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Abstract: The symmetry of fuzzy metric spaces has benefits for flexibility, ambiguity tolerance,
resilience, compatibility, and applicability. They provide a more comprehensive description of
similarity and offer a solid framework for working with ambiguous and imprecise data. We give fuzzy
versions of some celebrated iterative mappings. Further, we provide different concrete conditions
on the real valued functions J ,S : (0, 1] → R for the existence of the best proximity point of
generalized fuzzy (J ,S)-iterative mappings in the setting of fuzzy metric space. Furthermore, we
utilize fuzzy versions of (J ,S)-proximal contraction, (J ,S)-interpolative Reich–Rus–Ciric-type
proximal contractions, (J ,S)-Kannan type proximal contraction and (J ,S)-interpolative Hardy
Roger’s type proximal contraction to examine the common best proximity points in fuzzy metric
space. Also, we establish several non-trivial examples and an application to support our results.

Keywords: fixed point; best proximity point; fuzzy metric spaces; integral equations

1. Introduction

Fixed point theory is one of the most appealing areas of study. The techniques for
determining a solution to a nonlinear equation of the pattern Υù = ù, where Υ is self
mapping, are discussed in fixed point theory. However, in various cases, the singular
solution does not exist. Best approximation theorems and best proximity point theorems
are helpful in solving the aforementioned problem. The best proximity point theorems
have been generalized in a number of ways by numerous authors, and they provide an
approximate optimal solution. If the mapping is self-mapping, then the best proximity
point theorems become a fixed point.

In 1968, Kannan [1], introduced a new kind of contraction for discontinuous mappings
and proved several fixed point results. He provided a new way for researchers to solve
fixed point problems. Karapinar [2] introduced iterative Kannan–Mier-type contractions.
Karapinar et al. [3] provided new results on Perov interpolative contractions of Suzuki
type mappings. Karapinar and Agarwal [4] established interpolative Rus–Reich–Ciric-
type contractions via simulation functions. Karapinar et al. [5] offered a new result for
Hardy–Rogers-type interpolative contractions.

Altun et al. [6] gave some best proximity point results for p-proximal contractions.
Further, Altun and Aysenur [7] proved some best proximity point results for interpolative
proximal contractions. Shazad et al. [8] provided some common best proximity point
results. Basha [9] developed common best proximity point results for global minimal
solutions. Moreover, Basha [10] examined common best proximity point for multi-objective
functions. Deep and Betra [11] introduced some common best proximity point results
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under proximal F-contraction. Mondal and Dey [12] proved some common best proximity
point results in complete metric spaces. Shayanpour and Nematizadeh [13] presented
some common best proximity point results in the setting of complete fuzzy metric space
(in short, CFMS). Hierro [14] presented Proinov-type fixed point results in fuzzy metric
spaces (FMS). Then, Zhou et al. [15] modified the results of [14] and introduced new
Proinov-type fixed point results in FMS. Uddin et al. [16] proved several new results
for a new extension to the intuitionistic FM-like spaces. Saleem et al. [17] provided a
unique soltion for integral equations via intuitionistic extended fuzzy b-metric-like spaces.
Saleem et al. [18] presented a result for graphical FMS applied to fractional differential
equations. Hussain et al. [19] proved a result for fixed point in FMS. Nazam et al. [20]
established several results for generalized interpolative contractions. Naseem et al. [21]
worked on the analytical approximation of fractional delay differential equations.

In this paper, we introduce fuzzy versions of (J ,S)-proximal contractions, (J ,S)-
interpolative Reich–Rus–Ciric-type proximal contractions, (J ,S)-interpolative Kannan-
type proximal contractions, and (J ,S)-interpolative Hardy Roger’s type proximal con-
tractions to examine the common best proximity point in the setting of FMS. We provide
several non-trivial examples and an application to integral equations to support our results.

2. Preliminaries

In this section, we provide definitions from the existing literature that will help readers
to understand the main section.

Definition 1 ([9]). Let (B, ϑ) be a metric space. The mappings Γ : M→ N and Υ : M→ N
are said to commute proximally if they satisfy the below condition

[ϑ(ă, Γù) = ϑ(ě, Υù) = ϑ(M,N )]⇒ Γě = Υă,

for all ù, ă, ě inM.

Definition 2 ([9]). Let (B, ϑ) be a metric space. A mapping Υ :M→ N dominates proximally
to a mapping Γ :M→ N if there exists a non-negative number α < 1 such that

ϑ(ă1, Γù1) = ϑ(M,N ) = ϑ(ě1, Υù1)
ϑ(ă2, Γù2) = ϑ(M,N ) = ϑ(ě2, Υù2)

ϑ(ă1, ă2) ≤ αϑ(ě1, ě2).

for all ă1, ă2, ě1, ě2, ù1, ù2 ∈ M.

Definition 3 ([15]). A binary operation ∗ : H × H → H (where H = [0, 1]) is said to be a
continuous t-norm (ctn) if it satisfies the below axioms:

(1) ă1 ∗ ă2 = ă1 ∗ ă2 and ă1 ∗ (ă2 ∗ ă3) = (ă1 ∗ ă2) ∗ ă3 for all ă1, ă2, ă3 ∈ H;
(2) ∗ is continuous;
(3) ă1 ∗ 1 = σ for all ă1 ∈ H;
(4) ă1 ∗ ă2 ≤ ă3 ∗ ă4 when ă1 ≤ ă3 and ă2 ≤ ă4, with ă1, ă2, ă3, ă4 ∈ H.

Definition 4 ([15]). A triplet (B, ϑ, ∗) is termed as FMS if ∗ is a ctn, B is arbitrary set, and ϑ is a
fuzzy set on B × B×(0, ∞) fulfilling the below conditions for all ă1, ă2, ă3 ∈ B and κ, v > 0 :

(i) ϑ(ă1, ă2, κ) > 0;
(ii) ϑ(ă1, ă2, κ) = 0 if and only if ă1 = ă2;
(iii) ϑ(ă1, ă2, κ) = ϑ(ă2, ă1, κ);
(iv) ϑ(ă1, ă3, κ + v) ≥ ϑ(ă1, ă2, κ) ∗ ϑ(ă2, ă3, v);
(v) ϑ(ă1, ă2, .) : (0, ∞)→ [0, 1].



Symmetry 2023, 15, 1501 3 of 22

Example 1. Suppose B = R+ and ϑ(ă1, ă2, κ) = κ
κ+L∗(ă1,ă2)

, consider a ctn as m ∗ n = mn.
Then, B is a FMS.

Definition 5 ([13]). A sequence {ăn} in a FMS (B, ϑ, ∗) is said to be convergent to a point a ∈ B
if for each ε > 0 and ζ ∈ (0, 1), there exists a0(ε, ζ) ∈ N such that ϑ(ă, ăn, κ) > 1− ζ for all
n ≥ a0(ε, ζ) or limn→∞ϑ(ă, ăn, κ) = 1, for all κ > 0; in this case, we say that limit of sequence
{ăn} exists.

Definition 6 ([13]). A sequence {ăn} in a FMS (B, ϑ, ∗) is said to be convergent to a point a ∈ B
if for each ε > 0 and ζ ∈ (0, 1), there exists a0(ε, ζ) ∈ N such that ϑ

(
ăn, ăn+p, κ

)
> 1− ζ for all

n ≥ a0(ε, ζ) and every p ∈ N or limn→∞ϑ
(
ăn, ăn+p, κ

)
= 1, for all κ > 0 and p ∈ N.

Also, an FMS (B, ϑ, ∗) is said to be complete if and only if every Cauchy sequence in
B is convergent.

Definition 7 ([13]). Let (B, ϑ, ∗) be a FMS andM,N ⊆ B. Then

ϑ(M,N , κ) = sup
ă1∈M,ă1∈N

ϑ(ă1, ă2, κ), κ > 0,

which is said to be a fuzzy distance betweenM and N .

Definition 8 ([13]). Let (B, ϑ, ∗) be a FMS andM,N ⊆ B. We define the following sets.

M0 = {ă1 ∈ M:∃ ă2 ∈ N s.t ∀κ > 0, ϑ(ă1, ă2, κ) = ϑ(M,N , κ)},
N0 = {ă2 ∈ N :∃ ă1 ∈ M s.t ∀κ > 0, ϑ(ă1, ă2, κ) = ϑ(M,N , κ)}.

