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Abstract: The purpose of this paper is to find a common element of the fixed point set of a non-
expansive mapping and the set of solutions of the general split variational inclusion problem in
symmetric Hilbert spaces by using the inertial viscosity iterative method. Some strong convergence
theorems of the proposed algorithm are demonstrated. As applications, we use our results to study
the split feasibility problem and the split minimization problem. Finally, the numerical experiments
are presented to illustrate the feasibility and effectiveness of our theoretical findings, and our results
extend and improve many recent ones.
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1. Introduction

The Hilbert space theory and the nonlinear fixed point problem are an important field
in mathematics and optimization. Symmetry is closely related to the fixed point problem.
And Hilbert space is one kind of reflexive space, and a reflexive Hilbert space is called a
symmetric space. Let ¢ be a real symmetric Hilbert space and S : 5 — ¢ be a mapping.
The set of fixed points of S is denoted by Fix(S). It is known that S is a contraction if there
exists a constant p € (0,1) such that ||Sx — Sy|| < p||x —y||,Vx,y € .

Let T : # — 277 be a set valued mapping. Then, T is said to be monotone if
(x —y,u—v) >0forall x,y € # withu € Tx and v € Ty. A monotone mapping T is
maximal monotone if its graph G(T) = {(x,y),y € Tx} is not properly contained in the
graph of any other monotone mapping. The resolvent operator Ig of mapping T defined
by J§ = (I+ pT)~" for each p > 0.

It is worth noting that the split variational inclusion problem serves as a model in image
reconstruction, radiation therapy and sensor networks [1-3]. There are many other special
cases of split variational inclusion problem, such as split feasibility problem, variational
inclusion problem, fixed point problem, split equilibrium problem and split minimization
problem; see [4-10] and the references therein. Let .74 and .7% be two real Hilbert spaces,
and let B : s — 271 and B, : % — 27% be maximal monotone mappings. In fact,
the following is a split variational inclusion problem: to find a point x € J# such that

0 € Byx, and 0 € B, Ax,
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where A : /A4 — % is abounded linear operator. Several iterative algorithms for finding
the set of solutions of the split variational inclusion problem have been studied by many
authors [11-13]. Particularly, in 2012, Byrne et al. [14] introduced the following iteration
process for given xog € J4,A > O:

Xps1 = I3 [on + €A*(J32 — 1) Axy),

where € € (0, m)
to solve the split variational inclusion problem. In 2014, Kazmi and Rivi [13] proved a strong
convergence result of the following algorithm to a solution of the split variational inclusion
problem and the fixed point problem of a nonexpansive mapping in Hilbert space:

. They established the weak and strong convergence of the algorithm

Uy = ]fl [xn + (—:A*(])l;32 —1)Ax,],
Xp+1 = @nf(xXn) + (1 — ay)Suy.

On the other hand, many authors are increasingly interested in using inertial tech-
niques to build efficient iterative algorithms due to the effect that inertial techniques have
to speed up convergence, see [15-21] and references therein. In 2001, Alvarez and At-
touch [22] introduced the following inertial proximal point method to solve the variational
inclusion problem:

B
Xp+1 = ],\i [xn + On (xn — xnfl)]/

where {6,} € [0,1), {A,} > 0. They proved that the sequence converges weakly to a zero
of the maximal monotone operator B. Thenceforward, in 2017, Chuang et al. [23] extended
this method to the hybrid inertial proximal algorithm in Hilbert spaces. They proved that
their iterative sequence converges weakly to the solution of the split variational inclusion
problem. In 2018, Cholamjiak et al. [20] obtained strong convergence results by combining
the inertial technique of the Halpern iteration method. Moreover, in 2020, Pham et al. [24]
proposed an algorithm which is a combination of Mann method and inertial method for
solving the split variational inclusion problem in real Hilbert spaces:

Xo, X1 € H,

Wy = Xp + D‘n(xn - xn—l)/

Yn = Jg (1= AgA* (I = ]2 A) ywy,
Xn+1 = (1 — 6, — ,Bn)xn + Gn]/n-

They proved that the sequence {x,} converges strongly to a solution of the split
variational inclusion problem with two set-valued maximal monotone mappings.

