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Abstract: The purpose of this work is to provide applications of real, complex, and functional analysis
to moment, interpolation, functional equations, and optimization problems. Firstly, the existence
of the unique solution for a two-dimensional full Markov moment problem is characterized on the
upper half-plane. The issue of the unknown form of nonnegative polynomials on R×R+ in terms
of sums of squares is solved using polynomial approximation by special nonnegative polynomials,
which are expressible in terms of sums of squares. The main new element is the proof of Theorem 1,
based only on measure theory and on a previous approximation-type result. Secondly, the previous
construction of a polynomial solution is completed for an interpolation problem with a finite number
of moment conditions, pointing out a method of determining the coefficients of the solution in terms
of the given moments. Here, one uses methods of symmetric matrix theory. Thirdly, a functional
equation having nontrivial solution (defined implicitly) and a consequence are discussed. Inequalities,
the implicit function theorem, and elements of holomorphic functions theory are applied. Fourthly,
the constrained optimization of the modulus of some elementary functions of one complex variable
is studied. The primary aim of this work is to point out the importance of symmetry in the areas
mentioned above.

Keywords: polynomial approximation; moment problem; symmetric matrix; self-adjoint operator;
implicitly defined function; holomorphic solution
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1. Introduction

The classical moment problem is an interpolation problem with the positivity condition
on the solution. Namely, given a sequence

(
yj
)

j≥0 of real numbers, one studies the existence,
the uniqueness, and, eventually, the construction of a nondecreasing real-valued function
σ(t) (t ≥ 0), which verifies the moment conditions

∫ ∞
0 tjdσ = yj (j = 0, 1, 2, . . .). This is the

original formulation of the moment problem on [0, ∞), as in the works of T.J. Stieltjes [1],
recalled by N.I. Akhiezer in [2]. If such a function σ does exist, the sequence (yk)k≥0
is called a Stieltjes moment sequence. In the Markov moment problem, other than the
interpolation conditions, a sandwich condition on the solution is imposed as well. Going
back to the problem formulated by T.J. Stieltjes, this is a one-dimensional moment problem
on an unbounded interval. Specifically, it is an interpolation problem with the condition
on the positivity of the measure dσ. The numbers yj, j ∈ N = {0, 1, 2, . . .} are called the
moments of the measure dσ. The moment problem is an inverse problem: one is looking for
an unknown measure, starting from its given moments. The following notations are used:

N = {0, 1, 2, . . .}, R+ = [0,+∞).

ϕj(t) := ϕj(t) = tj = tj1
1 · · · t

jn
n , j = (j1, . . . , jn) ∈ Nn,
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t = (t1, . . . , tn) ∈ F, n ∈ N, n ≥ 1.

For a set F = F1×· · ·×Fn ⊆ Rn, n ∈ N, n≥ 2, and functions fl : Fl → R, l = 1, . . . ,n, denote

f1
⊗
· · ·

⊗
fn : F → R,

(
f1
⊗
· · ·

⊗
fn

)
(t1, . . . , tn) := f1(t1) · · · fn(tn).

In general, F is a closed bounded or unbounded subset in Rn, P = R[t1, . . . , tn] is the
real vector space of all polynomials with real coefficients, and P+(F) denotes the convex cone
of all polynomials p ∈ P , taking nonnegative values at all points of F. If X is an ordered vector
space, one denotes by X+ the positive cone of X. The open unit disc in the complex plane is
denoted by U, and T is its boundary, the unit circle. If Y is a Banach lattice and

(
yj
)

j∈Nn is a
given sequence of elements in Y, by a solution for the interpolation problem

T
(

ϕj
)
= yj, j ∈ Nn, (1)

One means a linear operator T which verifies (1), mapping a Banach lattice X con-
taining the space of polynomials and the space Cc(F) of all real-valued continuous and
compactly supported functions defined on F into the space Y. In most cases, when Y = R,
one has a scalar-valued solution. When Y is a function or operator Banach lattice, one
requires the order completeness of Y. The reason is to permit application of the Hahn–
Banach-type extension results of linear operators having Y as codomain. For general
knowledge on the moment problem and related areas, see monographs [2–5]. Basic results
in real and complex analysis published in [6] are applied in the present study. Further
knowledge in analysis and functional analysis, accompanied by applications, can be found
in [7–11]. For more general results than those of Section 3.2 below, related to self-adjoint
operators and Hankel moment matrices, see [12]. In the case of the classical moment prob-
lem, other than the interpolation conditions (1), the positivity of the solution is imposed:
x ≥ 0 in X =⇒ T(x) ≥ 0 in Y. If Y = R, this positivity condition implies the representation
of the linear positive functional T by means of a positive Borel regular measure [6] on
F. A variant of the Markov moment problem appearing in the present article consists of
requirements (1) and (2) on the solution, where (2) is as follows:

T1(x) ≤ T(x) ≤ T2(x) ∀x ∈ X+. (2)