Definition 9 ([13]). Let (B, ϑ, ∗) be an FMS,M,N ⊆ B and Υ, Γ :M→ N be two mappings.
We say that an element ă ∈ M is a common best proximity point of the mappings Υ and Γ, if

ϑ(ă, Υă, κ) = ϑ(M,N , κ) = ϑ(ă, Γă, κ).

Definition 10 ([13]). Let (B, ϑ, ∗) be a FMS,M,N ⊆ B and Υ, Γ :M→ N be two mappings.
We say that Υ, Γ are commute proximally if

ϑ(ă1, Υă, κ) = ϑ(M,N , κ) = ϑ(ă2, Γă, κ), ∀κ > 0,

then Υă2 = Γă1, where ă, ă1, ă2 ∈ M.

Definition 11 ([13]). Let (B, ϑ, ∗) be a FMS,M,N ⊆ B and Υ, Γ :M→ N be two mappings.
We say that the mapping Υ is to dominate Γ proximally if

ϑ(ă1, Υh1, κ) = ϑ(M,N , κ) = ϑ(b1, Γh2, κ)
ϑ(ă2, Υh1, κ) = ϑ(M,N , κ) = ϑ(b2, Γh2, κ)

for all κ > 0 then there exists α ∈ (0, 1) such that for all κ > 0,

ϑ(ă1, ă2, ακ) ≥ ϑ(b1, b2, κ)

where ă1, ă2, b1, b2 and h1, h2 ∈ M.

Definition 12 ([15]). We denote by the Ĺ the family of the pairs (J ,S) of a functionsJ ,S :(0, 1]→
R satisfying the given properties below:

(s1) J is nondecreasing,
(s2) S(ă) > J (ă) for any ă ∈ (0, 1),
(s3) limă→T− infS(ă) > lims→T− J (ă) for any T− ∈ (0, 1),
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(s4) if ă ∈ (0, 1) is such that S(ă) ≥ J (1) then ă = 1.

3. Main Results

In this section, we provide several common best proximity point results by utilizing
generalized fuzzy interpolative contractions, and we prove non-trivial examples.

3.1. Fuzzy (J ,S)-Proximal Contraction

LetM and N ⊆ (B, ϑ, ∗). The mappings Υ : M → N and Γ : M → N are called
fuzzy (J ,S)-proximal if

ϑ(ă1, Γù1, κ) = ϑ(M,N , κ) = ϑ(ě1, Υù1, κ)
ϑ(ă2, Γù2, κ) = ϑ(M,N , κ) = ϑ(ě2, Υù2, κ)

J (ϑ(ă1, ă2, κ)) ≥ S(ϑ(ě1, ě2, κ))
(1)

for all ă1, ă2, ě1, ě2, ù1, ù2 ∈ M and κ > 0.

Example 2. Let (B, ϑ, ∗) be a FMS with ϑ (ù, ň, κ) = e−
|ù−ň|

κ . LetM = {0, 2, 4, 6, 8, 10} and
N = {1, 3, 5, 7, 9, 11}. Define mappings Γ :M→ N and Υ :M→ N as

Υ(0) = 3, Υ(2) = 5, Υ(4) = 7, Υ(6) = 3, Υ(8) = 9, Υ(10) = 11,

and
Γ(0) = 3, Γ(2) = 1, Γ(4) = 9, Γ(6) = 7, Γ(8) = 5, Γ(10) = 11.

Then, ϑ(M,N , κ) = e−
1
κ ,M0 =M and N0 = N . Then clearly Γ(M0) ⊆ N0 and Υ(M0) ⊆

N0. Define the functions J ,S : (0, 1]→ R by

J (t) =
{ 1

ln t if 0 < t < 1
1 if t = 1

}
and S(t)=

{ 1
ln t2 if 0 < t < 1

2 if t = 1

}
.

We show that Γ and Υ are fuzzy (J ,S)-proximal in FMS. Consider ă1 = 0, ă2 = 8, ě1 = 4, ě2 = 6
and ù1 = 2, ù2 = 4, κ = 1

ϑ(ă1, Γù1, κ) = ϑ(M,N , κ) = ϑ(ě1, Υù1, κ)
ϑ(ă2, Γù2, κ) = ϑ(M,N , κ) = ϑ(ě2, Υù2, κ),

then
ϑ(0, Γ2, 1) = ϑ(M,N , κ) = ϑ(4, Υ2, 1)
ϑ(8, Γ4, 1) = ϑ(M,N , κ) = ϑ(6, Υ4, 1).

This implies that
J (ϑ(ă1, ă2, κ)) ≥ S(ϑ(ě1, ě2, κ))
J (ϑ(0, 8, 1)) ≥ S(ϑ(4, 6, 1))

J
(

e−
|0−8|

1

)
≥ S

(
e−
|4−6|

1

)
−0.1233 ≥ −0.2500,

and similar in other cases. This shows that mappings Γ and Υ are fuzzy (J ,S)-proximal. However,
the following shows that Γ and Υ are not proximal in FMS. We know that

ϑ(0, Γ2, 1) = ϑ(M,N , κ) = ϑ(4, Υ2, 1)
ϑ(8, Γ4, 1) = ϑ(M,N , κ) = ϑ(6, Υ4, 1).

If there exists a non-negative number α = 0.5 ∈ (0, 1), then

ϑ(ă1, ă2, ακ) ≥ ϑ(ě1, ě2, κ)
ϑ(0, 8, (0.5)1) ≥ ϑ(4, 6, 1)

0.00000 ≥ 0.1353.
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This is a contradiction. Hence, mappings Γ and Υ are not fuzzy proximal.

Example 3. Let (B, ϑ, ∗) be a FMS define by ϑ (ù, n, κ) = e−
e|ù1−ù2 |+|n1−n2 |

κ with ctn as s ∗ t = st.
Let M = {(0, n); n ∈ R} and N = {(1, n); n ∈ R}. Define mappings Γ : M → N and
Υ :M→ N as

Γ(0, n) =
(

1,
n
2

)
and,

Υ(0, n) =
(

1,
n
3

)
.

Then, ϑ(S ,N , κ) = ϑ(ù, n, κ) = e−
1
κ ,M0 = S and N0 = N . Then, clearly Γ(M0) ⊆ N0 and

Υ(M0) ⊆ N0. Define the functions J ,S : (0, 1]→ R by

J (t) =
{ 1

2ln 2t if 0 < t < 1
1 if t = 1

}
and S(l)=

{ 1
2ln t if 0 < t < 1

2 if t = 1

}
.

The mappings Γ and Υ are fuzzy (J ,S)-proximal. Here, we show that Γ and Υ are not fuzzy
proximal. We have

ϑ((0, 0), Γ(0, 0), 1) = ϑ(M,N , κ) = ϑ((0, 0), Υ(0, 6), 1)
ϑ((0, 3), Γ(0, 6), 1) = ϑ(M,N , κ) = ϑ((0, 2), Υ(0, 6), 1).

Then, there exists a non-negative number λ = 0.2 such that

ϑ(ă1, ă2, λκ) ≥ ϑ(ě1, ě2, κ)
ϑ((0, 0), (0, 3), 1(0.2)) ≥ (θ((0, 0), (0, 2), 1))

0.0000 ≥ 0.1353,

which is a contradiction. Hence, Γ and Υ are not fuzzy proximal.

To obtain the proofs of the key results, the following lemmas will be used.

Lemma 1 ([14]). Let (B, ϑ, ∗) be a FMS and {ăn} ⊂B be a sequence verifying
limn→∞ ϑ (ăn, ăn+1, κ) = 1. If the sequence {qn} is not a Cauchy sequence, then there are
subsequences {ănk}, {ăqk} and ξ > 0 such that

lim
k→∞

ϑ(ănk+1, ăqk+1, κ) = ξ. (2)

lim
k→∞

ϑ(ănk , ănqk
, κ) = ϑ(ănk+1, ăqk , κ) = ϑ(ănk , ăqk+1, κ) = ξ. (3)

Lemma 2 ([14]). Let J : (0, 1]→ R. Then the following conditions are equivalent:

(i) inft>ε J (t) > −∞ for every ε ∈ (0, 1),
(ii) limt→ε− infJ (t) > −∞ for any ε ∈ (0, 1),
(iii) limn→∞ J (tn) = −∞ implies that limn→∞ tn = 1.