Motivated and inspired by the above work, we consider the following general split
variational inclusion problem of finding a point x € J# such that

N N
x € () B;1(0), and Ax € () K; 1(0),
i=1 i=1
where B; : 74 — J4,K; : 76 — 56,i =1,2,...,N are two families of maximal monotone
mappings. The solution set of the general split variational inclusion problem is denoted

by I'. We present an inertial viscosity iterative algorithm for the general split variational
inclusion problem and the fixed point problem of a nonexpansive mapping;:

Zy = Xp + Oy (xn - xn—l)/
wn = EN vl (20— Ain AN (1= g ) Aza), (1)
Xpt1 = @nf(xXn) + (1 — an)[dnwn + (1 — 8y) Swy].
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Then, the strong convergence theorem of this algorithm is proved. We apply this itera-
tive scheme to studying the split feasibility problem and the split minimization problem.
Finally, we give the numerical experiments to illustrate the feasibility and effectiveness of
our main theorem. Our results extend and improve many recent ones [12-14,20,23,24].

2. Preliminaries

Let ¢ be a nonempty closed convex subset of a real symmetric Hilbert space .7# with in-
ner product (-, -) of regularity and symmetry and norm || - ||. x, — x and x,, — x denote the
weak convergence and strong convergence of the sequence {x, } to a point x, respectively.
A mapping Py : J — € is called the metric projection if || x — Pyx|| < ||[x —y||,Vy € €. It
is known that Py is nonexpansive and

(x — Pgx,y — Pgx) <0,Yy € %.
The following lemmas and concepts will be needed to prove our main results.

Definition 1. Suppose S : A — € is a mapping. Then, S is called nonexpansive if
[Sx =Syl < [lx —yll, Vx,y € 72,
S is said to be firmly nonexpansive if
ISx — Sy||> < (Sx — Sy, x —y),Vx,y € .

Lemma 1 ([11]). Suppose F is a real Hilbert space. Then, for all x,y € J,x € R, the following
statements are hold :

@) lx+yll < x?+2(x+v,y);
(i) frx + (1= x)yl|* = «l|x[|* = (1 — ) lx — y||> + (1 — x)|ly[|*

Lemma 2 ([17]). Assume {ay} is a sequence of nonnegative real numbers satisfying:
a1 < (1 - “n)ﬂn + apby, n >0,

where {a,} C (0,1) and {b,} C R such that:

(i) limyeoay =0and Y, | ay = oo;
(i) either limsup, , by < 0o0r Y77 |anby| < 0.

Then limy, _ye0 a;;, = 0.

Lemma 3 ([25]). Suppose S : € — S is a nonexpansive mapping, and {x, } is a sequence in €.
If xp, = wand limy, e ||Xn — Sxp|| = 0, then Su = u.

Lemma 4 ([26]). Suppose that {a, } is a sequence of nonnegative real numbers satisfying a,, < a 41
forall i € N, where {n;} is a subsequence of {n}. Then, there exists a nondecreasing sequence
{l;} C Nsuch that l; — coand j € N, we have

aj, < aj4 and a; < aj41-
In fact, I; = max{k < j:ap < ap1}.

Lemma 5 ([27]). Let B : s — 27 be a set-valued maximal monotone mapping and p > 0,
the following relations hold:

(i)  For each B > 0, the resolvent mapping ]g is is a single-valued and firmly nonexpansive

mapping;
(i) D(J§) =, F(Jg) =B'(0) = {x € D(B),0 € Bx};
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(i) (I—7] g) is a firmly nonexpansive mapping;

(iv) Suppose that B=1(0) # @, then for all x € ¢,z € B=1(0) and ||]gx —z|]2 < ||lx —z||®> -
178 — x|

(v)  Suppose that B=1(0) # @, then forall x € 7, p € B=1(0) and (x — ]gx, ]gx —p)>0.

Lemma 6. Assume that 74 and % are two real Hilbert spaces. Let A : 54 — 56 be a linear
and bounded operator with its adjoint A*. Let B; : 74 — J4,K; : 566 — 5t5,i =1,2,...,N are
two families of maximal monotone mappings. Let ]g" and ]/I;i be the resolvent mapping of B; and K;,

respectively. Suppose that the solution set of the the solution set I is nonempty and p; > 0,A; > 0.
Then, for any z € Hy, z is a solution of general split variational inclusion problem if and only if

Jg;‘ [z — A AR (I — ]gi)Az} =z,

Proof. = Letz € I, thenz € NY, B;'(0) and Az € NY, K;1(0). From Lemma 5(ii), we
have that

A0 < A

< Let ]g; [z —ANA*(I— ]gf)Az] =zand p € I'. From Lemma 5(v), for any p € Blfl(O),
we get
((z— MA (I — ],I;f)Az) —z,2—p) >0,
which implies that (A*(I — ]g")Az,z —p) <0, then (Az — ]/I;"Az, Az — Ap) < 0. For any

w e K- 1(0), we also use Lemma 5(v) to obtain
(Az — ]lI;iAZ,ZU — ];;:Az> <0,
Thus, we observe that
K; K;
(Az — ]ﬁ- Az, w — ]ﬁ_’Az + Az — Ap) <0,
which means for any p € Bi—1 (0)and w € Ki_1 (0), we have
| Az — ]giiAsz < (Az— ]f,;iiAz,Ap —w).

