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Abstract: The symmetry of fuzzy metric spaces has benefits for flexibility, ambiguity tolerance,
resilience, compatibility, and applicability. They provide a more comprehensive description of
similarity and offer a solid framework for working with ambiguous and imprecise data. We give fuzzy
versions of some celebrated iterative mappings. Further, we provide different concrete conditions
on the real valued functions J,S : (0,1] — R for the existence of the best proximity point of
generalized fuzzy (J, S)-iterative mappings in the setting of fuzzy metric space. Furthermore, we
utilize fuzzy versions of (J, S)-proximal contraction, (7, S)-interpolative Reich-Rus—Ciric-type
proximal contractions, (J, S)-Kannan type proximal contraction and (7, S)-interpolative Hardy
Roger’s type proximal contraction to examine the common best proximity points in fuzzy metric

space. Also, we establish several non-trivial examples and an application to support our results.
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1. Introduction

Fixed point theory is one of the most appealing areas of study. The techniques for
determining a solution to a nonlinear equation of the pattern Y&t = 1, where Y is self
mapping, are discussed in fixed point theory. However, in various cases, the singular
solution does not exist. Best approximation theorems and best proximity point theorems
are helpful in solving the aforementioned problem. The best proximity point theorems
have been generalized in a number of ways by numerous authors, and they provide an
approximate optimal solution. If the mapping is self-mapping, then the best proximity
point theorems become a fixed point.

In 1968, Kannan [1], introduced a new kind of contraction for discontinuous mappings
and proved several fixed point results. He provided a new way for researchers to solve
fixed point problems. Karapinar [2] introduced iterative Kannan-Mier-type contractions.
Karapinar et al. [3] provided new results on Perov interpolative contractions of Suzuki
type mappings. Karapinar and Agarwal [4] established interpolative Rus—Reich-Ciric-
type contractions via simulation functions. Karapinar et al. [5] offered a new result for
Hardy-Rogers-type interpolative contractions.

Altun et al. [6] gave some best proximity point results for p-proximal contractions.
Further, Altun and Aysenur [7] proved some best proximity point results for interpolative
proximal contractions. Shazad et al. [8] provided some common best proximity point
results. Basha [9] developed common best proximity point results for global minimal
solutions. Moreover, Basha [10] examined common best proximity point for multi-objective
functions. Deep and Betra [11] introduced some common best proximity point results
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under proximal F-contraction. Mondal and Dey [12] proved some common best proximity
point results in complete metric spaces. Shayanpour and Nematizadeh [13] presented
some common best proximity point results in the setting of complete fuzzy metric space
(in short, CEMS). Hierro [14] presented Proinov-type fixed point results in fuzzy metric
spaces (FMS). Then, Zhou et al. [15] modified the results of [14] and introduced new
Proinov-type fixed point results in FMS. Uddin et al. [16] proved several new results
for a new extension to the intuitionistic FM-like spaces. Saleem et al. [17] provided a
unique soltion for integral equations via intuitionistic extended fuzzy b-metric-like spaces.
Saleem et al. [18] presented a result for graphical FMS applied to fractional differential
equations. Hussain et al. [19] proved a result for fixed point in FMS. Nazam et al. [20]
established several results for generalized interpolative contractions. Naseem et al. [21]
worked on the analytical approximation of fractional delay differential equations.

In this paper, we introduce fuzzy versions of (J,S)-proximal contractions, (7, S)-
interpolative Reich—Rus—Ciric-type proximal contractions, (7, S)-interpolative Kannan-
type proximal contractions, and (7, S)-interpolative Hardy Roger’s type proximal con-
tractions to examine the common best proximity point in the setting of FMS. We provide
several non-trivial examples and an application to integral equations to support our results.

2. Preliminaries

In this section, we provide definitions from the existing literature that will help readers
to understand the main section.

Definition 1 ([9]). Let (B, 9) be a metric space. The mappingsT : M — N andY : M — N
are said to commute proximally if they satisfy the below condition

[0(a,Tn) =0( Ya) =9(M,N)] = Té=Yi,
forallw,d,éin M.

Definition 2 ([9]). Let (B,9) be a metric space. A mapping Y : M — N dominates proximally
to a mapping T : M — N if there exists a non-negative number « < 1 such that

ﬁ(allrul) = 19(~/\/l/~/\/‘) = ﬁ(éllYﬁl)
19(512,1“&2) = 19(./\/[,./\/') = ﬂ(éz,Yﬁz)
l9(ﬁ1, ﬁz) S 0619(51, Vz)

f07’ all dq,dp,81,6,17, 1 € M.

Definition 3 ([15]). A binary operation *+ : H x H — H (where H = [0,1]) is said to be a
continuous t-norm (ctn) if it satisfies the below axioms:

(1) dq=*idy = i xdp and dp * (ﬁz *ﬁ3) = (dl * 52) * d3f01’ all idq,dp,d3 € H;

(2) = is continuous;

(3) @ x1l=cforalldy € H;

(4)  dqxdy < i3y when iy < idzand dy < d4, with dy,dy, 3,04 € H.

Definition 4 ([15]). A triplet (B, 9, x) is termed as FMS if x is a ctn, BB is arbitrary set, and 0 is a
fuzzy set on B x Bx(0,00) fulfilling the below conditions for all i1, d,,d3 € B and x,@ > 0:

(i) 8(dy,d2, %) > 0;

(i)  O(dy,dp,x) = 0 if and only if 4y = d;

(lll) ﬂ(ﬁl,ﬁz, K) = 19([12,511,7();

(iv) 19(5!1,53,K+(D) > 19(011,52,1{) *ﬁ(ﬁz,ﬁg,(@);
(v)  O(dy,dp,.): (0,00) — [0,1].
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TR consider a ctn as m xn = mn.

Example 1. Suppose B = R™ and 0(i1,dp,x) =
Then, B is a FMS.

Definition 5 ([13]). A sequence {i,} in a FMS (B, 9, x) is said to be convergent to a point a € B
if for each ¢ > 0 and { € (0,1), there exists ag(e, ) € N such that 9(d,d,,«) > 1 —( for all
n > ag(e, ¢) or limy_0o¥(d, iy, k) = 1, for all k > 0; in this case, we say that limit of sequence
{dn} exists.

Definition 6 ([13]). A sequence {i,} in a FMS (B, 9, ) is said to be convergent to a point a € B
if for each e > 0 and € (0,1), there exists ag(¢,{) € N such that 8(dy,, dnyp, k) > 1 — forall
n > ag(e,{) and every p € N or limy o0 (dn, dnyp,x) =1, forall x > 0 and p € N.

Also, an FMS (B, 9, ) is said to be complete if and only if every Cauchy sequence in
B is convergent.