Lemma 3. Assume {ăn} is a sequence such that limn→∞ ϑ (ăn, ăn+1, κ) = 1 and the mappings
Υ :M→ N and Γ :M→ N satisfying (1). If the functions J ,S : (0, 1]→ R with

(1) lim supt→ε+ S(t) < J (∈ +) for any ε > 0.

Then {ăn} is a Cauchy sequence.

Proof. Let us suppose that the sequence {ăn} is not a Cauchy sequence; then, by Lemma 1,
there exist two subsequences {ănk}, {ăqk} of {ăn} and ε > 0 such that the Equations (2) and (3)



Symmetry 2023, 15, 1501 6 of 22

hold. From Equation (2), we get that ϑ (ănk+1, ăqk+1) > ε. Since, for ănk , ănk+1, ăqk , ăqk+1, ùnk ,
ùqk , ùnk+1, ùqk+1 ∈ M, we have

ϑ(ănk+1, Γ(ùnk+1), κ) = ϑ(M,N , κ) = ϑ
(
ăqk+1, Γ

(
ùqk+1

)
, κ
)

ϑ(ănk , Υ(ùnk+1), κ) = ϑ(M,N , κ) = ϑ
(
ăqk , Υ

(
ùqk+1

)
, κ
)
.

Thus, from Equation (1), we have

J (ϑ(ănk+1, ăqk+1), κ) ≥ S(ϑ(ănk , ăqk , κ))

for all k ≥ 1.Let qk = ϑ (ănk+1, ăqk+1, κ) and qk−1 = ϑ (ănk , ăqk , κ), we have

J (qk) ≥ S(qk−1), for any k ≥ 1. (4)

From Equations (2) and (3), we have limk→∞ qk = ε and limk→∞ nk = ε. From Equation (4),
we get that

J (ε+) = lim
k→∞
J (qk) ≥ lim inf

k→∞
S(qk−1) ≥ lim inf

c→k
S(c). (5)

This is a contradiction to condition (i). That is, {ăn} is a Cauchy sequence inM.

Theorem 1. LetM,N ⊆ (B, ϑ, ∗) in CFMS such thatN is AC with respect toM. Also, assume
that limk→∞ ϑ(ă1, ă2, κ) = 1 andM0 andN0 6= ∅. Let Γ : M→ N and Υ :M→ N satisfying
the following conditions

(i) Υ dominates Γ and are fuzzy (J ,S)-proximal,
(ii) Γ and Υ are compact proximal,
(iii) J is non-decreasing function and lim inft→ε+ S(t) > J (ε+) for any ε > 0,
(iv) Γ and Υ are continuous,
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ),
ϑ(ù, Γù, κ) = ϑ(M,N , κ).

Proof. Let ù0 ∈ M0. Since Γ(M0) ⊆ Υ(M0) guarantees the existence of an element ù1 ∈
M0 such that Γù0 = Υù1. Also, we have Γ(M0) ⊆ Υ(M0), ∃ an element ù2 ∈ M0 such
that Γù1 = Υù2. This process of existence of points inM0 is implied to have a sequence
{ùn} ⊆M0 such that

Γùn−1 = Υùn

for all positive integral values of n, since Γ(M0) ⊆ Υ(M0).
Since Γ(M0) ⊆ N0, ∃ an element ăn inM0 such that

ϑ(ăn, Γùn, κ) = ϑ(M,N , κ), for all n ∈ N.

Further, it follows from the choice of ùn and ăn that

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn+1), κ),
ϑ(ăn, Γùn, κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ).

If,
ϑ(ăn, Γùn, κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ). (6)
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See that, if ∃ some n ∈ N such that ăn = ăn−1, then from Equation (6), the point ăn is a
common best proximity point of the mappings Γ and Υ. On the other hand, if ăn−1 6= ăn
for all n ∈ N, then from Equation (6), we have

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn+1), κ)
ϑ(ăn, Γ(ùn), κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ).

Thus, from Equation (1), we have

J (ϑ(ăn+1, ăn, κ)) ≥ S(ϑ(ăn, ăn−1, κ)), (7)

for all ăn−1, ăn, ăn+1, ùn+1, ùn ∈ M. Let ϑ(ăn+1, ăn, κ) = qn, we have

J (qn) ≥ S(qn−1) > J (qn−1).

Since J is non-decreasing, from Equation (7), we get qn > qn−1 for all n ∈ N. This shows
that the sequence {qn} is positive and strictly non-decreasing. Hence, it converges to
some element q ≥ 0. We show that q = 0. Suppose on the contrary that q > 0 and from
Equation (7), we get the equation below:

J (ε+) = lim
n→∞

J (qn) ≥ lim
n→∞

S(qn−1) ≥ lim
n→q+

infS(t).

This contradicts to assumption (iii), hence, q = 1 and limn→∞ ϑ(ăn, ăn+1, κ) = 1. By
assumption (iii) and Lemma 3, we deduce that {ăn} is a Cauchy sequence. Since (B, ϑ, ∗)
is a CFMS, M ⊆ B. Since Γ(M0) ⊆ N0, there exists an element ă∗ in M such that
limn→∞ ϑ(ăn, ă∗) = 0. Moreover,

ϑ(ă∗, Γ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Γ(ùn), κ).

Also,
ϑ(ă∗, Υ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Υ(ùn), κ).

Therefore, ϑ(ă∗, Υ(ùn), κ) → ϑ(ă∗,N , κ) and also ϑ(ă∗, Γ(ùn), κ) → ϑ(ă∗,N , κ) as n → ∞.
As Γ and Υ commute proximally, Υă∗ and Γă∗ are identical. Since N is AC with respect
toM, ∃ a subsequence {Υ(ùnk )} of {Υ(ùn)} and {Γ(ùnk)} of {Γ(ùn)} such that Υ(ùnk )→
ě∗ ∈ N and Γ(ùnk )→ ě∗ ∈ N as k→ ∞. Moreover, by letting k→ ∞ in the below equation,

ϑ(ě∗, Γ(ùnk ), κ) = ϑ(M,N , κ),
ϑ
(
ě∗, Υ

(
ùnk

)
, κ
)
= ϑ(M,N , κ),

(8)

we have
ϑ(ě∗, ă∗, κ) = ϑ(M,N , κ).

Since, ă∗ ∈ M0, so Γ(ă∗) ∈ Γ(M0) ⊆ N0 and ∃ ξ ∈ M0. Similarly ă∗ ∈ M0, so
Υ(ă∗) ∈ Υ(M0) ⊆ N0 and ∃ ξ ∈ M0 such that

ϑ(ă∗, Γ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Υ(ă∗), κ),
ϑ(ξ, Γ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ξ, Υ(ă∗), κ).

(9)

Now, by Equations (8), (9) and (1), we have

J (ϑ(ă∗, ξ, κ)) ≥ S(ϑ(ă∗, ξ, κ)) < J (ϑ(ă∗, ξ, κ)).

Since J is non-decreasing function, we have

ϑ(ă∗, ξ, ακ) ≥ ϑ(ă∗, ξ, κ) > ϑ(ă∗, ξ, κ).
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This implies ă∗ and ξ are identical. Finally, by Equation (6), we have

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of mappings
Υ and Γ.

Theorem 2. Let M,N ⊆ (B, ϑ, ∗) in a CFMS such that N is AC with respect to M. Also,
assume that limk→∞ ϑ(ă1, ă2, κ) = 1 and M0,N0 6= ∅. Let Γ : M → N and Υ : M → N
satisfying the following conditions:

(i) Υ dominates Γ and are fuzzy (J ,S)-proximal.
(ii) Γ and Υ are compact proximal.
(iii) J is non-decreasing and {J (tn)} and {S(tn)} are convergent sequences such that

limn→∞ J (tn) = limn→∞ S(tn), then limn→∞ tn = 1.
(iv) Γ and Υ are continuous.
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ),
ϑ(ù, Γù, κ) = ϑ(M,N , κ).

Proof. Proceeding as in the proof of Theorem 1, we get

J (qn) ≥ S(qn−1) < J (qn−1). (10)

By Equation (10), we infer that {J (qn)} is a strictly nondecreasing sequence (in short, sds).
We have two cases here; either the sequence {J (qn)} is bounded above, or not. If {J (qn)}
is not bounded above, then

inf
wn>ε
J (qn) > −∞ for every ε > 0, n ∈ N.