Basic earlier results on the classical moment problem have been published in
references [13–15]. Articles [16,17] provide solutions to the moment problem on special
compact subsets of Rn. The expression of polynomials taking positive values on these
compact subsets in terms of special positive polynomials follows as well. In [18], an op-
erator valued moment problem is solved. Article [19] applies extension theorems with
two constraints on the linear extension under attention in the Markov moment problem.
The codomain space is an order-complete vector lattice. In the articles [20–22], the study
of the moment problem on semi-algebraic compact subsets [17] is strongly improved and
generalized. Moreover, in [22], the author solves a moment problem on an unbounded
semi-algebraic subset. The very recent article [23] applies methods of operator theory to
study the stability in some truncated moment problems. Recall that, for n ≥ 2, there exist
nonnegative polynomials on Rn which are not sums of squares. Hence, in this case, moment
problems cannot be solved directly in terms of quadratic forms. An exception is the case
pointed out by M. Marshall [24], who found and proved the explicit form of nonnegative
polynomials on a strip in terms of sums of squares. This is not a problem in the case n = 1,
since any nonnegative polynomial on R is a sum of two squares of polynomials. A similar
well-known result is valid for a nonnegative polynomial on the nonnegative semiaxis (see
Theorem 2 below). In [25,26], some main results are proven. Namely, in [26], the authors
prove that, for n ≥ 2, there exist moment determinate measures ν on Rn, such that the
polynomials are not dense in L2

ν(Rn). New checkable sufficient conditions for determinacy
of some usual important measures are proven in [27]. The articles [28,29] solve optimization
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problems related to the truncated moment problem. In [30], the author constructs a solu-
tion for the full moment problem, as a limit of solutions for truncated moment problems.
Articles [31,32] provide interesting approximation results, not necessarily referring to the
moment problem. References [4,5,18,19,33–37] are devoted to, or contain significant results
on, the Markov moment problem. Existence, uniqueness, or construction of the solutions
of some Markov moment problems are under attention. Finally, the paper [38] refers to
some functional and operatorial equations, whose study is completed in the present ar-
ticle. The unknown function is defined implicitly, and its explicit solution is difficult or
impossible to find. The complex case was also considered in [38]. The references illustrate
the connection of the moment problem and of functional equations with other research
areas, such as operator theory, approximation, optimization, algebra, real and complex
analysis, geometric functional analysis, and inverse problems. The first aim of this paper is
to apply and give a new proof for the previous polynomial approximation and Markov
moment problem results for concrete spaces. The motivation is that that, since the explicit
form of nonnegative polynomials is not known, one must approximate any nonnegative
function of the positive cone of the space L1

ν(F), where ν is a positive moment determinate
measure with special nonnegative polynomials. Such polynomials are expressible in terms
of sums of squares. Then, passing to the limit, the proof of Theorem 2 from below follows.
Namely, in Section 3.1, a two-dimensional full Markov moment problem on F := R×R+

is solved via this method. Unlike the recently reviewed results in [36,37], which refer to
the vector-valued moment problem (or to operator-valued moment problems), here, the
focus is on the classical scalar Markov moment problem. In this classical case, the linear
solution is represented by function h ∈ L∞

dν(R×R+), and the inequalities h1 ≤ h ≤ h2
hold almost everywhere in R×R+. Therefore, measure theory results for representing the
linear form solution are also applied. The existence and the uniqueness of the solutions
are derived. This classical case is important since, here, the quadratic forms appearing in
Theorem 2, point (b) have real coefficients. Thus, their signature can be determined by
means of computational algebraic methods. Theorem 2 follows from Theorem 1, whose
proof is new, more complete, and simple, but is omitted in [36,37]. The second purpose
is to complete the construction of a polynomial solution for the reduced interpolation
problem (1), involving only a finite number of conditions (1) (when jl ≤ d, l = 1, . . . , n,
for a fixed positive integer d). This is carried out in Section 3.2. Then, in Section 3.3, a
concrete functional equation whose solution is defined implicitly is discussed. Special
care is accorded to the analyticity of the solutions (see [38] and Theorem 4, discussed in
Section 3.3). A related inequality which is valid for a large class of self-adjoint operators is
derived in Theorem 5. In Section 3.4, optimization of the modulus of the function

ψ(z) =
1
2
(z + 1/z), on the circular annulus {z ∈ C; r ≤ |z| ≤ R}, 0 < r < R < ∞,

is studied. The points where the extreme values are attained are also determined.
All the spaces and linear operators/functionals are considered over the real field un-
less another specification is mentioned. A connection of the function ψ with the pre-
vious section is briefly outlined. In the end, optimization problems of the function
ψα(z) := ψ(zα) = (1/2)(zα + z−α), z ∈ Cr {0}, α ∈ R, on the circular annulus

{z ∈ C; r ≤ |z| ≤ R}, 0 < r < R < 1,

are deduced. The rest of the paper is organized as follows. Section 2 summarizes the basic
methods applied in this work. Section 3 is devoted to the results and their motivations,
while Section 4 (Discussion) and Section 5 (Conclusions) conclude the paper.

2. Methods

The methods applied in this article can be summarized as follows:
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(I) Evaluation of the consequences of polynomial approximation on unbounded closed
subsets F ⊆ Rn, n ≥ 1, by means of special polynomials, and their applications
to the characterization of the existence and uniqueness of the solution of the full
Markov moment problem on L1

ν(F), where ν is a moment determinate measure on
F. See [27,36,37] and the refences therein for details and general type results. To
prove the applied approximation result of Theorem 1 and the related previous results
from [36,37], measure theory and a fundamental theorem in functional analysis were
applied. Among other results, Fubini’s theorem and Haviland theorem [13] were used,
as well as an extension of linear positive functionals and operators from a majorizing
subspace to the entire domain-ordered vector space [8]. This is a Hahn–Banach-
type result. For much more general theorems on the moment problem, deduced
from extension of linear operator-type results and giving necessary and sufficient
conditions on the existence of the constrained solution, see [19]. Such earlier results
do not use any approximation theorem on unbounded subsets of Rn; only polynomial
approximation on compact subsets [16] are applied (see also [17]). On the other hand,
in references [36,37], polynomial approximation on unbounded subsets is studied
as well.