Definition 7 ([13]). Let (B,9,*) be a FMS and M,N C B. Then

O(M,N, k)= sup  B(dy,dp,x),k >0,
i eEM, i eN

which is said to be a fuzzy distance between M and N
Definition 8 ([13]). Let (B, 9, x) be a FMS and M, N C B. We define the following sets.

Moy ={i; € M:3idy € N stV > 0,8(dy,dp, k) = 8(M, N, x)},
No = {ii e N:T il € M s.t Ve > 0,0(idy, dp, k) = 9(M, N, k) }.

Definition 9 ([13]). Let (B, 9, *) be an FMS, MN C Band Y,T : M — N be two mappings.
We say that an element ii € M is a common best proximity point of the mappings Y and T, if

O(a, Y, k) = (M, N,x) = 0(4,Td,x).

Definition 10 ([13]). Let (B, 9, *) bea FMS, M,N C Band Y,T : M — N be two mappings.
We say that Y, T are commute proximally if

(i1, Yd, k) = 3(M,N,x) = 0(ir, Td, x), Vi > 0,
then Yip = Ty, where d,dy,d, € M.

Definition 11 ([13]). Let (B, 9, *) bea FMS, MN C Band Y, T : M — N be two mappings.
We say that the mapping Y is to dominate I proximally if

19(511,Yh1,1() = 19(./\/1,./\/',1() = 19(b1,1’h2,1<)
ﬁ(ﬁz,th,K) = 19(./\/[,./\/, K) = l9(b2, FhZ, K)

for all k > O then there exists « € (0,1) such that for all x > 0,
O(dy, iy, ax) > O(by, by, k)
where i1, 0>,b1, by and hy, hy € M.

Definition 12 ([15]). We denote by the L the family of the pairs (J, S) of a functions J, S:(0,1] —
R satisfying the given properties below:

(s1) J is nondecreasing,
(s2) S(i)> J (i) foranyi e (0,1),
(s3) limy_ - infS(d) > limg_,p- J (&) forany T~ € (0,1),
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(sq4) ifd € (0,1) is such that S(d) > J (1) then d = 1.

3. Main Results

In this section, we provide several common best proximity point results by utilizing
generalized fuzzy interpolative contractions, and we prove non-trivial examples.

3.1. Fuzzy (J,S)-Proximal Contraction

Let M and N C (B, 9,%). The mappings Y : M — N and T : M — N are called
fuzzy (J,S)-proximal if

l9(€1,Yu1, )
= (62/ YuZ/ ) (1)
T (0(d1,d2,%x)) > S(8(81,8,x)

for all iy, ido, €1, &5, 111, 1) € M and x > 0.

Example 2. Let (B, 9, x) be a FMS with ¢ (11,7, x) = eJ = ={0,2,4,6,8,10} and
N =1{1,3,5,7,9,11}. Define mappingsT : M — N and Y : M — N as

Y(0) =3,Y(2) =5,Y(4) = 7,Y(6) = 3,Y(8) = 9,Y(10) = 11,

and
r)=37T(2)=1TI4)=97T(6)=7T(8) =5,T(10) = 11.

Then, 8(M, N, x) = e~x, Mg = M and Ny = N. Then clearly T(Mo) C Ny and Y(M,) C
No. Define the functions J,S : (0,1] — R by

o
J(t) = { Int Zj;(f)f_tf 1 }and S(t):{ lntzzfl;otitf 1 }

We show that T and Y are fuzzy (J, S)-proximal in FMS. Consider ity = 0, dy = 8,81 = 4,
and iy = 2,0, =4,x =1

.
3¢
(o)}

19(& T, x )— ﬂ(M,N,K) 19(ellyull )
O(dy, Tip, ) = 0(M, N, x) = 8(&, Yiy, k),
then
9(0,T2,1) = 9(M, N, ) = 0(4,Y2,1)
8(8,T4,1) = (M, N, x) = 8(6,Y4,1).

This implies that

j(ﬂ<ﬁl/ v21 K)) Z S(ﬁ(éll VZIK))
T(8(0,8,1)) > S(8(4,6,1)
08| 4
j(e’ T )28(3’ 1
—0.1233 > —0.2500

and similar in other cases. This shows that mappings I and Y are fuzzy (J, S)-proximal. However,
the following shows that I and Y are not proximal in FMS. We know that

8(0,T2,1) = 9(M, N, x) = 8(4,Y2,1)
9(8,T4,1) = O(M, N, x) = 8(6,Y4,1).

If there exists a non-negative number &« = 0.5 € (0,1), then
dp, akc) > 9(81, 6, k)

d(dy,
8(0,8,(0.5)1) > 8(4,6,1)
0.00000 > 0.1353.
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This is a contradiction. Hence, mappings I and Y are not fuzzy proximal.

) elig =g |+lng —ny| )
Example 3. Let (B, 9, x) bea FMS define by ¢ (i,n,x) =e~  x  withctnass*t = st.
Let M = {(0,n);n € R} and N' = {(1,n);n € R}. Define mappings T : M — N and
Y: M — Nas "

T(0,n) = (1,5)
and,

Y(0,1) = (1%)

Then, 8(S,N,«x) = 0(i,n,x) = e*%, Moy = S and Ny = N. Then, clearly T (M) C Ny and
Y (M) C Np. Define the functions J,S : (0,1] — R by

1 - 1
_ [ mmif0<t<1 [ sEifo<t<1
J(t)—{2 Vit 1 }andS(l)_{Z i }

The mappings I and Y are fuzzy (J,S)-proximal. Here, we show that T and Y are not fuzzy
proximal. We have

19(511,52, )\K) Z 19(51, 52,1()
8((0,0),(0,3),1(0.2)) = (6((0,0), (0,2),1))
0.0000 > 0.1353,

which is a contradiction. Hence, I and Y are not fuzzy proximal.
To obtain the proofs of the key results, the following lemmas will be used.
Lemma 1 ([14]). Let (B, 9, %) be a FMS and {4, } CB be a sequence verifying

limy 0 & (dy, dy41, %) = 1. If the sequence {g, } is not a Cauchy sequence, then there are
subsequences {iy, }, {dg, } and ¢ > 0 such that

](114)1’130 <d}’lk+1rﬁqk+1rK) = (: (2)
lim ﬁ(d”k’ﬁnqk’K) = ﬁ(ﬁ}’lk-‘rl’ ﬁ%/ K) = ﬁ(ﬁnk/qu-i-l/’() = (;I (3)

k—o0

Lemma 2 ([14]). Let J : (0,1] — R. Then the following conditions are equivalent:

(i) infise J(t) > —oo for every € € (0,1),
(it) lime_inf J(t) > —oo forany e € (0,1),
(iii) limy—ye0 J (tn) = —o0 implies that limy, e t, = 1.

Lemma 3. Assume {iy} is a sequence such that limy,_,eo O (dy, d,41,%) = 1 and the mappings
Y: M — NandT : M — N satisfying (1). If the functions J, S : (0,1] — R with
(1) limsup, , ., S(t) < J(€ +) forany e > 0.