Since p € T, then p € NN, B; 1(0) and Ap € NN, K, 1(0), we get Az = III;"AZ, then
Az € F(]/I;;) = K;l(O), so Az € NN, K;l(O). It follows that

2= gz - MNAT(I = Jg)Az] = Jyiz,

which implies z € F(]g;) = B;l(O), soze NN, K;l(O). Thereforez € T. [

3. Main Results

Theorem 1. Let 54 and .7 be two real Hilbert spaces. Let A : 74 — 5 be a bounded linear oper-
ator and A* be the adjoint operator of A.  Suppose that B; : 4 — 6 and
Ki: ot — 75,i=1,2,..., N are two families of maximal monotone mappings. Let f : 74 — JH
be a contraction with coefficient p € (0,1) and S : 4 — 4 be a nonexpansive mapping such
that Fix(S) T # @. Suppose {an},{0n},{vin} C (0,1). Assume that {B;,},{Ai,} are se-
quences of positive real numbers and xo, x1 € 6. If the sequence {x, } defined by (1) satisfies the
following conditions:

(i)  Let the parameter 0,, chosen as
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{ min{6, HX H} if Xp # Xp—1,
en = -1

0 otherwise,

where 0 > 0, €y, is a positive real sequence such that €, = o(ay);
(i) limy ey =0, Y0 gty = 00,6, C [a,b] C (0,1);
(lll) Zzlil Yin = 1/ Yin C [C, d] C (0/1>/ /\i,n € (0/ W)/

then {x,} converges strongly to an element w' € Fix(S) T, where w' = Ppiy(s)rf(w?).

Proof. Let w' € Fix(S)NT, then we have w' = ]g;anr,Aw‘L = ]gi"nAw‘L and Sw' = wt.
By the convexity of | - [|?, we obtain
K;
[wn — +”2 = HZ 171n]5 [zn — A A" (I — ]ﬁm)Azn] - w+||2

* K; 112 (2)
<IN il I [z = A A (1= I ) A2] = 2

It follows from Lemma 5 that ]gi"n = A A*(I — ]II;"H)A} are nonexpansive. Then,
we get ' '

15! [0 = AinA"(I = Jy! ) Azu] — "7

< llzw = AinA™(I = Jg! ) Azu — |7

= llzu — @' I? + AL N A = T ) Azul > + 240 (20 — ', A" (Jy! | — 1) Aza)

= llzn — @' IP + A2 (Ul — DAzu, AA*(Jg! = D) Aza) + 241, (A(zn — @), (Jg = D) Azy)
< llzn = @' |2 + AL I AP U5, — 1) Azal?
+ 240 (Alzn — ") + (g = DAz — (5 — DAz, (5 —1)Azn)
= llzu = @ 2 + AZNAIPN U, = DAzall? = 240,157, = D) Aza?
+ 24 (g Aza — Awt, (J5i —T)Azy)

< llzn = @'I? = @Aiw = AL AIPDI U, — 1) Aza?

= llzn = @' P+ Aiu (il Al = 2) I (J!, = 1) Aza>

which means

leon — | < = o [zn = AinAT(1= T ) Azy] — |

K:
< llzn _w+||2+ZN1'71n in(Aial AN =2)1UJg! —T)Azal|.

®)

From condition (i) , we have
120 = @™ | = [l + 6 (0 — x4 -1) — |
< Hxn — a)+|| +9n||xn - xn—l”

0
= ||lxn — @' || + an | xn — xp—1]|
Xy

< ||xn — Wt + an My,
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M; > 0is a constant. Define v, = d,w;, + (1 — 6,)Swy,, then we have

Iyn — @' < Sullwn — || + (1= 8,)||Swy — |
< Sullwn — || + (1= 6u) |lwn — | 4

= [[wn — w'.
We compute that:

%041 — @'
= [lanf(xn) + (1 — an)yn — ||
<l f(xn) — @'+ (1= an) lyn — |
< anpl|xn — @' 4 (1= ) ([|xn — '] + @ My)
< [1—an(1—p)]llxn — @' + anMy
Ml M] }
1-p 1—p""
which implies that x, is bounded; hence, z,;, wy,, ¥, and Swy, is also bounded.