(II) Decomposition of Rd+1 (d ∈ Nr {0}) as direct sum of orthogonal eigenspaces asso-
ciated with the symmetric Hankel moment matrix. Such a result also holds true in
infinite dimensional separable Hilbert spaces H, for compact self-adjoint operators
from H to H (see [7]). This method led to the polynomial solution of the reduced in-
terpolation problem solved in Section 3.2. See [12] for recently published deep results
in operator theory, most of them referring to self-adjoint operators defined on proper
vector subspaces of a Hilbert space and associated with Hankel moment matrices.

(III) Applying results of analysis over the real field [6,10] and elements of complex analysis [6]
for solving functional equations when the unknown holomorphic function is defined
implicitly, by means of a given holomorphic function with natural properties. In the
present work, this is one of the subjects which is carefully focused on. The analyticity
of the involved given or unknown functions plays a significant role. All these analytic
functions apply the intersection of their domain with the real axis into the real axis.

(IV) Functional calculus for self-adjoint operators [7,8].
(V) Using known inequalities from which new ones are derived. Almost all the results

involve this.
(VI) Application of the maximum modulus principle of holomorphic functions for deter-

mining the extreme values and the points where they are attained, for the modulus of
Joukowski’s function and for a related elementary function in a closed circular annu-
lus not containing the origin. The corresponding result for fractional powers of the
complex variable z is also deduced.

(VII) Measure theory [6,10,27].

3. Results
3.1. Solving Full Scalar-Valued Markov Moment Problems on Unbounded Subsets

These results start with a new detailed proof for one of the previous results on polyno-
mial approximation on unbounded subsets. Here, any Stone–Weierstrass uniform approxi-
mation on compact subsets is used. Then, the solution for a full Markov moment problem
on R×R+ is derived.

As seen in the Introduction, in the classical moment problem, the positivity of the
solution or/and sandwich conditions on the positive cone of the domain space have been
studied (see also the Introduction and the references on the moment problem). If a full
moment problem on an unbounded subset is under investigation, then the uniqueness
of the solution makes sense as well. Next, some consequences of a few results from [37]
are proven, where the key point consists of polynomial approximation on unbounded
subsets. In the sequel, a two-dimensional Markov moment problem is investigated. Recall
the notion of a moment determinate measure ν on a closed subset F of Rn. The positive
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Borel measure ν on F is moment-determinate if it is uniquely determinate by its classical
moments (which are assumed to be finite). In other words, ν is moment determinate on F
if, for any other measure µ, for which∫

F
tjdµ =

∫
F

tjdν ∀j ∈ Nn,

µ = ν are present as measures (that is,
∫

F ϕdµ =
∫

F ϕdν. for any real-valued continuous
compactly supported function ϕ defined on F) (see [2,4,12,25–27] and many other sources
on this subject). This section starts with a new proof for one of the previous polynomial
approximation results. Let dν1 = f1(t1)dt1, (with f1 ∈ L1

dt1
(R+)) be a positive moment-

determinate measure on R+, with finite moments of all orders, and dν2 = f2(t2)dt2, (with
f2 ∈ L1

dt2
(R+)) be a positive moment-determinate measure on R+, with finite moments

of all orders. On R×R+, consider the product measure ν = ν1 × ν2. Unlike the previous
proof of such a result, which used Bernstein polynomials in several variables, measure
theory plays the central role in the proof of the next theorem.

Theorem 1. Any nonnegative function f ∈ L1
ν(R×R+) can be approximated in L1

ν(R×R+)
by a sequence of special nonnegative polynomials (pm)m∈N , where each pm is a finite sum of
polynomials pm,1

⊗
pm2 , with pm1 ∈ P+(R), pm2 ∈ P+(R+).

Proof. Any nonnegative function f ∈ L1
ν(R×R+) can be approximated in L1

ν(R×R+) by a se-
quence of simple functions, each of which is a finite sum of terms of the form aχ[a1,b1)×[a2,b2)

=
aχ[a1,b1)

⊗
χ[a2,b2)

, a ∈ R+. Consider the cell-decomposition of an open subset of R×R+ as a
union of disjoint rectangles [a1, b1)× [a2, b2). Since any such rectangle is the union of the com-
pact rectangles of the form [a1, b1 − εk]× [a2, b2 − εk], εk ↓ 0, it is sufficient to approximate
any function of the form χ[a1,c1]×[a2,c2]

by qm
⊗

rm, with
qm ∈ P+(R), rm ∈ P+(R+), in the space L1

ν(R×R+). A simple measure theory argument
ensures the existence of a decreasing sequence (hm)m of continuous nonnegative functions
on R, hm ↓ χ[a1,c1]

, hm(t1) = 1 ∀t1 ∈ [a1,, c1], hm(t1) = 0 ∀t1 ∈ Rr [a1 − εm, c1 + εm], εm ↓ 0.
The convergence hm ↓ χ[a1,c1]

holds pointwise on R. For each m ∈ N, application of one of the
results from [36,37] leads to the existence of a polynomial qm ∈ P+(R), qm(t1) ≥ hm(t1) ≥ 0
for all t1 ∈ R, such that ∫

R
(qm(t1)− hm(t1))dν1 → 0, m→ ∞.

This results in 0 ≤ qm(t1)− χ[a1,c1]
(t1) = (qm − hm)(t1) +

(
hm − χ[a1,c1]

)
(t1) for all

t1 ∈ R; hence, ∫
R

(
qm − χ[a1,c1]

)
dν1 → 0, m→ ∞.