Then {d, } is a Cauchy sequence.

Proof. Let us suppose that the sequence {i, } is not a Cauchy sequence; then, by Lemma 1,
there exist two subsequences {iy, }, {dg, } of {#,} and € > 0 such that the Equations (2) and (3)
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hold. From Equation (2), we get that ¢ (ﬁnkH, quJrl) > €. Since, for dy,, dy, 11,4, g1, s
Uge, U y1, g, +1 € M, we have

ﬁ(dnkJrl/ r(ankJrl)r K) = B(
9

) = ﬂ(ko+1’r(ﬁ9k+1)’K)
O(dng, Y (il 41), %) = 0

K
N ) = (g, Y (1) ).
Thus, from Equation (1), we have
T (041, dger1), %) = S(0(dny, dg, x))
forallk > 1.Letgq, =0 (l:ink+l,qu+l,7() and qx_1 = 0 (dy,, dg,, x), we have
J(qx) > S(gk—1), forany k > 1. 4)

From Equations (2) and (3), we have limy_,, gy = € and limy_,, 11y = €. From Equation (4),
we get that
J(e+) = klim J(qx) > lirnkinf S(gx—1) > lim inf S(c). )
— 00 —00

c—k

This is a contradiction to condition (i). That is, {#,} is a Cauchy sequence in M. [

Theorem 1. Let M, N C (B, 9, ) in CFMS such that N is AC with respect to M. Also, assume
that limy_, e 0(dy, dp, k) = Land Myand Ny # @. LetT: M — N andY : M — N satisfying
the following conditions

(i) Y dominates I and are fuzzy (J,S)-proximal,

(ii) T andY are compact proximal,

(iti) J is non-decreasing function and iminf; ,, S(t) > J(e+) for any e > 0,
(iv) T andY are continuous,

(v) r(./\/lo) C ./Vb and F(Mo) - Y(Mo).

Then, Y and T have a unique element it € M such that

8(n, Y, k) = 9(M, N, x),
O(n, T, x) = 9(M, N, x).

Proof. Let i1y € M. Since I'(Mj) C Y(M)) guarantees the existence of an element 117 €
My such that Ty = Yii;. Also, we have I'(My) C Y(My), 3 an element i, € My such
that I'i;; = Yiip. This process of existence of points in My is implied to have a sequence
{itn} € My such that

i, q = Yil,

for all positive integral values of 1, since I'(Mj) C Y(My).
Since I'(Mj) C Ny, 3 an element 4, in M such that

Oy, Tity, k) = 9(M, N, k), foralln € N.
Further, it follows from the choice of 11, and i, that

ﬁ(ﬁn-&-l/l—‘(ﬁi’l-i-l)/;() = 19<M/N/ K) = ﬁ(ﬁnfy(a”""l)’ K)’
(8n, Titn, k) = O (M, N, k) = 8(id,_1,Y(ily),x).

If,
O(dn, Tity, k) = O(M,N,x) = 0(d,_1, Y (ln), x). (6)
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See that, if 3 some n € N such that 4, = 4,_1, then from Equation (6), the point i, is a
common best proximity point of the mappings I and Y. On the other hand, if 4,1 # d,
for all n € N, then from Equation (6), we have

Thus, from Equation (1), we have
j(ﬂ(ﬁn+1/ﬁn/ K)) Z S(ﬂ(d}’ll d?’l*l/ K))/ (7)
forall &, 1, dy, dpi1, Upi1, iy € M. Let 19(‘jnJrlr bn, K) = (n, W€ have

T (qn) > S(qn-1) > T (qu-1).

Since J is non-decreasing, from Equation (7), we get g, > q,,—1 for all n € N. This shows
that the sequence {g,} is positive and strictly non-decreasing. Hence, it converges to
some element g > 0. We show that g = 0. Suppose on the contrary that g > 0 and from
Equation (7), we get the equation below:

J(et) = lim J(qn) = lim S(gn-1) = lim infS(t).
This contradicts to assumption (iii), hence, § = 1 and lim, o #(dy, d41,k) = 1. By
assumption (iii) and Lemma 3, we deduce that {4, } is a Cauchy sequence. Since (B, 9, *)
is a CFMS, M C B. Since I'(M; ) C N, there exists an element 4* in M such that
limy, 00 8(dy, 3*) = 0. Moreover,

0", T (i), k) > 0(d", i, €).0(dn, T(1hy), x).
Also,
0%, Y (0y), k) > 0", 4, x).8(dn, Y(i1y), ©).

Therefore, 9(i*,Y (i1,), k) — 8(d*, N, x) and also ¢(a*, T (i1,), x) — 0(i*, N, x) as n — oo.
AsT and Y commute proximally, Y&* and I'i* are identical. Since N is AC with respect
to M, 3 a subsequence {Y (it )} of {Y(i1,)} and {T'(i,)} of {T'(it,)} such that Y(i,, ) —
¢ € Nand I'(ily,) — & € N ask — co. Moreover, by letting k — oo in the below equation,

8(&*, I (iy, ), k) = (M, N, x), ®)
8(&*,Y (itn, ), k) = 8(M, N, x),
we have
0, d%,x) = 9(M, N, x).

Since, 4* € M, so I'(d*) € T(Mp) € Ny and 3¢ € M. Similarly 5 € My, so
Y(i#*) € Y(Mpy) € Npand 3 ¢ € My such that

O, T(*), 1) = O(M, N, x) = 8", (), x), o
O(&,T(i), 1) = B(M, N, x) = 0(&, Y (&), x).

Now, by Equations (8), (9) and (1), we have
J(8@%,¢,x)) = SO, ¢, x)) < T (0@, ¢, x)).
Since J is non-decreasing function, we have

0", & ax) > 9(a%, &, 1) > 8(d%, &, x).
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This implies #* and ¢ are identical. Finally, by Equation (6), we have
o(a*,Y(d"), k) = (M, N, k) = ¢(a*,T(d"),x).

This shows that the point 4* is a common best proximity point of the pair of mappings
YandI. O

Theorem 2. Let M, N C (B,9,*) in a CFMS such that N is AC with respect to M. Also,

assume that limy_,q, 0(id1,dp,€) = 1 and Mo Ny # @. Let T: M — N andY : M — N

satisfying the following conditions:

(i) Y dominates T and are fuzzy (J,S)-proximal.

(ii) T andY are compact proximal.

(iti) J is non-decreasing and {J(t,)} and {S(t,)} are convergent sequences such that
limy, o0 J (tn) = limy 00 S(ty), then limy, 0 £, = 1.

(iv) T andY are continuous.

(v) T(Mgy) C Nyand T'(Mp) C Y(My).
ThenY and I have a unique element 1t € M such that

(i, Yi,x) = 9(M,N,x),
o(n, T, k) = 3 M, N, k).