Since {x,} is bounded and ||z, — w'| < ||xy — w'|| + &, My, there exists a constant
M, > 0, we have

< max{|x, — @', } <o < max{flxo - @',

120 = @™|* < [lxn = w'|* + an M. ®)
Therefore, using (3), we observe that

Hwn - w+’|2 < ||Zn - W+‘|2 + Zi:l')’i,n)\i,n()\i,n

AP =2)[(J5 = D) Az
' ©)
< Pon = @'+ 2Ny din Ain AP = 2) 1 U, = 1) Aza” + Mo
It follows from (2) that
g lzn = AinA™(1 = J! ) Aza] = 0'[]?
< llzn = A A" (I~ Jg! ) Azy — "
< (wy — w2z + A g A ( Jf;_{n — 1) Az, — w')
= %||zn + Ai,nA*(],’;{n — Az, — @' |> + %llwn — w'|?
- %IIwn —w' =2y = A A (Jg! — DAz + @
= llen — !+ 2 AU~ DAz + w0 — P
— Slwn =20 = Aip A (J — 1) Aza?
= 2llwn — '+ Sllzn — |24+ 202,
— w2l SAZ AR — D) Azl + (wn — 2, Ay A° R — ) Az

A*(Jgt = DAzal® + (2 — 0" Ay A (] — ) Aza)

1 1 1 .
= Sllwon = @2+ 21z — &I = Slln — 2l + {0 — 0, A A" (IR — 1) Az,)

1 1 K;
10 = 2 4 5 20 = w12 = 5 lwn = 20+ Agallon = o IIA* I, = DAzl

which implies that
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[|wn — w'|)? < 2l Yin

B: K
]/5;’” [zn — Aj A (I — ]/3;,n)Azn] —w' ”2
1 1 1 K
< Sllwn = @I+ llzn = &2 = 3 Jon = 20l + ZXaviahiullion — w147~ 1Az
hence, by (5),

leon = @wlI? < llzn = @2 = flwn = za? + 251 YinAi

wy — ' ||A*(]l{5<lln — 1) Az, || )

< ”xn - w+H2 - ”wn - Zn||2 +22i:17i,n)‘i,n

wn — @ A (T — D Azal| + aaMo.
Furthermore,

lyn — CU+||2 = [[6nwn + (1 — 6n)Swy — ‘UJFHZ
= (yn — @', 6wy + (1 = 8,)Swy — w')

1 1 1
= EH‘Snwn + (1= 6n)Swn — ' |* + EHyn —w'|? - EHyn — " = Sywy + (1= 6n)Swy + w'||?
1 1 1
= EH‘Sn(wn - WJr) + (1 — 0u) (Swy — w*)HZ + EHyn - WJFHZ - E”‘Sn(yn —wWn) + (1= 6n) (Yn — Swn>H2

1 1
= E(S%Hwn — w’LH2 +-(1- 5n)2||5wn - qurH2 + 6, (1 —8,)(wy — w', Sw, — w+>

2
1 1 1
+ EHJ/n - “’+||2 - 5&”]/71 - wnHz - 5(1 - 5n)2||]/n - Swn||2 = On(1 = 0u)(Yn — Wn, Yn — Swy)
1 1
< 28l — @I 4 5 (1~ b2l — | 450 (1~ ) o — " P
1 1 1
+ EH?/H - Cl)+||2 - 55%”3/11 - wn||2 - 5(1 - 5n)2||?/n - Swn||2

1 1 1 1
= EHyn - W+||2 + §||wn - W+||2 - 5‘2%”]/11 - wnHz - E(l - 511)2”]/11 - Swn||2,

which indicates that
lyn — WJFHZ < ||wn — ‘U+||2 - ‘S%”]/n - wnH2 -(1- 571)2”%1 - Swn||2, ®)
Moreover, for some M3 > 0,

120 = @' 1? = (120 + 0 (0 — x5 1) — @' ||?
= [lxn — @" + 6 (%0 — xp—1) |17

= [Jxn — w+||2 + Q%Hxn - xnfluz + 20 (xn — W', x, — Xn-1) )