The conclusion is that qm → χ[a1,c1]
in L1

ν1
(R), qm ≥ χ[a1,c1]

≥ 0 on R. Proceeding in
the same way, one infers the existence of a sequence of polynomials rm → χ[a2,c2]

, m→ ∞,
the convergence holding in L1

ν2
(R+). Moreover, rm(t2) ≥ χ[a2,c2](t2) ≥ 0 for all t2 ∈ R+

The above considerations and Fubini’s theorem yield

x

R×R+
qm ⊗ rmdν =

∫
R

qmdν1 ·
∫
R+

rmdν2 →
∫
R

χ[a1,c1]
dν1 ·

∫
R+

χ[a2,c2]dν2 =

x

R×R+

(
χ[a1,×c1]

⊗ χ[a2,c2]

)
dν =

x

R×R+
χ[a1,c1]×[a2,c2]dν, m→ ∞.
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In other words, also using the fact that qm
⊗

rm ≥ χ[a1,c1]
⊗

χ[a2,c2]
, the preceding

convergence can be written as

‖qm ⊗ rm − χ[a1,c1]
⊗ χ[a2,c2]

∥∥∥
L1

ν(R×R+)
=

x

R×R+

∣∣∣qm ⊗ rm − χ[a1,c1]
⊗ χ[a2,c2]

∣∣∣dν =
x

R×R+

(
qm ⊗ rm − χ[a1,c1]×[a2,c2]

)
dν→ 0, m→ ∞.

Thus, qm
⊗

rm → χ[a1,c1]
⊗

χ[a2,c2]
= χ[a1,c1]×[a2,c2]

, as m→ ∞ , in L1
ν(R×R+). The

conclusion follows. This ends the proof. �

The present proof of Theorem 1 seems to be simpler than using Bernstein polynomials
or other uniform approximation results of continuous functions by means of polynomials
on compact subsets. On the other hand, Theorem 1 solves only an approximation on
the Cartesian product R×R+. One of the reasons for considering this case was that the
form of nonnegative polynomials on R and on R+, in terms of sums of squares, is simpler
compared with that of nonnegative polynomials on any other closed subset of R. As a
possible generalization of Theorem 1, it makes sense to consider the following problem. If
F = F1 × · · · × Fn, n ≥ 2, where Fi ⊆ R is a closed subset, and on Fi a moment-determinate
measure νi is given, i = 1, . . . , n, considering the product-measure ν := ν1 × · · · × νn, the
space L1

ν(F) and a nonnegative function f from L1
ν(F), can one approximate f by finite

sums of polynomials p1
⊗ · · ·⊗ pn, with pi nonnegative polynomial on Fi, i = 1, . . . , n?

In this problem, even in the case when Fi is bounded (i.e., it is compact), it makes sense to
also consider the case when Fi is not an interval. For example, this is the case when Fi is the
spectrum of a symmetric matrix or of a self-adjoint operator. Clearly, any positive regular
Borel measure on a nonempty compact subset of Rn is moment-determinate, due to the
Weierstrass uniform approximation theorem of continuous functions by polynomials on
compact subsets.

The purpose of the next result is to show how Theorem 1 can be applied to solve a
two-dimensional Markov moment problem in terms of quadratic forms. Namely, such a
problem is solved on the upper half-plane R×R+.

Theorem 2. Let dν1(t) := e−at2
1 dt1, dν2(t) := e−bt2 dt2, a, b > 0, dν := dν1 × dν2, t =

(t1, t2) ∈ R×R+, and
(
yj
)

j∈N2 be a given sequence of real numbers. Let h1, h2 be functions from
L∞

dν(R×R+), such that

0 ≤ h1(t1, t2) ≤ h2(t1, t2) almost everywhere in R×R+.

The following statements are equivalent:

(a) There exists a unique h ∈ L∞
dν(R×R+) which satisfies the conditions h1 ≤ h ≤ h2 almost

everywhere in R×R+, with
x

R×R+
tj1
1 tj2

2 h(t1, t2)dν = y(j1,j2), j := (j1, j2) ∈ N2

(b) For any finite subset J0 ⊂ N2, and any
{

αj; j ∈ J0
}
⊂ R, the following implication holds true:

∑
j∈J0

αj ϕj ∈ P+(R×R+) =⇒ ∑
j∈J0

αj

x

R×R+

tjh1(t1, t2)dν ≤ ∑
j∈J0

αjyj, tj = tj1
1 tj2

2 ;
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for any finite subsets Jk ⊂ N, k = 1, 2, and any
{

αjk
}

jk∈Jk
⊂ R, the following inequalities hold:

l ∈ {0, 1} := 0 ≤ ∑
i1,j1∈J1

((
∑

i2.j2∈J2

αi1 αj1 αi2 αj2
s
R×R+

ti1+j1
1 ti2+j2+l

2 h1(t1, t2)dν

))
,

∑
i1, j1∈J1

((
∑

i2.j2∈J2

αi1 αj1 αi2 αj2 yi1+j1, i2+j2+l

))

≤ ∑
i1,j1∈J1

((
∑

i2.j2∈J2

αi1 αj1 αi2 αj2
s
R×R+

ti1+j1
1 ti2+j2+l

2 h2(t1, t2)dν

))
.