It follows from Lemma 1 that qn → 1as n → ∞. Secondly, if the sequence {J (qn)}
is bounded above, then it is a convergent sequence. By Equation (10), the sequence
{S(qn)} also converges. Furthermore, both have the same limit. By condition (iii), we get
limn→∞ qn = 1, or limn→∞ ϑ(ăn, ùn+1, κ) = 1, for any sequence {ăn} inM. Now, following
the proof of Theorem 1, we have

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of the mapping
Υ and Γ.

3.2. Fuzzy (J ,S)-Interpolative Reich–Rus–Ciric-Type Proximal Contractions

LetM and N ⊆ (B, ϑ, ∗). The mappings Υ : M → N and Γ : M → N are called
fuzzy (J ,S)-interpolative Reich–Rus–Ciric-type proximally contractiona if

ϑ(ă1, Γù1, κ) = ϑ(M,N , κ) = ϑ(ě1, Υù1, κ)
ϑ(ă2, Γù2, κ) = ϑ(M,N , κ) = ϑ(ě2, Υù2, κ)

J (ϑ(ă1, ă2, κ)) ≥ S
(
(ϑ(ě1, ě2, κ))α(ϑ(ě1, ă1, κ))β(ϑ(ě2, ă2, κ))1−α−β

) (11)

for all ă1, ă2, ě1, ě2, ù1, ù2 ∈ M.
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Example 4. Let (B, ϑ, ∗) be a CFMS defined as ϑ (ù, ň, κ) = e−
|ù−ň|

κ . LetM = {0, 2, 4, 6, 8, 10}
and N = {1, 3, 5, 7, 9, 11}. Define mappings Γ :M→ N and Υ :M→ N as

Υ(0) = 3, Υ(2) = 5, Υ(4) = 7, Υ(6) = 3, Υ(8) = 9, Υ(10) = 11,

and
Γ(0) = 3, Γ(2) = 1, Γ(4) = 9, Γ(6) = 7, Γ(8) = 5, Γ(10) = 11.

Then, ϑ(M,N , κ) = e−
1
κ ,M0 =M and N0 = N . Then clearly Γ(M0) ⊆ N0 and Υ(M0) ⊆

N0. Define the functions J ,S : (0, 1]→ R by

J (t) =
{ 1

ln t if 0 < t < 1
1 if t = 1

}
and S(t)=

{ 1
ln t2 if 0 < t < 1

2 if t = 1

}
.

Under the conditions of Example 2, Γ and Υ are fuzzy (J ,S)-interpolative Reich–Rus–Ciric-
type proximal in FMS. However, the following shows that Γ and Υ are not fuzzy interpolative
Reich–Rus–Ciric type proximal. We know that

ϑ(0, Γ2, 1) = ϑ(M,N , κ) = ϑ(4, Υ2, 1)
ϑ(8, Γ4, 1) = ϑ(M,N , κ) = ϑ(6, Υ4, 1).

Then there exists a non negative number λ ∈ (0, 1
2 ] such that

ϑ(ă1, ă2, λκ) ≥ (ϑ(ě1, ě2, κ))α(ϑ(ě1, ă1, κ))β(ϑ(ě2, ă2))
1−α−β

ϑ(0, 8, (0.2)1) ≥ (ϑ(4, 6, 1))
1
2 (ϑ(4, 0, 1))

1
3 (ϑ(6, 8, 1))1− 1

2−
1
3

0.0000 ≥ 0.0701
0 ≥ 0.0701,

which is a contradiction. Hence, Γ and Υ are not fuzzy interpolative Reich–Rus–Ciric-type proximal.

Theorem 3. Let M,N ⊆ (B, ϑ, ∗) in a CFMS such that N is AC with respect to M. Also,
assume that limk→∞ ϑ(ă1, ă2, κ) = 1 and M0,N0 6= ∅. Let Γ : M → N and Υ : M → N ,
satisfying the following conditions

(i) Υ dominates Γ and are fuzzy (J ,S)-interpolative Riech–Rus–Ciric-type proximal;
(ii) Γ and Υ are compact proximal;
(iii) J is a nondecreasing function, and lim inft→ε+ S(t) > J (ε+) for any ε > 0;
(iv) Γ and Υ are continuous;
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ),
ϑ(ù, Γù, κ) = ϑ(M,N , κ).

Proof. Let ù0 ∈ M0. Since Γ(M0) ⊆ Υ(M0) guarantees the existence of an element ù1 ∈
M0 such that, Γù0 = Υù1. Also, we have Γ(M0) ⊆ Υ(M0), ∃ an element ù2 ∈M0 such
that Γù1 = Υù2. This process of existence of points inM0 is implied to have a sequence
{ùn} ⊆M0 such that

Γùn−1 = Υùn,

for all positive intergral values of n, because Γ(M0) ⊆ Υ(M0).
Since Γ(M0) ⊆ N0, ∃ an element ăn inM0 such that

ϑ(ăn, Γùn, κ) = ϑ(M,N , κ), for all n ∈ N.
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Further, it follows from the choice of ùn and ăn that

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn+1), κ),
ϑ(ăn, Γ(ùn), κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ),

if
ϑ(ăn, Γùn, κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ). (12)

See that if ∃ some n ∈ N such that ăn = ăn−1, then by Equation (12), the point ăn is a
common best proximity point of the mappings Γ and Υ. On the other hand, if ăn−1 6= ăn
for all n ∈ N, then by Equation (12), we get

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn+1), κ),
ϑ(ăn, Γ(ùn), κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ).

Thus, by Equation (11), we have

J (ϑ(ăn+1, ăn, κ)) ≥ S
(
(ϑ(ăn, ăn−1, κ))α(ϑ(ăn+1, ăn, κ))β(ϑ(ăn, ăn−1, κ))1−α−β

)
.

J (ϑ(ăn+1, ăn, κ)) ≥ S
(
(ϑ(ăn+1, ăn, κ))β(ϑ(ăn, ăn−1, κ))1−α

) (13)

for all ăn−1, ăn, ăn+1, ùn, ùn+1 ∈ M. Since, S(t) > J (t) for all t > 0, by Equation (13),
we have

J (ϑ(ăn+1, ăn)) > J
(
(ϑ(ăn+1, ăn, κ))β(ϑ(ăn, ăn−1, κ))1−β

)
.

Thus, J is non-decreasing function, and we get

ϑ(ăn+1, ăn, κ) > (ϑ(ăn+1, ăn, κ))β(ϑ(ăn, ăn−1, κ))1−β.

This implies that
(ϑ(ăn+1, ăn, κ))1−β > (ϑ(ăn, ăn−1, κ))1−β.

Let (ϑ(ăn+1, ăn, κ)) = qn, we have

J (qn) ≥ S
(
(qn)

β(qn−1)
1−β
)
> J

(
(qn)

β(qn−1)
1−β
)

.

This implies qn > qn−1 for all n ∈ N. This shows that the sequence {qn} is PSD. Thus, it
converges to some element q ≥ 1. We show that q = 1. On the contrary, let q > 1 so that by
Equation (13), we get the following:

J (ε+) = lim
n→∞

J (qn) ≥ lim
n→∞

S
(
(qn)

β(qn−1)
1−β
)
≥ lim

t→q+
infS(t).

This contradicts condition (iii); hence, q = 1 and limn→∞ ϑ(ăn, ăn+1, κ) = 1. By the con-
dition (iii) and Lemma 3, we deduce that {ăn} is a Cauchy sequence. Since (B, ϑ, ∗) is
a CFMS and M ⊆ B. Since, Γ(M0) ⊆ N0, there exists an element ă∗ in M such that
limn→∞ ϑ(ăn, ă∗, κ) = 1. Moreover,

ϑ(ă∗, Γ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Γ(ùn), κ).

Also,
ϑ(ă∗, Υ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Υ(ùn), κ).

Furthermore, ϑ(ă∗, Υ(ùn), κ)→ ϑ(ă∗,N ,κ) and also ϑ(ă∗, Γ(ùn), κ)→ ϑ(ă∗,N ,κ) as n→ ∞.
As Γ and Υ CP, Υă∗ and Γă∗ are identical. Since N is AC with respect toM, there exists
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a subsequence {Υ(ùnk )} of {Υ(ùn)} and {Γ(ùnk)} of {Γ(ùn)} Such that Υ(ùnk )→ ě∗ ∈ N
and Γ(ùnk )→ ě∗ ∈ N as k→ ∞. Moreover, by letting k→ ∞ in the below equation,

ϑ(ě∗, Γ(ùnk ), κ) = ϑ(M,N , κ)
ϑ
(
ě∗, Υ

(
ùnk

)
, κ
)
= ϑ(M,N , κ).