< loew = @1 + 63100 = xn1 1> + 20u|x0 — @ [[]]20 — 21|

= [lxn — @™ [* + 6w — xp 1| (Bl xn — x| + 2[| 0 — "))

< |lxn — (UJFHZ + 0|0 — x4-1]|Ms.
Observe that

i1 = @12 = anf (en) + (1= an)yn — w2
< (anf (xn) + (1= an)yn — ' x0 1 — ")
= (1= an)(yn — @, X1 — @)+ an(f(xn) = fF(@0"), 2011 — @0") + @ (f(0") = @', 2041 — @)
< 1—ay
- 2
+an(f(wh) = @' xpp1 - @)

o
[lyn = @12 + [xn1 = @12 + S [0? 1 — "1 + a1 — @)

1 1—a ®
< Slnen = WP+ =5y — @2+ Pl — w2 4 e (f(wh) = @0 xaa = ),
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then from (3), (4) and (9) and conditions (ii), we get

1 = @' < (1= an) lyn — "1 + np? [0 — 0" + 20 (f (@0") = @', 211 — @)
< (1= an) ([ = "2 + Ol tn = 201 M3) + |2 — |2 + 20 (f (") = @', xup1 — ") (4
0
= 1= an(1 = ][0 — "7 + 200 (f(@") = ", 2n 1 — ") + (1 — ) 2 2w = 21| M.
n
It follows from (4) and (6) that
[xn 1 = w'l? < (1= an) lyn — "2 + anp?l 20 — ' [|? 4+ 2000 (f (") = 0", 2011 — ")
K.
< (1= an)(on = @'+ Zy i Ain Ain|AIZ = 2 Ug! = D Azal|? + anMa)
+ 0?20 — @' 4 200 (f (0F) = ", 201 — 0T (11)
= [1—an(1 = p*)]||xn — w|? + 2a, (f(wh) — wF, 241 — @b + (1 — ) an My
K
(1 ) Z i A M| AIP 2 UK — 1) Az,
and by (4) and (7), we have that
%1 = @[> < (1= an) lyn — @' [* + anp® [0 — 0" + 20 (f (@0") = @', 21 — )

< (1= an)(on = @2 = foon = za* + 251 7,

n— @A (Jg = DAzl + anMy)

+ anp?|| 2 — @' 4 20 (f (") — @', 211 — @) (12)
= [1 = an(1 = p2)][lxn = "> + 20 (f(@0") = @' xpi1 = ") + (1 = wu)n My

— (1= an)|wn = zall> +2(1 = @) EX viuAillon — 0T [[|A*(Jg7 = 1) Aza]|.

It follows from (3) and (8) and conditions (ii), we deduce

s — 12 < (1= an)llyn — 12+ Pl — 0¥ 2 + 2 F ) — 0, a1 — )
< (1= a) (g — @ = Gillyn — wall?) + anp® |20 — @' + 200 (f(@0") = 0", 3011 — ")
< (1= an)(lxn — @1* + auMa = 83 [lyn — wa|*) + anp® |20 — @' 1> + 200 (f(0") — @', 211 — 0") (13)
=1 —an(1—p*)]|lxn — wt|]? 4 2ay, <f(a)+) —wh 1 — 0"+ (1 —an)an M,
—(1—an)d ||3/n wnHZ’
and
xp41 — w'])* <

1= an) lyn — @' + anp® |20 — @' + 200 (f (0") — @', 241 — @)
)

W? = (1= 62)lyn — Swa®) + @n0?||xn — @' [* + 200 (f (@) = 0", 2041 — @)
'I'HZ

1—ay,

(

( (llwn —

(1= an)(|lxn = @' ||? + @My — (1= 62)2|lyn — Swal|*) + anp?||xn — w
2

=

<
<

() — o, gt — ) .
1—ay(1—p?)]|Jxn — w]? 4 20, (f (') — 0T, 2001 — w0 + (1 — w)an My

—(1—an)(1- 511)2”]/11 - Swn||2~

+

Next, we consider the convergence of the sequence {||x, — w'||} in two cases.
Case 1: There exists a 1o such that ||x, 1 — w'| < ||x, — w|| for each n > ny. This
indicates that {|x, — w'||} is convergent. Thus, from (11), (13) and (14), we have

(1= ) EN 1 YinAin (2= Aia| AP ! = D Aza)?
< [ = a1 = ") = @' IP = 1 — @7 + 200 (f (") = 0¥, 311 = @) + (1= @a)ouMz — 0,

(1—- "‘n)‘S%Hyn - wn||2
= [1—an(1 = p)]llxn — "> = [[xn1 — @[> + 200 (f (@0") — ", 211 — ") + (1 — )My — 0,
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(1= an) (1 = 8n)?{lyn — Swn®
= [1—an(1 = p)]llxn = @"? = [xns1 = 0" + 20 (f(0") = 0", 2011 = @0") + (1 = an)auMz — 0.