Proof. The measure dν1 is moment-determinate on R and dν2 is moment-determinate on
R+, due to the corresponding results proven in [27]. In the sequel, Theorem 1 is applied.
The convex cone of all sums of polynomials of the form p1

⊗
p2, with p1 taking nonneg-

ative values on the entire real axis and p2 taking nonnegative values on R+, is dense in
the positive cone of L1

dν(R×R+), according to Theorem 1 proven above. Condition (b)
says that the hypothesis (b) of Theorem 4 from [36] is accomplished. Indeed, any nonnega-
tive polynomial on R is a sum of two squares of polynomials (with real coefficients) [2],
and any nonnegative polynomial on R+ has the form p(t) = q2(t) + tr2(t), t ∈ R+, for
some polynomials q, r with real coefficients. Next, apply the theorem invoked above,
where P++(R×R+) stands for the cone of all finite sums of polynomials of the form
p1
⊗

p2, p1 ∈ P+(R), p2 ∈ P+(R+) (see also the references above for the proofs and
details). Since the limit of a finite sum of convergent sequences equals the sum of their
limits, the conclusion follows via all these results, passing to the limit as m→ ∞. Thus,
(b) =⇒ (a) is proven. The converse implication is obvious. This ends the proof. �

Example 1. In Theorem 2, one can take h1(t1, t2) = t2
1t2e−t2

1−t2 , h2(t1, t2) = e−2, (t1, t2) ∈
R×R+.

The comments following Theorem 1 make sense of the problem of solving full Markov
moment problems on Cartesian products of closed intervals endowed with moment-
determinate measures in quadratic forms. Thus, Theorem 2 can be generalized as well.
On the other hand, in Theorem 2, if conditions mentioned at point (b) are satisfied, then
the conclusion (a) follows, without giving any information about explicit expression of
the solution h in terms of elementary functions. Only the inequalities for h1 ≤ h ≤ h2 are
obtained almost everywhere in R×R+ and, of course, the moment interpolation conditions
are satisfied by h, although the explicit expressions for h1 and h2 in terms of exponential
function are known.

3.2. Constructing a Polynomial Solution for a Reduced Interpolation Problem

The next theorem completes and solves results from [36] on the polynomial solution
of the interpolation problem (1), formulated for a limited (finite) number of conditions
(j ≤ d).

Theorem 3. If [a, b] ⊂ R is a compact interval, d ∈ N, d ≥ 1, y = (y0, . . . , yd) an arbitrary
given vector in Rd+1 , then there exists a polynomial solution p with real coefficients, of degree d,
for the interpolation problem ∫

[a,b]
tj p(t)dt = yj, j ∈ {0, 1, . . . , d}.
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The coefficients of the solution p with respect to the eigenvectors and eigenvalues of the Hankel

matrix Md =
(

mj+l

)d

j,l=0
are given by equality (7) written below, where mj+l is defined by (3),

j, l = 0, 1, . . . , d.

Proof. To simplify the notation, consider the case n = 1. Condition (1) should be satisfied
for all j ∈ {0, 1, . . . , d}. Similar considerations, arguments, and computations can be
performed for n ≥ 2, jl ≤ d, l = 1, . . . , n. One looks for a polynomial solution

p(t) =
d

∑
l=0

altl =
d

∑
l=0

al ϕl(t), al ∈ R,
d

∑
l=0

a2
l > 0, t ∈ K,

such that ∫
[a,b]

tj p(t)dt = yj, j ∈ {0, 1, . . . , d}.

The following linear system in the unknowns al , l ∈ {0, 1, . . . , d} should be solved:

d

∑
l=0

al

∫
[a,b]

tj+ldt =
d

∑
l=0

almj+l = yj, mj+l :=
∫
[a,b]

tj+ldt, j, l = 0, 1, . . . , d. (3)

The square symmetric matrix of this system is

Md :=
(

mj+l

)d

j,l=0
(4)

System (3) may be written as

Md

a0
...

ad

 =

y0
...

yd

. (5)

The matrix Md is positive (as a linear symmetric operator) and invertible, since

d

∑
j,l−0

mj+lλjλl =
∫
[a,b]

(
d

∑
j,l=0

λjλltj+l

)
dt =

∫
[a,b]

(
d

∑
j=0

λjtj

)2

dt > 0,

for all λ := (λ0, . . . , λd) 6= (0, . . . , 0). The last strict inequality holds, since the square of the
polynomial appearing under the integral sign is positive, except for a finite number of the
roots of that polynomial. If the polynomial appearing in the last integral would be null,
this would contradict the assumption λ 6= 0. Since the boundary Sd of the unit ball Bd+1 in
Rd+1 is closed and bounded (i.e., it is compact), there exists r > 0 such that

d

∑
j,l−0

mj+lλjλl ≥ r,

for all vectors (λ0, . . . , λd), with ∑d
l=0 λ2

l = 1. Evaluations (inequalities) for the Euclidean
norm ‖a0, . . . , ad‖2 of the vector of the unknown coefficients have been also pointed out
in [36]. Namely, from (5), one infers thata0

...
ad

 = M−1
d

y0
...

yd

 =⇒

‖a0, . . . , ad‖2 ≤ M−1
d ·‖y0, . . . , yd‖2 =

∥∥1/αmin,d
∥∥·‖y0, . . . , yd‖2.
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Here, αmin,d is the smallest (positive) eigenvalue of the positive definite matrix Md;
hence, 1/αmin,d is the greatest eigenvalue of M−1

d . However, paper [36] does not provide
any method for determining all the coefficients a0, . . . , ad of the polynomial solution p
regarding the moments yj, j ∈ {0, 1, . . . d}. In the sequel, this problem is solved without
computing (determining) the elements of the matrix M−1

d . As is well known [7], if µ0, . . . , µd
are the (note necessarily distinct) positive eigenvalues of the matrix Md, and { f0, . . . , fd} is
the orthonormal basis of Rd+1 formed by the corresponding eigenvectors, one can write

x =
d

∑
l=0

< x, fl > fl , Mdx =
d

∑
l=0
〈x, fl〉µl fl , x ∈ Rd+1.