(14)

We have,
ϑ(ě∗, ă∗, κ) = ϑ(M,N , κ).

Since, ă∗ ∈ M0, so Γ(ă∗) ∈ Γ(M0) ⊆ N0 and ∃ ξ ∈ M0. Similarly ă∗ ∈ M0, so
Υ(ă∗) ∈ Υ(M0) ⊆ N0 and there exists ξ ∈ M0 such that

ϑ(ă∗, Γ(ă∗), κ) = ϑ(ξ, Γ(ă∗), κ) = ϑ(M,N , κ),
ϑ(ă∗, Υ(ă∗), κ) = ϑ(ξ, Υ(ă∗), κ) = ϑ(M,N , κ).

(15)

Now, bearing in mind Equations (14) and (15), from (11), we have

J (ϑ(ă∗, ξ, κ)) ≥ S
(
(ϑ(ă∗, ξ, κ))α(ϑ(ă∗, ξ, κ))β(ϑ(ă∗, ξ, κ))1−α−β

)
≥ S(ϑ(ă∗, ξ, κ)) > ϑ(ă∗, ξ, κ).

Since J is non-decreasing function, we have

ϑ(ă∗, ξ, ακ) ≥ ϑ(ă∗, ξ, κ) > ϑ(ă∗, ξ, κ).

This implies ă∗ and ξ are identical. Finally, by Equation (12), we have

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of mappings
Υ and Γ.

Theorem 4. Let M,N ⊆ (B, ϑ, ∗) in a CFMS such that N is AC with respect to M. Also,
assume that limk→∞ ϑ(ă1, ă2, κ) = 1 andM0, N0 6= ∅. Let Γ : M → N and Υ : M → N ,
satisfying the following conditions

(i) Υ dominates Γ and are fuzzy (J ,S)-interpolative Riech–Rus–Ciric-type proximal;
(ii) Γ and Υ are compact proximal;
(iii) J is non-decreasing and {J (tn)} and {S(tn)} are convergent sequences such that

limn→∞ J (tn) = limn→∞ S(tn), then limn→∞ tn = 1;
(iv) Γ and Υ are continuous;
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ)
ϑ(ù, Γù, κ) = ϑ(M,N , κ).

Proof. Proceeding from the proof of Theorem 3, we have

J (qn) ≥ S
(
(qn−1)

1−β(qn)
β
)
> J

(
(qn−1)

1−β(qn)
β
)

. (16)

By Equation (16), we infer that {J (qn)} is sds. We have two cases here; either the sequence
{J (qn)} is bounded above, or it is not. If {J (qn)} is not bounded below, then

inf
wn>ε
J (qn) > −∞ for every ε > 0, n ∈ N.

It follows from Lemma 1 that qn → 1 as n → ∞. Secondly, if the sequence {J (qn)}
is bounded above, then it is a convergent sequence. By Equation (16), the sequence
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{S(qn)} also converges. Furthermore, both have the same limit. By condition (iii), we get
limn→∞ qn = 1 or limn→∞ ϑ(ăn, ùn+1, κ) = 1, for any sequence {ăn} inM. Now, following
the proof of Theorem 3, we obtain

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of the mapping
Υ and Γ.

3.3. Fuzzy (J ,S)-Kannan Type Proximal Contraction

LetMN ⊆ (B, ϑ, ∗). The mappings Υ : M→ N and Γ : M→ N are called fuzzy
(J ,S)-Kannan-type proximal contractions if

ϑ(ă1, Γù1, κ) = ϑ(M,N , κ) = ϑ(ě1, Υù1, κ)
ϑ(ă2, Γù2, κ) = ϑ(M,N , κ) = ϑ(ě2, Υù2, κ)

J (ϑ(ă1, ă2)) ≥ S
(
(ϑ(ě1, ă1))

α(ϑ(ě2, ă2))
1−α
) (17)

for all ă1, ă2, ě1, ě2, ù1, ù2 ∈ M.

Example 5. Let (B, ϑ, ∗) be a CFMS with ϑ (ù, ň, κ) = e−
|ù−ň|

κ . LetM = {0, 2, 4, 6, 8, 10} and
N = {1, 3, 5, 7, 9, 11}. Define mappings Γ :M→ N and Υ :M→ N as

Υ(0) = 3, Υ(2) = 5, Υ(4) = 7, Υ(6) = 3, Υ(8) = 9, Υ(10) = 11,

and
Γ(0) = 3, Γ(2) = 1, Γ(4) = 9, Γ(6) = 7, Γ(8) = 5, Γ(10) = 11.

Then, ϑ(M,N , κ) = e−
1
κ ,M0 =M and N0 = N . Then clearly Γ(M0) ⊆ N0 and Υ(M0) ⊆

N0. Define the functions J ,S : (0, 1]→ R by

J (t) =
{ 1

ln t if 0 < t < 1
1 if t = 1

}
and S(t)=

{ 1
ln t2 if 0 < t < 1

2 if t = 1

}
.

Under the conditions of Example 2, Γ and Υ are fuzzy (J ,S)-interpolative Kannan-type proximal
in FMS. However, the following shows that Γ and Υ are not fuzzy interpolative Kannan-type
proximal. We know that

ϑ(0, Γ2, 1) = ϑ(M,N , κ) = ϑ(4, Υ2, 1),
ϑ(8, Γ4, 1) = ϑ(M,N , κ) = ϑ(6, Υ4, 1).

Then there exists a non negative number λ = 0.2 such that

ϑ(ă1, ă2, λκ) ≥
(
(ϑ(ě1, ă1, κ))α(ϑ(ě2, ă2, κ))1−α

)
ϑ(0, 8, (0.2)1) ≥

(
(ϑ(4, 2))

1
2 (ϑ(6, 8, κ))

1
2
)

0.0000 ≥ 0.0498
0 ≥ 0.0498,

which is a contradiction. Hence, Γ and Υ are not fuzzy interpolative Kannan-type proximal.

Theorem 5. Let M,N ⊆ (B, ϑ, ∗) in a CFMS such that N is AC with respect to M. Also,
assume that limk→∞ ϑ(ă1, ă2, κ) = 1 andM0, N0 6= ∅. Let Γ : M → N and Υ : M → N
satisfying the following conditions:

(i) Υ dominates Γ and are fuzzy (J ,S)-interpolative Kannan type proximal;
(ii) Γ and Υ are compact proximal;
(iii) J is non-decreasing function and lim inft→ε+ S(t) > J (ε+) for any ε > 0;
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(iv) Γ and Υ are continuous;
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ),
ϑ(ù, Γù, κ) = ϑ(M,N , κ).

Proof. Let ù0 ∈ M0. Since Γ(M0) ⊆ Υ(M0) guarantees the existence of an element ù1 ∈
M0 s.t. Γù0 = Υù1. Also, we have Γ(M0) ⊆ Υ(M0), ∃ an element ù2 ∈ M0 such that
Γù1 = Υù2. This process of existence of points inM0 implies to have a sequence {ùn} ⊆
M0 such that

Γùn−1 = Υùn,

for all positive intergral values of n, because Γ(M0) ⊆ Υ(M0).
Since Γ(M0) ⊆ N0, ∃ an element ăn inM0 such that

ϑ(ăn, Γùn, κ) = ϑ(M,N , κ), for all n ∈ N.

Further, it follows from the choice of ùn and ăn that

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn+1), κ),
ϑ(ăn, Γùn, κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ),

if
ϑ(ăn, Γùn, κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ). (18)

Notice that, if there exists some n ∈ N such that ăn = ăn−1, then from Equation (18),
the point ăn is a common best proximity point of the mappings Γ and Υ. On the other hand,
if ăn−1 6= ăn for all n ∈ N, then from Equation (18), we get

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn), κ)
ϑ(ăn, Γ(ùn), κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn−1), κ).

Thus, from Equation (17), we have

J (ϑ(ăn+1, ăn, κ)) ≥ S
(
(ϑ(ăn+1, ăn, κ))α(ϑ(ăn, ăn−1, κ))1−α

)
. (19)

for all ăn−1, ăn, ăn+1, ùn, ùn+1 ∈ M. Since S(t) > J (t) for all t > 0, from Equation (19),
we have

J (ϑ(ăn+1, ăn, κ)) > J
(
(ϑ(ăn+1, ăn, κ))α(ϑ(ăn, ăn−1, κ))1−α

)
.