Proof. Proceeding as in the proof of Theorem 1, we get

T (qn) > S(qu-1) < T (qn-1)- (10)

By Equation (10), we infer that {7 (g )} is a strictly nondecreasing sequence (in short, sds).
We have two cases here; either the sequence {7 (g,) } is bounded above, or not. If {7 (g,) }
is not bounded above, then

inf 7(qy) > —oo foreverye > 0,n € N.

Wy >e

It follows from Lemma 1 that g, — las n — oo. Secondly, if the sequence {J (qx)}
is bounded above, then it is a convergent sequence. By Equation (10), the sequence
{S(gn)} also converges. Furthermore, both have the same limit. By condition (iii), we get
limy, 00 gn = 1, or limy 0 3(dy, 1,11, ) = 1, for any sequence {i, } in M. Now, following
the proof of Theorem 1, we have

0", Y (), k) = 8(M, N, x) = 8(4*, T (i), x).

This shows that the point #* is a common best proximity point of the pair of the mapping
YandI. O

3.2. Fuzzy (J, S)-Interpolative Reich—Rus—Ciric-Type Proximal Contractions

Let M and N C (B, 9, ). The mappings Y : M — N and T : M — N are called
fuzzy (J, S)-interpolative Reich—Rus—Ciric-type proximally contractiona if

19(51,1—'1:[1,1() = 19(./\/1,./\/’,1{) = l9(é1,Yﬁ1,K)
19(d2/ FﬁZ/ K) = ﬂ(M,N, K) = ﬂ(éz, Yl)z, K) (11)
T (01,2, 6)) > S ((9(e1,,))* (8(&1,1,1))P (9(22, 12, 1))~ F)

for all dl,ﬁz,él,éz, 1:11, Uy € M.
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Example 4. Let (B, 9, x) be a CFMS defined as ¥ (i1,#,x) = e~ . Let M = {0,2,4,6,8,10}
and N' = {1,3,5,7,9,11}. Define mappingsT : M — N and Y : M — N as

Y(0)=3,Y(2)=5Y(4) =7,Y(6) =3,Y(8) =9,Y(10) =11,

nd
’ T(0) =3,T(2) = 1,T(4) =9,T(6) = 7,T(8) =5,T(10) = 11.

Then, $(M, N, «) = e, Mg = Mand Ny = N . Then clearly T(Mq) € Ny and Y(M,) C
No. Define the functions J,S : (0,1] — R by

1 1
_ mpifo<t<1 _ | ppifo<t<l1
j(t)_{ Yipt—1 goASO=¢ " 2y g

Under the conditions of Example 2, T and Y are fuzzy (J,S)-interpolative Reich—Rus—Ciric-
type proximal in FMS. However, the following shows that I' and Y are not fuzzy interpolative
Reich—Rus—Ciric type proximal. We know that

8(0,T2,1) = O(M, N, k) = 9(4,Y2,1)
8(8,T4,1) = O(M, N, k) = 9(6,Y4,1).

Then there exists a non negative number A € (0, %} such that

(i, iy, Axc) > (8(21, 8, ))" (8(81, i1, 1))P (8(2, i) P
8(0,8,(0.2)1) > (8(4,6,1))2(8(4,0,1))3(8(6,8,1))' 273
0.0000 > 0.0701
0 > 0.0701,

which is a contradiction. Hence, I and Y are not fuzzy interpolative Reich—-Rus—Ciric-type proximal.

Theorem 3. Let M, N C (B,9,*) in a CFMS such that N is AC with respect to M. Also,
assume that limy_,o, 0(d1,dp,x) = 1 and Mo Ny # @. LetT: M — N andY : M — N,
satisfying the following conditions

(i) Y dominates T and are fuzzy (J, S)-interpolative Riech—Rus—Ciric-type proximal;
(ii) T andY are compact proximal;

(iti) J is a nondecreasing function, and liminf; e+ S(t) > J(e+) for any e > 0;
(iv) T andY are continuous;

(v) T(Mg) C Nyand T'(My) C Y(My).
Then, Y and I have a unique element it € M such that

i, Yi,x) = 9(M,N,x),
(i, T, ) = (M, N, x).

Proof. Let i1y € M. Since I'(Mj) C Y(M)) guarantees the existence of an element 117 €
M such that, T'ip = Yil1. Also, we have I'(My) C Y(My), 3 an element i1, € M such
that I'iy = Yiup. This process of existence of points in My is implied to have a sequence
{11} € My such that

Ty, =Yy,

for all positive intergral values of n, because I'(My) C Y(My).
Since T'(Mj) C N, 3 an element i, in M such that

O(dn, Tity, k) = 0(M,N,x), foralln € N.
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Further, it follows from the choice of 1, and i, that

O(ips1, T (i), €) = O(M, N, &) = 8(dn, Y (ilyi1),K),
(i, T(ity), ) = O(M, N, &) = (i1, Y(iln), ),
if
8(iin, Tily, ) = S(M, N, k) = 8(,_1, Y (it), k). (12)

See that if 3 some n € N such that 4, = 4,_1, then by Equation (12), the point 4, is a
common best proximity point of the mappings I' and Y. On the other hand, if &,,_1 # 4,
for all n € N, then by Equation (12), we get

ﬂ(dn+1, r(l:ln+1),K) = ﬁ(M,N, K) == ﬂ(dn,Y(]/\ln+1), K),
Oy, T(iy), k) = 0(M, N, k) = (-1, Y(iln), k).

Thus, by Equation (11), we have

T (O(dn41,dn, %))
T (8(dn11,n, %))

S (081,10 Q11,061 (@, 1 1,)) ).

13
S((ﬁ(ﬁn+1/ljn,K))ﬁ(ﬁ(avn,dn71,K))l—o() ( )

>
>

for all i, 1, dyi1, Uy, Uy € M. Since, S(t) > J(t) for all t > 0, by Equation (13),
we have

T Ons1, 1)) > T (O, 0, 10))P (8, t-1,1))' P ).

Thus, J is non-decreasing function, and we get

Odin 1, i, ) > (811, n, 6))P (8, 1, )" P
This implies that
(Ot 41, 1)) P > (O(iin, g 1,5)) P

Let (8(dy41,0n,€)) = qn, we have

I @) = S((an)f @00 F) > T (@) (00-1)"F).

This implies q,, > q,—1 for all n € N. This shows that the sequence {g, } is PSD. Thus, it
converges to some element g > 1. We show that 4 = 1. On the contrary, let 4 > 1 so that by
Equation (13), we get the following:

. . 1— . .
J(e+) = lim 7 (ga) > lim S((g)(q21)'F) > lim infS(o)
This contradicts condition (iii); hence, ¢ = 1 and lim, o #(dy, i, 41,k) = 1. By the con-
dition (iii) and Lemma 3, we deduce that {i,} is a Cauchy sequence. Since (B,9,x) is
a CFMS and M C B. Since, ['(Mj) C N, there exists an element i* in M such that
limy, 00 &(dy, 4%, 1) = 1. Moreover,

9", T(ity), k) > O(d*, iy, )0 (i, T (1), ).