Then, by the restriction conditions, we can get

1UJg: = D) Azy| = 0;|[yn — wn]l — 0;|[yn — Swnl| — 0. (15)

From (12), we have

(1 —an)[|wn — Zn”z
< 1= an(1 = )]l — 2 = i1 — " [P + 200 {f (@) = w0, 2011 — ") + (1= )M

x ¢ 1K
+2(1 = ) Zi2 g YipAipllwn — WJFH | A Uﬁz‘,n —1)Azy|| =0,

Then, we obtain

llwy — zu]| — 0. (16)
From the definition of z,, we obtain
X0 = znll = Onllxn — 241 < @My — 0. (17)
From (15) and (16), we get

|xn — wull < |lxn = zull + |20 — wal| = O,
20—yl < |lxn — wnl| + [[wn — yull — 0, (18)
|Swn — wn|| < [[Swn — yull + [lyn — wall — 0.

From (ii) and (18), we have

[%n+1 — xull < lxn1 = Yall + lyn — xa]|
= |lanf (xn) + (1 = an)yn — yull + lyn — xull (19)
= anl|f(xn) = ynll + [lyn — xul| — 0.

Suppose that {x,} is a subsequence of {x,} such that x,, — w"

From (17) and (18), there exist subsequences of {z,} and {w,} satisfying z,, — w" and

wy; — w”, respectively. Since A is a bounded linear operator, then Az, — Aw". Moreover,
we know that || (]/I;I’n — I)Az,|| — 0, which implies that Aw* = ];;:n Aw*, by Lemma 6,

we get w* € T. From ||Sw, — wy| — 0 and Lemma 3, we deduce w* € Fix(S). Hence
w* € Fix(S) NT. Then, it follows that

limsu wh —wt,x —w') =limsu wH —wt x, 0 —wf
n_mp<f( ) 01 ) HooP(f( ) ni+1 )

= (f(w") — 0!, w* —wh) < 0.

Apply Lemma 2 to (10), we have x, — w' = Prix(s) Arf(w®).
Case 2: Suppose that the sequence {||x,;1 — w'||} is not monotonically decreasing.
Then, there exists a subsequence 7; such that

i, — @t < [[xn01 — 2% € N.
By Lemma 4, there exists a nondecreasing sequence {m;} C N such that m; — oco:

i, — w1 < g — @I, 2 = @I < a1 — w2 (20)
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Similar to the proof in Case 1, we have
1 = @2 < [1 =ty (1= p2)] 0, — 0 |2+ 2000, (f(@0F) = @0, 211 — )

0.
+ Uémi(l - "‘mi)aimlnxmi = Xm;—1 M3,

mj

and

limsup(f(w’) — w', X1 — wh) <o,
n—o0

which implies
2 2
0 < [ 41 = @™ [7 = [|2m; — ]

= [1 — (1 — 02)] |, — @2 + 28, (f (") — 0T, x40 — ™)

O,
+D‘mz‘(1 - ‘xmi)“ﬂ”xmi - xmi71||M3 - foﬂi - w+||2/
m;
then using lim;, 0 %Hxn —Xy—1]] = 0, we get
2 1— oy O,
it — @I < 2y (Flt) = @ — ')+ D My s 0.
1-p 1—p% ap,

By (20), we obtain [|x,,, 1 — w'|| — 0. It follows from ||x; — w™||? < [|xp, 41 — w!||?
foralli € N that ||x; — w'||> — 0, by using Lemma 4, we deduce x; — w'. Therefore,
the sequence x, — w’,n — co. This completes the proof. [

In Theorem 1, we put f(x) = u; then, we have the following result.