Let {e0, . . . , ed} be the canonical Hilbert base in Rd+1. Then, for a = (a0, . . . , ad),
one has

a = (a0, . . . , ad) =
d

∑
l=0

alel =
d

∑
l=0

< a, fl > fl (6)

The system (5) can be written as

d

∑
l=0
〈a, fl〉µl fl =

d

∑
l=0
〈y, fl〉 fl , y :=

d

∑
j=0

yjej

Hence, the coefficients 〈a, fl〉, l = 0, 1, . . . , d of the vector

a = (a0, . . . , ad) = ∑d
l=0 alel in the base { f0, . . . , fd},

are given by the equalities

〈a, fl〉 = µ−1
l 〈y, fl〉 , l = 0, 1, . . . , d. (7)

Of note, the right-hand side numbers in (7) can be expressed only in terms of the moments
yl , l = 0, 1, . . . , d. Indeed, µl , l = 0, 1, . . . , d are the (positive) eigenvalues of the Hankel
matrix Md defined by (4), which is known and does not depend on y or on a. The vectors

fl are the eigenvectors of the matrix Md =
(

mj+l

)d

j,l=0
. Hence, according to (7) and (6), the

unknown vector a can be found starting from the numbers yl , l = 0, 1, . . . , d. This ends
the proof. �

Remark 1. Recall that any sequence α = (αn)
∞
n=0 ∈ l2 defines a holomorphic function f in

U, by means of the power series having αn as coefficients, as was recently recalled in [12]:

f (z) :=
∞

∑
n=0

αnzn, |z| < 1. (8)

The convergence of this power series holds uniformly in any closed disc of radius
r < 1. Indeed, one can write:

|z| ≤ r =⇒
∞

∑
n=0
|αn||z|n ≤

(
∞

∑
n=0
|αn|2

)1/2

·
(

∞

∑
n=0
|z|2n

)1/2

=

‖α2‖ ·
1√

1− |z|2
≤ ‖α2‖ ·

1√
1− r2

.

Remark 2. Any sequence α = (αn)
∞
n=0 ∈ l1 defines a holomorphic function as written

in (8), which makes sense for |z| = 1. The convergence of the power series (8) is absolutely
and uniformly on U; hence, f is also continuous in U. Conversely, for any holomorphic
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function f in U, defined and continuous in U, whose expansion (8) converges absolutely
and uniformly on U, the coefficients of the Taylor expansion (8) form a sequence of the
space l1. Indeed, |z| = 1 =⇒ ∑∞

n=0|an| = ∑∞
n=0|anzn| < ∞. Such a function is f (z) :=

∞
∑

n=1
zn/nα, α > 1, |z| ≤ 1.

Theorem 3 provides the coefficients of the polynomial solution only for the truncated
moment problem defined by d + 1 interpolation conditions. An interesting problem might
be that of finding the coefficients of the analytic solution f (z) = ∑∞

n=0 αnzn satisfying the
full problem of the interpolation conditions

∫
[a,b] tj f (t)dt = yj, j ∈ N, with (an)

∞
n=0 ∈ l2,

under the assumption [a, b] ⊂ (−1, 1). With the notations from above, a related problem

is when the infinite matrix M :=
(

mj+l

)∞

j,l=0
defines an invertible operator acting on l2.

Since the operator is self-adjoint and positive, this condition on M is true if and only if
inf

h ∈ l2,
‖h‖ = 1

〈Mh, h〉 = inf
d≥2

αmin,d > 0. Another problem could be, given an interval [a, b] ⊆

[−1, 1], look for an analytic function f given by (8), (an)
∞
n=0 ∈ l1, satisfying the conditions

of Remark 2, such that
∫
[a,b] tj f (t)dt = yj, j ∈ N. Such problems seem to belong to operator

theory or could be related to optimization problems in the finite dimensional space Rd+1,
d ∈ N, d ≥ 2, passing to the limit as d→ ∞.

3.3. On a Class of Analytic Functional Equations

In the sequel, the existence, and properties of the nontrivial holomorphic solution f̃ of
the equation

g̃(z) = g̃
(

f̃ (z)
)

, (9)

are studied, where g̃ is a given holomorphic function defined on a convex domain Ω, such
that g̃(Ω ∩R) ⊆ R satisfies some conditions, while the nontrivial solution, the function

f̃ , f̃ (z) 6= z for all z ∈ Ω r {x0}, f̃ (x0) = x0, where x0 ∈ Ω ∩R

is the unique minimum or maximum point for the restriction of g̃ to an open interval
contained in Ω ∩R Moreover, the restriction of f̃ to Ω ∩R is decreasing and f̃

′
(x0) = −1.

One such concrete functional is Equation (9), whose solution is approximated locally, in the
neighborhood of the point x0 = 0.

Remark 3. Define H(z, w) := g̃(z)− g̃(w), z, w ∈ C; then, for w0 6= 0, one has

Hw(z0, w0) = −g̃
′
(w0) 6= 0.