Also,
0%, Y (), k) > 0", 4, 1).8(dn, Y(iy), ©).

Furthermore, 9(d*,Y (i1,), k) — 0(d*, N ,x) and also 9(d*, T'(i1,), k) — (d*, N k) asn — co.
AsT and Y CP, Yi* and I'd* are identical. Since N is AC with respect to M, there exists
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a subsequence {Y (i1, )} of {Y(it,)} and {T'(i,x)} of {T(it,)} Such that Y(i1,, ) — &* € N
and I'(i1,,) — & € N as k — co. Moreover, by letting k — oo in the below equation,

O(e*, T (i, ), x)
(", Y (itn,), x)

(M, N, x)

(M, N k). (14)

We have,
o(e*, 5%, x) = 9(M, N, x).

Since, d* € My, so I'(d#*) € T(My) € Npand 3 ¢ € M. Similarly 4* € M, so
Y(i*) € Y(Mp) € N and there exists ¢ € M such that

(15)

Now, bearing in mind Equations (14) and (15), from (11), we have

TO@,8,x)) = (8, &,1)"(

(#°,8,1)) (8(2, &%) F)
> S(8(a,8,x)) > B(", &,

1%
& )-
Since J is non-decreasing function, we have
o(a*, &, ax) > 0", &, x) > 0(d*, ¢, «).
This implies #* and ¢ are identical. Finally, by Equation (12), we have
o, Y (d"), k) = O(M, N, x) = 8", T(a"),x).

This shows that the point 4* is a common best proximity point of the pair of mappings
YandI. O

Theorem 4. Let M,N C (B,9,x) in a CFMS such that N is AC with respect to M. Also,
assume that limy_,, 0(dy,dp,x) = 1 and Mo, Ny # @. LetT: M — N andY : M — N,
satisfying the following conditions

(i) Y dominates T and are fuzzy (J, S)-interpolative Riech—Rus—Ciric-type proximal;

(ii) T and Y are compact proximal;

(iti) J is non-decreasing and {J(t,)} and {S(t,)} are convergent sequences such that
limy, o0 J (tn) = limy 00 S(ty), then limy, 0 t,, = 1;

(iv) T andY are continuous;

(v) T(Mgy) C Nyand T'(My) C Y(My).
Then, Y and I have a unique element 1t € M such that

O(1, Y1, x) = 9(M, N, )
o, T, k) = (M, N, x).

Proof. Proceeding from the proof of Theorem 3, we have

T () = S(@u ) P@n)?) > T ((ga1)" P (q0)F)- (16)

By Equation (16), we infer that {7 (g, ) } is sds. We have two cases here; either the sequence
{J (qn)} is bounded above, or it is not. If {7 (g )} is not bounded below, then

in>f J(qn) > —oo forevery e > 0,n € N.

wy>€

It follows from Lemma 1 that g, — 1 as n — co. Secondly, if the sequence {7 (gx)}
is bounded above, then it is a convergent sequence. By Equation (16), the sequence
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{S(qn)} also converges. Furthermore, both have the same limit. By condition (iii), we get
limy 00 §n = 1 or limy, 00 O(dp, 1141, k) = 1, for any sequence {d, } in M. Now, following
the proof of Theorem 3, we obtain

9, Y(5%), k) = 9(M, N, x) = 0(a*, T(d*), x).

This shows that the point #* is a common best proximity point of the pair of the mapping
YandT. O

3.3. Fuzzy (J, S)-Kannan Type Proximal Contraction

Let M N C (B,9,*). The mappings Y : M — N and T : M — N are called fuzzy
(J,S)-Kannan-type proximal contractions if

19(dl/ 1_'1:[1,7() = 19( K) = ﬁ(éllYl’\ll/K)
0(&2, rl:iz,K) = 19( , ,K) = 19(52, Yilz, K) (17)
T (8(t1,4)) = S((9(e1,81))" (8(, 1)) )
for all iy, i, &1, 62,011, 11y € M.
|

Example 5. Let (B, 9, %) bea CFMS with ¢ (01,1,x) = e~ = . Let M ={0,2,4,6,8,10} and
N =1{1,3,5,7,9,11}. Define mappingsT : M — N and Y : M — N as

Y(0) =3,Y(2) =5,Y(4) = 7,Y(6) = 3,Y(8) = 9,Y(10) = 11,

and
r)=37T(2)=1T4)=97T(6)=77T(8) =5,T(10) = 11.

Then, 9(M, N, x) = e %, Moy = Mand Ny = N . Then clearly T(Mg) C Ny and Y(M,) C
No. Define the functions J,S : (0,1] — R by

_f difo<t<1 [ g2eifo<t<1
J(t)—{ ltlift:l }andé‘(t)_{ lt2ift:1 }

Under the conditions of Example 2, T and Y are fuzzy (J, S)-interpolative Kannan-type proximal
in FMS. Howeuver, the following shows that I and Y are not fuzzy interpolative Kannan-type
proximal. We know that

8(0,T2,1) = 8(M, N, x) = 9(4,Y2,1),
8(8,T4,1) = O(M, N, k) = 9(6,Y4,1).

Then there exists a non negative number A = 0.2 such that

81, 2, Ax) > ((8(e1, i, ) (9(&2, 2, 0)) ')
1

8(0,8,(0.2)1) > ((19(4,2))%(19(6,8,@)2)
0.0000 > 0.0498
0 > 0.0498,

which is a contradiction. Hence, I and Y are not fuzzy interpolative Kannan-type proximal.

Theorem 5. Let M, N C (B,9,x) in a CFMS such that N is AC with respect to M. Also,
assume that limy_, o, 0(dy,dp,x) = 1and Mo, Ny # @. LetT: M — N andY : M — N
satisfying the following conditions:

(i) Y dominates T and are fuzzy (J, S)-interpolative Kannan type proximal;
(ii) T andY are compact proximal;
(iti) T is non-decreasing function and liminf; ey S(t) > J(e+) forany e > 0;
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(iv) T andY are continuous;

(v) F(M()) - N() and 1"(/\/10) - Y(Mo).
Then, Y and I have a unique element 11 € M such that

(i, Yi,x) = 9(M,N,x),
o(n, T, k) = ¢(M, N, x).

Proof. Let 119 € M. Since I'(Mj) C Y(M)) guarantees the existence of an element 117 €
My s.t. Ty = Yy, Also, we have I'(Mj) C Y(My), 3 an element i1, € M, such that
I'ily = Yip. This process of existence of points in Mg implies to have a sequence {1, } C
M such that

Lity, 1 = Yy,

for all positive intergral values of n, because I'(My) C Y(My).
Since I'(Mj) C Ny, 3 an element 4, in M such that

O(dn, Tity, k) = 0(M,N,x), foralln € N.