Corollary 1. Let 4 and % be two real Hilbert spaces. Let A : 564 — % be a bounded linear
operator and A* be the adjoint operator of A. Suppose that B; : 74 — J4,K; : 566 — 56,
i = 1,2,...,N are two families of maximal monotone mappings. Let u € I be fixed and
S : 4 — JA be a nonexpansive mapping such that Fix(S)N\T # @. For xo,x1 € J4,
the sequence {xy, } defined by:

Zy = Xp + Oy (xn - xnfl)/
Wy = 252171‘,;1]‘1?;" [Zn - )\i,nA*(I - ]/Igil;n)Aan
Xn+1 = KuU + (1 - an)[én’(/Un ‘I’ (1 - §n)swn].

where{ay }, {00}, {vin} C (0,1), {Bin} {Ain} are sequences of positive real numbers satisfying
the following conditions:

(i) Let the parameter 0, chosen as

0, — { mln{e,m} l:fxn 7é Xn—1,

n = )
0 otherwise,

where 0 > 0, €, is a positive real sequence such that €, = o(ay);
(i1) limp ety =0, Y otn = 00,0, C [a,b] C (0,1);
(lll) Zf\il ’)/i,n = 1/ ’)/i,n C [C/ d] C (0,1), /\i,n € (0/ W)

Then {xy } converges strongly to an element w® € Fix(S) NT, where w® = Pr;y(s) 1t

In Theorem 1, weset B= By = B, = --- = By, K= K; = K; = --- = Ky. Then, we
obtain the following result.

Corollary 2. Let J74 and 5% be two real Hilbert spaces. Let A : 564 — %5 be a bounded linear
operator and A* be the adjoint operator of A. Suppose that B : 54 — JG,K : 5t — 5% are
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two maximal monotone mappings. Let f : 7, — 4 be a contraction with coefficient p € (0,1)
and S : 4 — A be a nonexpansive mapping such that Fix(S) T # @. For xo,x1 € 74,
the sequence {xy, } defined by:

zZn = Xn + On (X0 — Xn-1),

0 = I8 [0 — AuA*(I = JK ) Azi),

Xpg1 = anf (Xn) + (1 — ap)[0nwy + (1 = y) Swy].
where{a,}, {0} C (0,1), {Bu}, {An} are sequences of positive real numbers satisfying the
following conditions:

(i)  Let the parameter 0, chosen as

Gn _ mln{e, m} ifxn # xn_l,
0 otherwise,
where 0 > 0, €, is a positive real sequence such that €, = o(ay);
(i) limy ey =0, Y0 gty = 00,6, C [a,b] C (0,1);
(iii) Ay € (0, W).

Then, {xy } converges strongly to an element w* € Fix(S) N T, where vt = Prix(s)n rf(wh).

Let ¢ € A4 and 2 € 4 be two nonempty closed convex subsets. Now, we recall that
the following split feasibility problem is to find

x € ¥,such thatAx € 2.

The solution set of the split feasibility problem is denoted by QF. In Corollary 2,
if | gﬂ =Pyand ]| l13<n = Pg, we obtain the following result.

Corollary 3. Let € and 2 be nonempty closed convex subsets of Hilbert spaces 74 and 6,
respectively. Let A : 74 — 5 be a bounded linear operator and A* be the adjoint operator of A.
Let f : 54 — A be a contraction with coefficient p € (0,1) and S : 74 — 4 be a nonexpansive
mapping such that Fix(S) N Q # @. For x,x1 € 4, the sequence {x, } defined by:

Zy = X+ On(xy — x,_1),
wy = P%[Zn - )\nA*(I - PQ)AZ;/,],
X1 = Cnf(xn) + (1 — an) [0pwy + (1 — 6n)Swy).

where{a,}, {0,} C (0,1), {An} are sequences of positive real numbers satisfying the following
conditions:

(i) Let the parameter 0, chosen as
. en .
6, = 4 O ) e £ X,
0 otherwise,

where 0 > 0, €y, is a positive real sequence such that €, = o(ay);
(i) limy ey =0, Y gty = 00,6, C [a,b] C (0,1);
(iii) Ay € (0, W).

Then, {x, } converges strongly to an element w® € Fix(S) N QF, where wt = Prixs)n ot f(wh).

Let f : 4 — Randg : % — R be proper lower semicontinuous convex functions.
The split minimization problem is to find

x € 44 such that x € arg m;rf} f(x), Ax € arg m;r; g(y).
xeJsh YyeI
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The solution set of the split minimization problem is denoted by Y. It is well known
that the subdifferential f is maximal monotone and Jy¢(x) = (I + Adf) is firmly nonex-

pansive. In Corollary 2, if | gn = Jas(x)and | gn = Jag(x), we obtain the following result.