Thus, the implicit function theorem can be used for the existence of a unique solution
h defined in a neighborhood V0 of z0, such that g̃(h(z)) = g̃(z) for all z in V0. Since
h(z) = z, z ∈ V0 is a solution, from the uniqueness of the solution, it follows that the
identity mapping is the unique solution. However, this is the trivial solution, which is
not of interest. Thus, if g is holomorphic in a region of the complex plane and the other
conditions in the statement of Theorem 4 below are satisfied, for finding a nontrivial
solution f, the only chance is to look for it in the neighborhood of the point z0 = x0 = 0
at which the first derivative of g equals zero. For (z0, w0) = (0, 0), one has g̃

′
(0) = 0, so

that the implicit function theorem and the uniqueness of the local solution are no longer
working. In this case, the proof from [38] works. This last method does not use the implicit
function theorem. Only the continuity of f and the properties f (0) = 0, f are decreasing,
and the analyticity of g̃ is applied to deduce the complex differentiability of f̃ at z0 = x0 = 0.



Symmetry 2023, 15, 1471 11 of 19

Theorem 4. Consider the following functional equation:

h(x) := x− log(1 + x) = h( f (x)) = f (x)− log(1 + f (x)), x ∈ (−1, ∞).

Then, there exists a unique continuous solution f satisfying the equation h(x) = h( f x)) for
all x ∈ (−1,+∞), with the following additional properties:

(i) f is decreasing on (−1, ∞), and one has

lim
x↓−1

f (x) = ∞, lim
x↑∞

f (x) = −1;

(ii) x0 = 0 is the unique fixed point of f ;
(iii) one has f−1 = f on (−1, ∞) ;
(iv) there is a complex neighborhood D of 0 and a holomorphic extension f̃ of f , f̃ : D → C,

satisfying the equation

h̃
(

f̃ (z)
)
= h̃(z), z ∈ D, f̃

′
(0) = −1, where h̃(z) := z− log(1 + z);

(v) in a disc of sufficiently small radius ε > 0, one has

f̃ (z) ≈ −z(1 + 2z), |z| < ε;

(vi) for sufficiently small ε > 0, the following inequality holds:

f (x) > −x(1 + 2x), ∀x ∈ [−ε, 0). (10)

Proof. The real-valued function h is continuous on (−1,+∞), decreasing on (−1, 0) from
+∞ to zero, and is increasing on (0,+∞) from zero to +∞. Applying general-type results
from [38], the conclusions stated at points (i)–(iv) follow for a sufficiently small complex
neighborhood D of zero contained in the open unit disc U. To prove (v), for sufficiently
small ε > 0, ε < 1, one can write the equation h̃

(
f̃ (z)

)
= h̃(z), |z| < ε as

f̃ (z)− z = log
(

1 + f̃ (z)
1 + z

)
= log

(
1 +

f̃ (z)− z
1 + z

)
=

∫ f̃ (z)−z
1+z

0

1
1 + w

dw =
∫ f̃ (z)−z

1+z

0

(
1− w + w2 + · · ·+ (−1)nwn + · · ·

)
dw =

f̃ (z)− z
1 + z

− 1
2
·
(

f̃ (z)− z
1 + z

)2

+
1
3
·
(

f̃ (z)− z
1 + z

)3

− · · · .

Observe that, in the above remarks, for small ε > 0, one has
∣∣∣∣ f̃ (z)−z

1+z

∣∣∣∣ < 1 ∀z with

|z| ≤ ε, since f̃ (z)−z
1+z → 0 as ε→ 0 . Hence, if one denotes w1 = w1(z) =

f̃ (z)−z
1+z , under the

above-mentioned conditions, one can write

log(1 + w1) =
∫ w1

0

1
1 + w

dw =
∫ w1

0
(1− w + w2 + · · ·+ (−1)nwn + · · · )dw =

w1 −
1
2
·w2

1 +
1
3
·w3

1 − · · · .

The last integral can be computed on any C1 path of ends 0 and w1, whose image
is contained in the open unit disc U, according to Cauchy theorem for the holomorphic
function w 7→ 1/(1 + w), |w| < 1. Such a path is the line segment joining the origin 0
with w1 = w1(z). Its parameterization is w(t) = tw1, t ∈ [0, 1]. Integration term by term is
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allowed due to the uniform convergence of the geometric series ∑∞
n=0(−w)n, for w in the

closed disc of radius |w1|, namely, in the disc

{w; |w| ≤ |w1| < 1}.

Since f̃ (z) 6= z, f̃ (z)− z ≈ 0 for |z| < ε, z 6= 0, dividing by f̃ (z)− z and neglecting
the powers n ≥ 2 of f̃ (z)− z, which are very close to zero, one derives that

1 ≈ 1
1 + z

− 1
2
· f̃ (z)− z

(1 + z)2 .

This can be rewritten as

2(1 + z)2 − 2(1 + z) + f̃ (z)− z ≈ 0,

which is equivalent to
f̃ (z) ≈ z− 2z(1 + z) = −z(1 + 2z).

Thus, (v) is proven. Next, write the computational result in the proof of point (v) for real

z = x ∈ (−1, 0),

x close to zero. For such numbers x, one has

f (x)− x > 0, 1 + x > 0, 1 >
f (x)− x

1 + x
> 0,

and

(x)− x =
f (x)− x

1 + x
− 1

2
·
(

f (x)− x
1 + x

)2
+

1
3
·
(

f (x)− x
1 + x

)3
− 1

4

(
f (x)− x

1 + x

)4
+ · · · =

f (x)− x
1 + x

− 1
2
·
(

f (x)− x
1 + x

)2
+

(
f (x)− x

1 + x

)3(1
3
− 1

4
· f (x)− x

1 + x

)
+ r(x).

Here, apply the well-known evaluation of the sum of the involved (alternate) Leibniz-
type series, whose general term is

(−1)n

n + 1

(
f (x)− x

1 + x

)n+1
.