Further, it follows from the choice of 1, and i,, that

(i1, T(itny1),x) = O(M, N, x) = 8(dn, Y (lny1), %),
(i, Tity, ) = HM N K) = 0ty 1, Y(i1n), %),

if
8(lin, Tiy, ) = 8(M, N, k) = 0(dp_1,Y(i1n), x). (18)

Notice that, if there exists some n € N such that 4, = i,_1, then from Equation (18),
the point 4, is a common best proximity point of the mappings I and Y. On the other hand,
if i,_1 # iy for all n € N, then from Equation (18), we get

O(dpg1, T(pgr), €) = (M, N, k) = (0, Y (i1n), x)
O(dn, T(iy), k) = O(M,N, k) = 0(d,-1, Y (1), k).

Thus, from Equation (17), we have
T (0t 11,,)) > S (911,80, ) (9, 0 1,5)) ). (19)

for all #,,_1, dn, fdy11, Uy, lye1 € M. Since S(t) > J(t) for all t+ > 0, from Equation (19),
we have
T (O, 0,5)) > T (B 1,80,1))" (8, th-1,5))' ).

Thus, J is non-decreasing function, and we get

1—a

ﬁ(ﬁn—&-l/ d'rl/ )\K) > (ﬁ(dn—l—l/ d?’lr K))a (ﬁ(d'rl/ dn—l/ K))

This implies that
(8 (i1, i, AV T > (8 (i, ty_q,6)) %

Let (4,41, dn,K) = qu, we have

T (@) = S((a)" @0-1)'"") > T (@) (g0-1)")-

This implies g, > g,—1 for all n € N. This shows that the sequence {4, } is positive and
strictly non-decreasing. Hence, it converges to some element 4 > 1. We show that g4 = 1.
On the contrary, let ¢ > 1; from Equation (19), we get the following;:

T(e+) = lim J(qn) > nlggos((qn)“(qn_l)““) > lim infS(t).

n—o0 T tg+
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This contradicts assumption (iii). Hence, g = 1 and limy,_,co #(dy, 4,41, k) = 1. By con-
dition (iii) and Lemma 3, we deduce that {,} is a Cauchy sequence. Since (3,9, x) is
a CFMS and M C B. Since, ['(Mg) C N, there exists an element i* in M such that
limy, 00 B(dy, %) = 0. Moreover,

0", T(ity), k) > 0(d", i, €).0(dn, T(1hy), x).

Also,
O, Y (ihy), k) > O(d", dn, 1).0(dn, Y (y), ).

Therefore, ¢(a*,Y (i1,),x) — 8(d*, N x) and 0(a*,T(i1,),x) — 8(d*, N,x) asn — oo. As
I'and Y are compact proximal, Yi* and T'4* are identical. Since A is AC with respect to
M, there exists a subsequence {Y (i)} of {Y(it,)} and {T(it,x)} of {T'(it,)} such that
Y(ity,) = ¢ € Nand I'(i1,,) — & € N as k — co. Moreover, by letting k — co in the
below equation,

B(&*, T (il ), x) = $(M, N, x)

9(&%, Y (itn, ), k) = 8(M, N, x), (20)

we have

(e, d*,x) = 9(M, N, x).
Since, i#* € My, so I'(d*) € T(My) C N and there exists ¢ € M. Similarly d* € My, so
Y (3*) € Y(My) € Np and there exists ¢ € M such that

d(a*, T(d%),x) = 8¢, T(d*),x) = (M, N, x)

T
O(a*, Y (), x) = O(&, Y (8*), ) = 9(M, N, x). 21)

Now, bearing in mind Equations (20) and (21), from (17)), we have

T(0,2).%) > 8((6(a",&,0) (00" €/K>>1‘“)
> S(9(#*,¢,x)) > 9(0*,¢, k).

Since J is non-decreasing function, we have
O(a*, &, ax) > 9(a%, ¢, x) > 0(a*, &, x).
This implies #* and ¢ are identical. Finally, from Equation (18), we have
o, Y (1), x) = 9(M,N,x) = 8(a*,T(d"),x).

This shows that the point 4* is a common best proximity point of the pair of mappings
YandI. O

Theorem 6. Let M, N C (B, 8,x) in a CFMS such that N is AC with respect to M. Suppose
that limy_,o, 08y, dp, k) = 1and Mo, Ny # D. Let T: M — N and Y : M — N, satisfying
the following conditions:

(i) Y dominates T and are fuzzy (J, S)-interpolative Kannan-type proximal;

(ii) T andY are compact proximal;

(iii) J is non-decreasing and {J(t,)} and {S(t.)} are convergent sequences such that
limy o0 J (tn) = limy—e0 S(ty), then limy o0ty = 1;

(iv) T andY are continuous;

(v) F(Mo) C NO and F(Mo) - Y(Mo).

Then, Y and T have a unique element 1t € M such that

8(n, Y, k) = 9(M, N, x),
O, Tit, k) = O(M, N, x).
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Proof. Proceeding as in the proof of Theorem 5, we get

T (@) < S((@n)'P@)f) < T ((@@u1)Plan)P). (22)

From Equation (16), we infer that {7 (g,)} is sds. We have two cases here; either the
sequence {7 (gx)} is bounded above, or it is not. If {7 (g,)} is not bounded above, then
ug;fgj(qn) > —oo forevery e > 0,n € N.

It follows from Lemma 1 that g, — 1 as n — co. Secondly, if the sequence {7 (qx)}
is bounded above, then it is a convergent sequence. From Equation (16), the sequence
{S(gn)} also converges. Furthermore, both have the same limit. From condition (iii), we get
limy, 00 gn = 1, or limy 0 3(dy, 1,11, ) = 1, for any sequence {i, } in M. Now, following
the proof of Theorem 5, we have

O(i*, Y (), k) = 0(M, N, x) = 8(4*, T (i), x).

This shows that the point #* is a common best proximity point of the pair of the mapping
YandI. O

3.4. Fuzzy (J, S)-Interpolative Hardy—Rogers-Type Proximal Contraction

Let M, N C (B, 9, *). The mappings Y : M — N and I : M — N are called fuzzy
(J,S)-interpolative Hardy Roger’s type proximal contraction if

) K) = 19(M,./\/',K) = ﬂ(él,YL\ﬂ,K)
iy, k) = 0(M, N, k) = 0(&, Yilp, ) (23)

T (8(d, 2, 1)) < 5((l9(élfézf K))“(é‘(eﬁ,ﬁl,K))’g(l’(éz,ﬁz,K))"((ﬁ(él,az,x))%»(éz,al,x)))1‘”“5‘”)

for all d1,00,81,6, 11,1y € M.