Thus, J is non-decreasing function, and we get

ϑ(ăn+1, ăn, λκ) > (ϑ(ăn+1, ăn, κ))α(ϑ(ăn, ăn−1, κ))1−α.

This implies that
(ϑ(ăn+1, ăn, λκ))1−α > (ϑ(ăn, ăn−1, κ))1−α.

Let ϑ(ăn+1, ăn, κ) = qn, we have

J (qn) ≥ S
(
(qn)

α(qn−1)
1−α
)
> J ((qn)

α(qn−1)
1−α).

This implies qn > qn−1 for all n ∈ N. This shows that the sequence {qn} is positive and
strictly non-decreasing. Hence, it converges to some element q ≥ 1. We show that q = 1.
On the contrary, let q > 1; from Equation (19), we get the following:

J (ε+) = lim
n→∞

J (qn) ≥ lim
n→∞

S
(
(qn)

α(qn−1)
1−α
)
≥ lim

t→q+
infS(t).
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This contradicts assumption (iii). Hence, q = 1 and limn→∞ ϑ(ăn, ăn+1, κ) = 1. By con-
dition (iii) and Lemma 3, we deduce that {ăn} is a Cauchy sequence. Since (B, ϑ, ∗) is
a CFMS and M ⊆ B. Since, Γ(M0) ⊆ N0, there exists an element ă∗ in M such that
limn→∞ ϑ(ăn, ă∗) = 0. Moreover,

ϑ(ă∗, Γ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Γ(ùn), κ).

Also,
ϑ(ă∗, Υ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Υ(ùn), κ).

Therefore, ϑ(ă∗, Υ(ùn), κ) → ϑ(ă∗,N ,κ) and ϑ(ă∗, Γ(ùn), κ) → ϑ(ă∗,N ,κ) as n → ∞. As
Γ and Υ are compact proximal, Υă∗ and Γă∗ are identical. Since N is AC with respect to
M, there exists a subsequence {Υ(ùnk )} of {Υ(ùn)} and {Γ(ùnk)} of {Γ(ùn)} such that
Υ(ùnk ) → ě∗ ∈ N and Γ(ùnk ) → ě∗ ∈ N as k → ∞. Moreover, by letting k → ∞ in the
below equation,

ϑ(ě∗, Γ(ùnk ), κ) = ϑ(M,N , κ)
ϑ
(
ě∗, Υ

(
ùnk

)
, κ
)
= ϑ(M,N , κ),

(20)

we have
ϑ(ě∗, ă∗, κ) = ϑ(M,N , κ).

Since, ă∗ ∈ M0, so Γ(ă∗) ∈ Γ(M0) ⊆ N0 and there exists ξ ∈ M0. Similarly ă∗ ∈ M0, so
Υ(ă∗) ∈ Υ(M0) ⊆ N0 and there exists ξ ∈ M0 such that

ϑ(ă∗, Γ(ă∗), κ) = ϑ(ξ, Γ(ă∗), κ) = ϑ(M,N , κ)
ϑ(ă∗, Υ(ă∗), κ) = ϑ(ξ, Υ(ă∗), κ) = ϑ(M,N , κ).

(21)

Now, bearing in mind Equations (20) and (21), from (17)), we have

J (ϑ(ă∗, ξ), κ) ≥ S
(
(ϑ(ă∗, ξ, κ))α(ϑ(ă∗, ξ, κ))1−α

)
≥ S(ϑ(ă∗, ξ, κ)) > ϑ(ă∗, ξ, κ).

Since J is non-decreasing function, we have

ϑ(ă∗, ξ, ακ) ≥ ϑ(ă∗, ξ, κ) > ϑ(ă∗, ξ, κ).

This implies ă∗ and ξ are identical. Finally, from Equation (18), we have

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of mappings
Υ and Γ.

Theorem 6. LetM,N ⊆ (B, ϑ, ∗) in a CFMS such that N is AC with respect toM. Suppose
that limk→∞ ϑ(ă1, ă2, κ) = 1 andM0, N0 6= ∅. Let Γ : M→ N and Υ : M→ N , satisfying
the following conditions:

(i) Υ dominates Γ and are fuzzy (J ,S)-interpolative Kannan-type proximal;
(ii) Γ and Υ are compact proximal;
(iii) J is non-decreasing and {J (tn)} and {S(tn)} are convergent sequences such that

limn→∞ J (tn) = limn→∞ S(tn), then limn→∞ tn = 1;
(iv) Γ and Υ are continuous;
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ),
ϑ(ù, Γù, κ) = ϑ(M,N , κ).
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Proof. Proceeding as in the proof of Theorem 5, we get

J (qn) ≤ S
(
(qn−1)

1−β(qn)
β
)
< J

(
(qn−1)

1−β(qn)
β
)

. (22)

From Equation (16), we infer that {J (qn)} is sds. We have two cases here; either the
sequence {J (qn)} is bounded above, or it is not. If {J (qn)} is not bounded above, then

inf
wn>ε
J (qn) > −∞ for every ε > 0, n ∈ N.

It follows from Lemma 1 that qn → 1 as n → ∞. Secondly, if the sequence {J (qn)}
is bounded above, then it is a convergent sequence. From Equation (16), the sequence
{S(qn)} also converges. Furthermore, both have the same limit. From condition (iii), we get
limn→∞ qn = 1, or limn→∞ ϑ(ăn, ùn+1, κ) = 1, for any sequence {ăn} inM. Now, following
the proof of Theorem 5, we have

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of the mapping
Υ and Γ.

3.4. Fuzzy (J ,S)-Interpolative Hardy–Rogers-Type Proximal Contraction

LetM, N ⊆ (B, ϑ, ∗). The mappings Υ :M→ N and Γ :M→ N are called fuzzy
(J ,S)-interpolative Hardy Roger’s type proximal contraction if

ϑ(ă1, Γù1, κ) = ϑ(M,N , κ) = ϑ(ě1, Υù1, κ)
ϑ(ă2, Γù2, κ) = ϑ(M,N , κ) = ϑ(ě2, Υù2, κ)

J (ϑ(ă1, ă2, κ)) ≤ S
(
(ϑ(ě1, ě2, κ))α(ϑ(ě1, ă1, κ))β(ϑ(ě2, ă2, κ))γ((ϑ(ě1, ă2, κ))δϑ(ě2, ă1, κ)

))1−α−β−γ
) (23)

for all ă1, ă2, ě1, ě2, ù1, ù2 ∈ M.

Example 6. Let (B, ϑ, ∗) be a CFMS with ϑ (ù, ň, κ) = e−
|ù−ň|

κ . LetM = {0, 2, 4, 6, 8, 10} and
N = {1, 3, 5, 7, 9, 11}. Define mappings Γ :M→ N and Υ :M→ N as

Υ(0) = 3, Υ(2) = 5, Υ(4) = 7, Υ(6) = 3, Υ(8) = 9, Υ(10) = 11,

and
Γ(0) = 3, Γ(2) = 1, Γ(4) = 9, Γ(6) = 7, Γ(8) = 5, Γ(10) = 11.

Then, ϑ(M,N , κ) = e−
1
κ ,M0 =M andN0 = N . Then clearly, Γ(M0) ⊆ N0 and Υ(M0) ⊆

N0. Define the functions J ,S : (0, 1]→ R by

J (t) =
{ 1

ln t if 0 < t < 1
1 if t = 1

}
and S(t)=

{ 1
ln t2 if 0 < t < 1

2 if t = 1

}
.

Under the conditions of Example 2, the mappings Γ and Υ are fuzzy (J ,S)-interpolative Hardy–
Rogers-type proximal in FMS. However, the following shows that Γ and Υ are not fuzzy interpolative
Hardy–Rogers-type proximal. We know that

ϑ(8, Γ4, κ) = ϑ(M,N , κ) = ϑ(6, Υ4, κ)
ϑ(0, Γ2, κ) = ϑ(M,N , κ) = ϑ(4, Υ2, κ).

If there exists a non-negative number λ = 0.2. Then,
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(ϑ(ă1, ă2, λκ))

≥ (ϑ(ě1, ě2, κ))α(ϑ(ě1, ă1, κ))β(ϑ(ě2, ă2, κ))γ((ϑ(ě1, ă2, κ))δϑ(ě2, ă1, κ)
))1−α−β−γ

ϑ(8, 2, 1(0.2))
≥ (ϑ(6, 4, 1))0.01(ϑ(4, 8, 1))0.02(ϑ(4, 0, 1))0.03(ϑ(6, 0, 1))0.04(ϑ(4, 8, 1))0.9

0.0000 ≥ 0.0179,

which is a contradiction. Hence, mappings Γ and Υ are not fuzzy interpolative Hardy–Rogers-type
proximal.