Corollary 4. Let s# and 7% be Hilbert spaces and f : 74 — R, g : 56 — R be proper
lower semicontinuous convex functions. Let A : 74 — % be a bounded linear operator and
A* be the adjoint operator of A. Let f : 74 — A be a contraction with coefficient p € (0,1)
and S : 4 — 4 be a nonexpansive mapping such that Fix(S) Y # @. For xo,x1 € J4,
the sequence {xy, } defined by:

Zp = Xy + Gn(xn — Xp—1),
wn = Jar(x)[zn — AnA*(I = Jag(x)) Azy],
Xpr1 = nf(xn) + (1 — an)[6nwn + (1 — 8,)Swy).

where{a,},{0,} C (0,1), {An} are sequences of positive real numbers satisfying the following
conditions:

(i) Let the parameter 0, chosen as
. n .
0, = IIIII’I{G, Toen—xn_1]l } lfxn 7é Xn—1,
0 otherwise,
where 0 > 0, €,, is a positive real sequence such that e, = o(ay);
(i) limpyseoy =0, Y0 gan = 00,6, C [a,b] C (0,1);
(iii) Ay € (0, W).

Then, {xy } converges strongly to an element w® € Fix(S) NY, where w’ = Prix(s)n vf(wh).

4. Numerical Examples

In this section, we give some numerical experiments to illustrate the feasibility and
effectiveness of our proposed algorithm and the main result. All the codes are written in
Python 3.7.

Example 1. Let 74 = 9 = R%, and A = E g} Let By, By, Kq,K : RZ — R2 be defined
|40 |6 0 150 {7 0 1
by By = [0 2}, By, = [O 4} K = [0 3} and Ky = [0 5}. We put B;,, = 3, then we can

get the resolvent mappings associated with By, By, Ky and K. Let v;, = %, op = le' Ny = %,
and Aj, = foralln € N. We take

Gn _ mln{05, m} l_fxn 7é xnfl,
0.5 otherwise,

_1
2 A7

Let S and f be defined by Sx = %x, flx) = %x. This implies that p = % Starting the initial
values xg = x| = {28} and xg = x1 = [gg] in (1), respectively. The numerical results have been

shown in Table 1 and Figure 1. We test the convergence behavior of this algorithm under different
stopping conditions. The results are shown in Table 2.

Table 1. The values of error ||x,,11 — x|

" o e |60 o — e — [120
0= = 160 0=~ |120

1 69.238 138.476

2 12.854 25.671

3 2.36772 4.74734
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Table 1. Cont.

" o — e |60 o — v — [120
0=M= 160 0= = |10
4 0.44423 0.89771
5 0.08335 0.17194
27 247 x 10713 8.43 x 10713
28 9.84 x 10714 233 x 10715
29 549 x 10714 8.47 x 10714
30 6.81 x 10715 259 x 10714
140 - —=— Initial value x, = x, = [60,60]"
—e— Initial value x, = x, = [120,120]"
120 4
« 100
<}
E 804
G
o
g 60
=
> 40
204
0 ; ; ; ; ;
0 5 10 15 20 25 30

Number of iterations (n)
Figure 1. Numerical results for Example 1.

Table 2. The number of termination iterations and execution time with different stopping conditions.

[E xo = x; = |90 o = — 120

n+1 n n 0 1 60 0 1 120
&n Iter. Times (ms) Iter. Times (ms)
10—4 6 0.75 8 0.75
10-° 9 0.90 10 1.11
10-° 12 0.97 12 1.17
107 14 1.03 14 1.31

Remark 1. The parameters we select satisfy the conditions (i)—(iii) in Theorem 1. We randomly
selected initial values to study the convergence of the algorithm. The numerical results we obtained
verify the effectiveness and feasibility of our proposed iterative algorithm. In addition, we can observe
the convergence rate of the iterative algorithm. The most important thing is that the method we
provide converges very quickly in terms of the number of iterations and execution time, and these
results are not significantly related to the choice of initial values.

5. Conclusions

In this paper, we have presented and analyzed an inertial viscosity iterative algorithm
for general split variational inclusion problems and fixed point problems in Hilbert spaces.
The strong convergence of the proposed algorithms is demonstrated, and the numerical
experiments are given to illustrate the efficiency of Theorem 1. We give an extension of the
inertial viscosity approximation and the common fixed point problems in Hilbert spaces,
and we generalize the split variational inclusion problems to the general split variational
inclusion problems of Cholamjiak et al. [20] and Chuang [23]. In Corollary 2,if f =S = I,
it is the main result of Pham et al. [24]. In addition, the methods and results also extend
and improve some corresponding recent results of [12-14,22] as special cases.
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