=

Example 6. Let (B,0,*) bea CFMS with ¢ (0, 11,x) = e~ = . Let M = {0,2,4,6,8,10} and
N ={1,3,5,7,9,11}. Define mappings T : M — N and Y : M — N as

Y(0) =3,Y(2) =5,Y(4) = 7,Y(6) = 3,Y(8) = 9,Y(10) =11,

and
r)=3T(2)=1T(4)=9,T(6)=77T(8) =5,T(10) =11.

Then, (M, N ,x) = e*%, Moy = Mand Ny = N . Then clearly, T(My) C Noand Y(My) C
No. Define the functions J,S : (0,1] — R by

_f Hifo<t<1 [ gmifo<t<i
j(t)—{lfliftzl }andS(t)—{lleft_l }

Under the conditions of Example 2, the mappings I and Y are fuzzy (J, S)-interpolative Hardy—
Rogers-type proximal in EMS. However, the following shows that T and Y are not fuzzy interpolative
Hardy-Rogers-type proximal. We know that

8(8,T4,x) = 8(M, N, ) = 8(6,Y4,x)
8(0,12,x) = (M, N, k) = 8(4,Y2,x).

If there exists a non-negative number A = 0.2. Then,
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which is a contradiction. Hence, mappings I and Y are not fuzzy interpolative Hardy—Rogers-type
proximal.

Theorem 7. Let M,N C (B,9,%) in a CFMS such that N is AC with respect to M. Also,
assume that limy_,, 0(dy,dp,x) = 1Land Mo, Ny # @. LetT: M — N andY : M — N,
satisfying the following conditions

(i) Y dominates I and are fuzzy (J, S)-interpolative Hardy—Rogers-type proximal;

(ii) T andY are compact proximal;

(iii) J is nondecreasing function and limsup, ., S(t) < J(e+) forany e > 0;

(iv) T and Y are continuous;

(v) T(Mo) C NO and F(Mo) - Y(Mo).
Then, Y and I have a unique element it € M such that

8(i1, Yit) = 0(M, N,
8(i1,Ti) = 9(M, N).

Proof. Let 119 € M. Since I'(Mj) C Y(M)) guarantees the existence of an element 117 €
M such that, Tig = Yii;. Also, we have T'(My) C Y(My), 3 an element 21, € Mg such
that I'tiy = Y. This process of existence of points in M, is implied to have a sequence
{11} € My such that

Lty 1 = Yity,

for all positive integral values of 1, because I'(Mj) C Y(My).
Since I'(Mj) C Ny, there exists an element i, in M such that

O(dn, Tity, k) = 0(M,N,x), foralln € N.
Further, it follows from the choice of 1, and i, that

(a1, T(ye1),6) = O(M,N, k) = 0(idy, Tity, «),
O(dn, X (itp41),%) = O(M, N, ) = 0(dn-1,Y (iln), ),
if
(dn, Tity, k) = 0(M,N) = 0(d,_1,Y(iln), x). (24)
Notice that, if there exists some n € N such that 4, = 4,_1, then by Equation (24), the

point 4, is a common best proximity point of the mappings I' and Y. On the other hand, if
fy_1 # dy for all n € N, then from Equation (24), we obtain

Oy 11, T (ing1), 1) = (M, N, k) = 0(dn, Y (iln), %),
Oy, T(iy), k) = 8(M,N, k) = 8(d,_1, Y (i1, 1), %).

Thus, from Equation (23), we have
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for all dy,_1, dn, 1, Un, 1 € M. Since S(t) > J(t) for all t > 0, from Equation (25),
we have

j(ﬁ(ﬁn—&-l/ ﬁn/ K))
> T (90, tu1,)) " (Ons1, 0, 1))P (O 1, 8, 1)) T (O 1, By, )70,

Thus, J is a non-decreasing function, and we get

(1, i, )

> (8, g1, %)) (O (s, g, 6))P (O, g, €))7 (B, B, ) P70
ﬂ(ﬁn+1r‘7m7‘)

> (0(dn, dn—1, K))a (ﬁ(ﬁnﬂf bn, K))ﬁ(ﬂ(‘jnﬂf bn, K))’y((ﬁ(ﬁnflf dn, K)~l9(dn/ Gnt1, K))17“7ﬁ7775
H(dpy1,dn, K)

> (8(ity_1,dn, €)) P70 (O (1, 1)) T

This implies that
ﬁ(ﬁnJrlr dn, K) > (l9(ﬁn,1, iy, K))liﬁi’yié(ﬁ(ﬁnil, iy, K))l*ﬂ(*ﬁl

Let (0(dy41,dn,€)) = qn, we have

T (qn) = S((anl)l_ﬁ_v_‘s(qn)l_“—‘s
> T (@) 7)),

Assume that g, > g,_1 for some n > 1. Since J is non-decreasing, then by (25), we get
(qn) > (((qn,l)l_'g“’_‘s(qn)l_“_‘s)). This is not possible. Hence, we obtain g, > g,,_1 for
all n > 1. Thus, it converges to some element g > 1. We show that g = 1. On the contrary,
let g > 1; from Equation (25), we get the equation below:

J(e+) = lim 7 (ga) > lim S(((201)" P77 ()7 ) ) > lim infS(0).
This contradicts condition (iii), hence ¢ = 1 and lim, 0 #(iy, 4,11, k) = 1. By condition
(iii) and Lemma 3, we deduce that {d,} is a Cauchy sequence. Since (B, 9, x) is a CFMS
and M C B. Since I'(M;) C Ny, 3 an element i* in M such that lim,,_,c0 9(y, 3%, ) = 1.
Moreover,
0", T (i), ) > 0(d", i, €).0(dn, T(11y), x).

Also,
0%, Y (), k) > 0", dy).0(d,, Y(1y)).

Therefore, 9(i*,Y (i1,), k) — (d*, N, x) and also ¢(a*,T(i1,),x) — 0(i*, N, x) as n — oo.
AsT and Y are compact proximal, Y4* and I'7* are identical. Since N is AC with respect
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to M, 3 a subsequence {Y (il )} of {Y(i1,)} and {T' (i)} of {T'(it,)} such that Y (i, ) —
& € N and T(ﬁnk) — & € N ask — oo. Moreover, by letting k — oo in the below equation,

9(5, T (ity, ), 1) = O(M, N, x),

T
8%, Y (in, ), k) = O(M, N, x), (26)

we have
o(¢*, 5%, x) = 9(M, N, x).

Since, d* € My, so I'(i*) € T(My) € Npand 3 ¢ € My. Similarly, 5* € My, so
Y(d*) € Y(Myp) € Npand 3 & € M such that

O, T (%), k) = 9(M, N, x) = 8(a*, Y (i), x)

O(&,T(d*),6) = O(M, N, x) = 8(Z,Y(d*),x). (27)

Now, bearing in mind Equations (26) and (27), from (23), we have

T(60) 2 )" (90, 2,1))F )

(<<,
S(0(r°,¢,0))
8,8 x).

