 ,

x2 7→ y−β11
1 x1y−β12

1 ,
y1 7→ y2,
y2 7→ y1,

Φ3(ρ1) :


x1 7→ yγ11

2 x2yγ12
2 ,

x2 7→ y−γ11
1 x1y−γ12

1 ,
y1 7→ y2,
y2 7→ y1,

Φ3(σ2) :


x2 7→ yb11

3 x3yb12
3 ,

x3 7→ y−b11
2 x2y−b12

2 ,
y2 7→ y3,
y3 7→ y2,

Φ3(ρ2) :


x2 7→ yg11

3 x3yg12
3 ,

x3 7→ y−g11
2 x2y−g12

2 ,
y2 7→ y3,
y3 7→ y2,

here we use involutiveness of generators of FVB3.
Finally, we can write conditions for relation ρ1ρ2σ1 = σ2ρ1ρ2:

Φ3(ρ1ρ2σ1) :



x1 7→ yγ11+g11
3 x3yγ12+g12

3 ,

x2 7→ y−γ11+β11
2 x2y−γ12+β12

2 ,

x3 7→ y−g11−β11
1 x1y−g12−β12

1 ,
y1 7→ y3,
y2 7→ y2,
y3 7→ y1,

Φ3(σ2ρ1ρ2) :



x1 7→ yγ11+g11
3 x3yγ12+g12

3 ,

x2 7→ yb11−g11
2 x2yb12−g12

2 ,
x3 7→ y−b11−γ11

1 x1y−b12−γ12
1 ,

y1 7→ y3,
y2 7→ y2,
y3 7→ y1,

therefore, we obtain

b11 − g11 = β11 − γ11,

b12 − g12 = β12 − γ12.

Other cases hold by analogous considerations.
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