Theorem 7. Let M,N ⊆ (B, ϑ, ∗) in a CFMS such that N is AC with respect to M. Also,
assume that limk→∞ ϑ(ă1, ă2, κ) = 1 andM0, N0 6= ∅. Let Γ : M → N and Υ : M → N ,
satisfying the following conditions

(i) Υ dominates Γ and are fuzzy (J ,S)-interpolative Hardy–Rogers-type proximal;
(ii) Γ and Υ are compact proximal;
(iii) J is nondecreasing function and lim supt→ε+ S(t) < J (ε+) for any ε > 0;
(iv) Γ and Υ are continuous;
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù) = ϑ(M,N ),
ϑ(ù, Γù) = ϑ(M,N ).

Proof. Let ù0 ∈ M0. Since Γ(M0) ⊆ Υ(M0) guarantees the existence of an element ù1 ∈
M0 such that, Γù0 = Υù1. Also, we have Γ(M0) ⊆ Υ(M0), ∃ an element ù2 ∈M0 such
that Γù1 = Υù2. This process of existence of points inM0 is implied to have a sequence
{ùn} ⊆M0 such that

Γùn−1 = Υùn,

for all positive integral values of n, because Γ(M0) ⊆ Υ(M0).
Since Γ(M0) ⊆ N0, there exists an element ăn inM0 such that

ϑ(ăn, Γùn, κ) = ϑ(M,N , κ), for all n ∈ N.

Further, it follows from the choice of ùn and ăn that

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Γùn, κ),
ϑ(ăn, Υ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn), κ),

if
ϑ(ăn, Γùn, κ) = ϑ(M,N ) = ϑ(ăn−1, Υ(ùn), κ). (24)

Notice that, if there exists some n ∈ N such that ăn = ăn−1, then by Equation (24), the
point ăn is a common best proximity point of the mappings Γ and Υ. On the other hand, if
ăn−1 6= ăn for all n ∈ N, then from Equation (24), we obtain

ϑ(ăn+1, Γ(ùn+1), κ) = ϑ(M,N , κ) = ϑ(ăn, Υ(ùn), κ),
ϑ(ăn, Γ(ùn), κ) = ϑ(M,N , κ) = ϑ(ăn−1, Υ(ùn−1), κ).

Thus, from Equation (23), we have
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J (ϑ(ăn+1, ăn, κ)) ≥ S
(

(ϑ(ăn, ăn−1, κ))α(ϑ(ăn, ăn+1, κ))β

(ϑ(ăn−1, ăn, κ))γ((ϑ(ăn, ăn, κ))δ(ϑ(ăn−1, ăn+1, κ)
))1−α−β−γ−δ

)

≥ S
(

(ϑ(ăn, ăn−1, κ))α(ϑ(ăn, ăn+1, κ))β

(ϑ(ăn−1, ăn, κ))γ((ϑ(ăn−1, ăn+1, κ))1−α−β−γ−δ

)
(25)

for all ăn−1, ăn, ăn+1, ùn, ùn+1 ∈ M. Since S(t) > J (t) for all t > 0, from Equation (25),
we have

J (ϑ(ăn+1, ăn, κ))

> J
(
(ϑ(ăn, ăn−1, κ))α(ϑ(ăn+1, ăn, κ))β(ϑ(ăn+1, ăn, κ))γ((ϑ(ăn−1, ăn+1, κ))1−α−β−γ−δ

)
.

Thus, J is a non-decreasing function, and we get

ϑ(ăn+1, ăn, κ))

> (ϑ(ăn, ăn−1, κ))α(ϑ(ăn+1, ăn, κ))β(ϑ(ăn+1, ăn, κ))γ((ϑ(ăn−1, ăn+1, κ))1−α−β−γ−δ

ϑ(ăn+1, ăn, κ)

> (ϑ(ăn, ăn−1, κ))α(ϑ(ăn+1, ăn, κ))β(ϑ(ăn+1, ăn, κ))γ((ϑ(ăn−1, ăn, κ).ϑ(ăn, ăn+1, κ))1−α−β−γ−δ

ϑ(ăn+1, ăn, κ)

> (ϑ(ăn−1, ăn, κ))1−β−γ−δ(ϑ(ăn−1, ăn, κ))1−α−δ.

This implies that

ϑ(ăn+1, ăn, κ) > (ϑ(ăn−1, ăn, κ))1−β−γ−δ(ϑ(ăn−1, ăn, κ))1−α−δ.

Let (ϑ(ăn+1, ăn, κ)) = qn, we have

J (qn) ≥ S
(
(qn−1)

1−β−γ−δ(qn)
1−α−δ

)
> J

((
(qn−1)

1−β−γ−δ(qn)
1−α−δ

))
.

Assume that qn > qn−1 for some n ≥ 1. Since J is non-decreasing, then by (25), we get

(qn) >
((

(qn−1)
1−β−γ−δ(qn)

1−α−δ
))

. This is not possible. Hence, we obtain qn > qn−1 for
all n ≥ 1. Thus, it converges to some element q ≥ 1. We show that q = 1. On the contrary,
let q > 1; from Equation (25), we get the equation below:

J (ε+) = lim
n→∞

J (qn) ≥ lim
n→∞

S
((

(qn−1)
1−β−γ−δ(qn)

1−α−δ
))
≥ lim

t→q+
infS(t).

This contradicts condition (iii), hence q = 1 and limn→∞ ϑ(ăn, ăn+1, κ) = 1. By condition
(iii) and Lemma 3, we deduce that {ăn} is a Cauchy sequence. Since (B, ϑ, ∗) is a CFMS
andM⊆ B. Since Γ(M0) ⊆ N0, ∃ an element ă∗ inM such that limn→∞ ϑ(ăn, ă∗, κ) = 1.
Moreover,

ϑ(ă∗, Γ(ùn), κ) ≥ ϑ(ă∗, ăn, κ).ϑ(ăn, Γ(ùn), κ).

Also,
ϑ(ă∗, Υ(ùn), κ) ≥ ϑ(ă∗, ăn).ϑ(ăn, Υ(ùn)).

Therefore, ϑ(ă∗, Υ(ùn), κ) → ϑ(ă∗,N , κ) and also ϑ(ă∗, Γ(ùn), κ) → ϑ(ă∗,N , κ) as n → ∞.
As Γ and Υ are compact proximal, Υă∗ and Γă∗ are identical. Since N is AC with respect
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toM, ∃ a subsequence {Υ(ùnk )} of {Υ(ùn)} and {Γ(ùnk)} of {Γ(ùn)} such that Υ(ùnk )→
ě∗ ∈ N and Γ(ùnk )→ ě∗ ∈ N as k→ ∞. Moreover, by letting k→ ∞ in the below equation,

ϑ(ě∗, Γ(ùnk ), κ) = ϑ(M,N , κ),
ϑ
(
ě∗, Υ

(
ùnk

)
, κ
)
= ϑ(M,N , κ),

(26)

we have
ϑ(ě∗, ă∗, κ) = ϑ(M,N , κ).

Since, ă∗ ∈ M0, so Γ(ă∗) ∈ Γ(M0) ⊆ N0 and ∃ ξ ∈ M0. Similarly, ă∗ ∈ M0, so
Υ(ă∗) ∈ Υ(M0) ⊆ N0 and ∃ ξ ∈ M0 such that

ϑ(ă∗, Γ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Υ(ă∗), κ)
ϑ(ξ, Γ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ξ, Υ(ă∗), κ).

(27)

Now, bearing in mind Equations (26) and (27), from (23), we have

J (ϑ(ă∗, ξ, κ)) ≥ S
(
(ϑ(ă∗, ξ, κ))α(ϑ(ă∗, ξ, κ))β

)
≥ S(ϑ(ă∗, ξ, κ))
> ϑ(ă∗, ξ, κ).

Since J is a non-decreasing function, we have

ϑ(ă∗, ξ, ακ) ≥ ϑ(ă∗, ξ, κ) > ϑ(ă∗, ξ, κ).