Since J is a non-decreasing function, we have
O(a*, &, ax) > 9(a%, ¢, k) > 0(a*, ¢, «).
This implies #* and ¢ are identical. Finally, from Equation (24), we have
o, Y (i), x) = 9(M,N,x) = 8(a*,T(d"),x).

This shows that the point 4* is a common best proximity point of the pair of mappings
lFandY. O

Theorem 8. Let M, N C (B, 9, %) such that N is AC with respect to M. Also, assume that
limy oo 8(dy,dp,6) = 1 and Mo, Ng # @. Let T: M — N and Y : M — N satisfy the
following conditions:

(i) Y dominates T and are fuzzy (J, S)-interpolative Hardy—Rogers-type proximal;

(ii) T andY are compact proximal;

(iii) J is non-decreasing and {J(t,)} and {S(t.)} are convergent sequences such that
limy o0 J (tn) = limy—e0 S(ty), then limy o0ty = 1;

(iv) T andY are continuous;

(v) F(Mo) C N() and F(Mo) - Y(Mo).

Then, Y and I have a unique element 1t € M such that

8(n, Y, k) = 9(M, N, x),
O, Tit, k) = O(M, N, x).

Proof. Proceeding as in the proof of Theorem 7, we have

T (qn) > S(((qn_l)lfﬁwfé(qn)lfafa))
> 7 (@) P70 ).

By Equation (28), we infer that {7 (g, ) } is sds. We have two cases here; either the sequence
{J (gn)} is bounded above, or it is not. If {7 (g,)} is not bounded above, then

(28)

inf J(qn) > —oo foreverye > 0,n € N.

Wy >E€
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It follows from Lemma 1 that g, — 1 as n — co. Secondly, if the sequence {J (qx)}
is bounded above, then it is a convergent sequence. By Equation (28), the sequence
{S(qn)} also converges. Furthermore, both have the same limit. By condition (iii), we get
limy, 00 gn = 1, or limy 0 3(dy, 1,11, ) = 1, for any sequence {i, } in M. Now, following
the proof of Theorem 7, we obtain

0", Y (), k) = O(M, N, x) = 8(4*, T (i), x).

This shows that the point #* is a common best proximity point of the pair of the mapping
YandI. O

4. Application

In this part, we utilize Theorem 1 to find the existence and uniqueness of a solution
to UIE:

o(h) = f(h) + / ki(h,s,£(s))ds. (29)
IR

Depending on the integration region (IR), this integral equation involves both the Volterra
integral equation (VIE) and the Fredholm integral equation (FIE). If IR = (a, x), where a
is fixed, then UIE is VIE. For this, we consider a common best proximity point approach.
The common best proximity point technique is a straightforward and attractive way to
demonstrate that each additional mathematical model has a singular solution.

Suppose IR is a set of finite measures, and

2, = {e/ | 6(s) |2 ds < oo}.
IR

Define the norm | . [|: £2, — [0, ) by
1 |1= / | £(s) |2 ds, for all £ € £2, (30)
IR

The following formula of an equivalent norm is given:

—v [ a(s)ds
| £ ]= sup{e IR /M(S) 2 ds},forallfGE%R,l/>1- (31)
IR

Then, (£2;, | . ||2,v) is a Banach space. Let B ={¢ € £2 : {(s) > 0 for almost every s }. The

FM 9, associated with the norm || . ||, is given by &, (¢,) = 0, (¢, f, k) = e~ S for all

l,f € B. Then (B, 9, %) is an CFMS. Let
(A1) The Kernal kg : IR x IR x R — R satisfies Carthodory conditions, and

| ki(f,s,0(s)) |< w(h,s) +e(h,s);w,e € £2(IR x IR),e(h,s) > 0.

(Az) The function f : IR — [1,00) is continuous and bounded on IR.
(A3) There exists a positive constant C such that

sup | k1(h,s)ds < C.
helR /IR

(Ag) Let £y € M. Since I'(M) C Y(M) guarantees the existence of an element ¢/; € M
such that, I'/y = Y/;. Also, we have I'(M) C Y(M).
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(As) There exists a nonnegative and measurable function g : IR x IR — R such that

1

= 2 <
a(h) /IRq (h,s)ds < Ve

and integrable over IR with

_ kg (s,L(s)) =Ky (Bs,f ()] q(hs)  _ [6s)=f()|
e B >

foralli,s € IRand ¢, f € M.

Theorem 9. Suppose the mapping f and ky mentioned above verify the conditions (A1)—(Az), then,
the UIE Equation (29) has a unique solution.

Proof. Define the pair of mappingsI', Y : M — N, in accordance with the abovementioned
notations, by

(80)(h) = F(h) + /1 (s, 0(3))ds (32)

Let ¢,j € M, since, for almost every i € IR

(80)(h) = F(h) + /m ka(hs, 6(s))ds > 1.

Conditions (A1)—(A;) imply that ¢ is continuous and compact mapping from M to N. By
(A4) we will check the contractive condition of Equation (7) of Theorem 1 in the next lines.
By (As) and the Holder inequality, we have

Ky (s, 0(s))ds— [ kq(hs,f(s))ds|?
jeom-enmp g 10 L (a0
e K =e K

2
- (f [fe1 (hfsff(S))—h(h,s,f(S))ldS>

IR
>e

K

e [3

{IR qz(h,s)ds - fIRM(S)_f(S”ZdS
>e K ee——

K

h |£()—F ()| s
> e_y.e_fm Kfs .

This implies, by integrating with respect to 7,

|(90)(h) () (1) SR () JiRIC)—f(5)Pds )dn
K K

¢ > e
fig (st TR o i) [ 16)—FOR )y
= ei _
1e~F13 , Jrg anye? TR *()85 g
> e : .
le—f13 e SR #(5)ds
> e o
Thus, we have
M2eV JIR “(S)ds\(06)(71)7(01‘)(7‘1)‘2,1;, ”é*f\\%’y
€_ VK Z e_ .
This implies that
M2[(80)- (8913, =113,
e VK >e I3
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That is
L(¢, £)dy ((8€), (8f),x) = dv (¢, f).

Define J (s) = ﬁ and S(s) = @; then, we have

J(L(L, f)dv((9¢), (8f), %)) = S(FL(¢, f))-

The defined J and S satisfy the remaining conditions of the Theorem 1. Hence, from
Theorem 1, the operator ¢ has a unique point. This means that the UIE Equation (29) has a
unique solution. [

5. Conclusions

In this manuscript, we have introduced several new types of contractive conditions
that ensure the existence of common best proximity points in the framework of FMS.
Our examples show that the new contractive conditions generalize the corresponding
contractions from the existing literature. The contraction conditions (1), (11), (17) and (23)
can be used to demonstrate the presence of solutions to the models of linear and nonlinear
dynamic systems, depending on their nature (linear or nonlinear). This paper’s study
expands on the worthwhile research that was previously published in [7,8,11-13].
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