This implies ă∗ and ξ are identical. Finally, from Equation (24), we have

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of mappings
Γ and Υ.

Theorem 8. LetM,N ⊆ (B, ϑ, ∗) such that N is AC with respect toM. Also, assume that
limk→∞ ϑ(ă1, ă2, κ) = 1 and M0, N0 6= ∅. Let Γ : M → N and Υ : M → N satisfy the
following conditions:

(i) Υ dominates Γ and are fuzzy (J ,S)-interpolative Hardy–Rogers-type proximal;
(ii) Γ and Υ are compact proximal;
(iii) J is non-decreasing and {J (tn)} and {S(tn)} are convergent sequences such that

limn→∞ J (tn) = limn→∞ S(tn), then limn→∞ tn = 1;
(iv) Γ and Υ are continuous;
(v) Γ(M0) ⊆ N0 and Γ(M0) ⊆ Υ(M0).

Then, Υ and Γ have a unique element ù ∈ M such that

ϑ(ù, Υù, κ) = ϑ(M,N , κ),
ϑ(ù, Γù, κ) = ϑ(M,N , κ).

Proof. Proceeding as in the proof of Theorem 7, we have

J (qn) ≥ S
((

(qn−1)
1−β−γ−δ(qn)

1−α−δ
))

> J
((

(qn−1)
1−β−γ−δ(qn)

1−α−δ
))

.
(28)

By Equation (28), we infer that {J (qn)} is sds. We have two cases here; either the sequence
{J (qn)} is bounded above, or it is not. If {J (qn)} is not bounded above, then

inf
wn>ε
J (qn) > −∞ for every ε > 0, n ∈ N.
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It follows from Lemma 1 that qn → 1 as n → ∞. Secondly, if the sequence {J (qn)}
is bounded above, then it is a convergent sequence. By Equation (28), the sequence
{S(qn)} also converges. Furthermore, both have the same limit. By condition (iii), we get
limn→∞ qn = 1, or limn→∞ ϑ(ăn, ùn+1, κ) = 1, for any sequence {ăn} inM. Now, following
the proof of Theorem 7, we obtain

ϑ(ă∗, Υ(ă∗), κ) = ϑ(M,N , κ) = ϑ(ă∗, Γ(ă∗), κ).

This shows that the point ă∗ is a common best proximity point of the pair of the mapping
Υ and Γ.

4. Application

In this part, we utilize Theorem 1 to find the existence and uniqueness of a solution
to UIE:

`(h̄) = f (h̄) +
∫
IR

k1(h̄, s, `(s))ds. (29)

Depending on the integration region (IR), this integral equation involves both the Volterra
integral equation (VIE) and the Fredholm integral equation (FIE). If IR = (a, x), where a
is fixed, then UIE is VIE. For this, we consider a common best proximity point approach.
The common best proximity point technique is a straightforward and attractive way to
demonstrate that each additional mathematical model has a singular solution.

Suppose IR is a set of finite measures, and

£2
IR =

`
∫
IR

| `(s) |2 ds < ∞

.

Define the norm ‖ . ‖: £2
IR → [0, ∞) by

‖ ` ‖=
√∫

IR

| `(s) |2 ds, for all ` ∈ £2
IR (30)

The following formula of an equivalent norm is given:

‖ ` ‖=

√√√√√sup

e
−ν
∫
IR

α(s)ds ∫
IR

| `(s) |2 ds

, for all ` ∈ £2
IR, ν > 1. (31)

Then,
(
£2

IR, ‖ . ‖2,ν
)

is a Banach space. Let B =
{
` ∈ £2

IR : `(s) > 0 for almost every s
}

. The

FM ϑν associated with the norm ‖ . ‖2,ν is given by ϑν(`, ) = ϑν(`, f , κ) = e−
‖`− f ‖

κ for all
`, f ∈ B. Then (B, ϑ, ∗) is an CFMS. Let

(A1) The Kernal k1 : IR× IR×R→ R satisfies Carthodory conditions, and

| k1(h̄, s, `(s)) |≤ w(h̄, s) + e(h̄, s); w, e ∈ £2(IR× IR), e(h̄, s) > 0.

(A2) The function f : IR→ [1, ∞) is continuous and bounded on IR.
(A3) There exists a positive constant C such that

sup
h̄∈IR

∫
IR
| k1(h̄, s)ds ≤ C.

(A4) Let `0 ∈ M. Since Γ(M) ⊆ Υ(M) guarantees the existence of an element `1 ∈ M
such that, Γ`0 = Υ`1. Also, we have Γ(M) ⊆ Υ(M).
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(A5) There exists a nonnegative and measurable function q : IR× IR→ R such that

α(h̄) =
∫

IR
q2(h̄, s)ds ≤ 1

νM2

and integrable over IR with

e−
|k1(h̄,s,`(s))−k1(h̄,s, f (s))|

κ ≥ e−
q(h̄,s)

κ e−
|`(s)− f (s)|

κ

for all h̄, s ∈ IR and `, f ∈ M.

Theorem 9. Suppose the mapping f and k1 mentioned above verify the conditions (A1)–(A2), then,
the UIE Equation (29) has a unique solution.

Proof. Define the pair of mappings Γ, Υ :M→ N , in accordance with the abovementioned
notations, by

(ϑ`)(h̄) = f (h̄) +
∫

IR
k1(h̄, s, `(s))ds. (32)

Let `, j ∈ M, since, for almost every h̄ ∈ IR

(ϑ`)(h̄) = f (h̄) +
∫

IR
k1(h̄, s, `(s))ds ≥ 1.

Conditions (A1)–(A2) imply that ϑ is continuous and compact mapping fromM to N . By
(A4) we will check the contractive condition of Equation (7) of Theorem 1 in the next lines.
By (A5) and the Holder inequality, we have

e−
|(ϑ`)(h̄)−(ϑ f )(h̄)|2

κ = e−
|
∫

IR
k1(h̄,s,`(s))ds−

∫
IR

k1(h̄,s, f (s))ds|2

κ

≥ e

−
(∫

IR
|k1(h̄,s,`(s))−k1(h̄,s, f (s))|ds

)2

κ

≥ e−
(
∫

IR q(h̄,s)|l(s)− f (s)|ds)2

κ

≥ e−
∫

IR q2(h̄,s)ds
κ .e

−
∫

IR |`(s)− f (s)|2ds

κ

≥ e−
α(h̄)

κ .e−
∫

IR |`(s)− f (s)|2ds
κ .

This implies, by integrating with respect to h̄,

e−
|(ϑ`)(h̄)−(ϑ f )(h̄)|2dh̄

κ ≥ e−
∫

IR(α(h̄).
∫

IR |`(s)− f (s)|2ds)dh̄
κ

= e−
∫

IR

(
α(h̄)eν

∫
IR α(s)ds .e−ν

∫
IR α(s)ds

∫
IR |`(s)− f (s)|2ds

)
dh̄

κ

≥ e−
‖`− f ‖22,ν

∫
IR α(h̄)eν

∫
IR α(s)dsdh̄

κ

≥ e−
‖`− f ‖22,νeν

∫
IR α(s)ds

νM2κ
.

Thus, we have

e−
M2e−ν

∫
IR α(s)ds |(ϑ`)(h̄)−(ϑ f )(h̄)|2dh̄

νκ ≥ e−
‖`− f ‖22,ν

κ .

This implies that

e−
M2‖(ϑ`)−(ϑ f )‖22,ν

νκ ≥ e−
‖`− f ‖22,ν

κ .
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That is
L(`, f )dν((ϑ`), (ϑ f ), κ) ≥ dν(`, f ).

Define J (s) = 1
ln(s) and S(s) = 1

ln(s2)
; then, we have

J (L(`, f )dν((ϑ`), (ϑ f ), κ)) ≥ S(F1(`, f )).

The defined J and S satisfy the remaining conditions of the Theorem 1. Hence, from
Theorem 1, the operator ϑ has a unique point. This means that the UIE Equation (29) has a
unique solution.

5. Conclusions

In this manuscript, we have introduced several new types of contractive conditions
that ensure the existence of common best proximity points in the framework of FMS.
Our examples show that the new contractive conditions generalize the corresponding
contractions from the existing literature. The contraction conditions (1), (11), (17) and (23)
can be used to demonstrate the presence of solutions to the models of linear and nonlinear
dynamic systems, depending on their nature (linear or nonlinear). This paper’s study
expands on the worthwhile research that was previously published in [7,8,11–13].
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