Namely,
1
3
− 1

4
· f (x)− x

1 + x
> 0,

and the rest r(x) is the sum of positive numbers of the form(
f (x)− x

1 + x

)2k+1( 1
2k + 1

− 1
2k + 2

· f (x)− x
1 + x

)
.

The conclusion is r(x) > 0, and

f (x)− x >
f (x)− x

1 + x
− 1

2
:=
(

f (x)− x
1 + x

)2
.

The last inequality is equivalent to

1 >
1

1 + x
− 1

2
· f (x)− x

(1 + x)2 , x ∈ [−ε, 0).
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This inequality holds true for sufficiently small ε > 0, ε < 1. Equality occurs in the
last inequality if and only if x = 0. As seen in the proof of point (v), where the equality sign
is replaced by the inequality one, the conclusion is

2(1 + x)2 − 2(1 + x) > − f (x) + x,

f (x) > x− 2x(1 + x) = −x(1 + 2x), x ∈ [−ε, 0).

Thus, (10) is proven. This ends the proof. �

As in the case of Theorem 2, in Theorem 4, there is information on the behavior of the
unknown implicitly defined function f , but not on its expression in terms of elementary
functions, although the given function h is an elementary analytic function. Only local
approximation, inequalities, f−1 = f , and other main properties of f are available.

Remark 4. Note the following similarity between Sections 3.1 and 3.3. In Theorem 4, the
main properties of the function f mentioned above are deduced, but an exact analytic
expression for f seems to be impossible to be found. This is a quasi-general remark on the
functions defined implicitly. Only the local approximation provided by Theorem 4, and
points (v) and (vi), represent a simple way of making an idea in this respect. Similarly,
in Theorem 2, a characterization of the existence and uniqueness of the function h with
properties mentioned at point (a) is proven. However, a formula for the exact expression of
h in terms of the moments is not easily obtained (this is an inverse problem).

Remark 5. From points (i), (ii) of Theorem 4, one already knows that x ∈ (−1, 0) is
equivalent to f (x) > 0. Therefore, the assertion (vi) of the same theorem is interesting for
1 + 2x ≥ 1− 2ε > 0, that is, for ε < 1/2.

Recall that, if H is an arbitrary real or complex Hilbert space of dimension ≥ 2, and if
A denotes the real vector space of all self-adjoint operators acting on H, then the natural
order relation on A is defined by

U, V ∈ A, U ≤ V ⇐⇒ 〈Uh, h〉 ≤ 〈Vh, h〉 for all h ∈ H.

Endowed with this order relation and the usual operatorial norm, A is an ordered
Banach space which is not a lattice (if dim(H) ≥ 2). If f is a continuous real-valued function
on the spectrum σ(−A), then one can denote by f (−A) the corresponding self-adjoint
operator obtained via functional calculus.

Theorem 5. Let H be an arbitrary real or complex Hilbert space and ε ∈ (0, 1/2] be a sufficiently
small number, such that the inequality proven at point (vi) of Theorem 4 holds true. Let A be a
positive self-adjoint operator from H to itself, such that ‖A‖ ≤ ε ≤ 1/2. Then,

f (−A) ≥ A(I − 2A). (11)

Proof Let t be an arbitrary real number in the spectrum σ(A) ⊆ [0, ε] of the self-adjoint
positive operator A, with ‖A‖ ≤ ε. Then, x := −t ∈ [−ε, 0]. For −t ∈ [−ε, 0); according to
Theorem 4, point (vi), one has

f (−t) > t(1− 2t).

Since f (0) = 0, this results in f (−t) ≥ t(1− 2t) for all −t ∈ [−ε, 0]. By means of
functional calculus for continuous functions on the spectrum σ(−A) = −σ(A) ⊆ [−ε, 0] of
the self-adjoint operator −A, one infers that f (−A) ≥ A(I − 2A). This ends the proof. �

With the notations and conditions on ε mentioned in Theorems 4 and 5, the following
consequence of Theorem 5 follows.
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Corollary 1 If n ≥ 2 is an integer, then (11) holds for any symmetric n× n matrix A with
real entries, whose eigenvalues are all contained in the interval [0, ε].

3.4. On Some Optimization Problems for the Modulus of the Complex Joukowski Function

Let Kr,R := {z ∈ C; r ≤ |z| ≤ R}, where 0 < r < R < ∞. In any point of Kr,R , the
Joukowski function

ψ(z) :=
1
2
(z + 1/z),

makes sense. Actually, ψ ∈ H(Cr {0}). Next, two optimization-type theorems related to
this function are proven, and a consequence is derived.

Theorem 6. The following inequalities and respective equalities hold:

M := max
z∈Kr,R

|ψ(z)| = max
r≤|z|≤R

∣∣∣∣12
(

z +
1
z

)∣∣∣∣ = 1
2

max
{

R +
1
R

, r +
1
r

}
= max{ψ(R), ψ(r)}. (12)

Moreover, one has the following:

(a) 0 < r < R ≤ 1 =⇒M = 1
2

(
r + 1

r

)
= ψ(r);

(b) 1 ≤ r < R =⇒ M = 1
2

(
R + 1

R

)
= ψ(R) = |ψ(−R)|; and

(c) 0 < r < 1 < R =⇒(12) is the only available information. If 0 < r < 1 and R = 1
r , then

M =
1
2

(
r +

1
r

)
=

1
2

(
R +

1
R

)
.

Proof. The equality (12) follows from the maximum modulus property [6] for the holomor-
phic function ψ, followed by the computational conclusion from below. The maximum is
attained at a point located on the boundary ∂K = {z; |z| = R} ∪ {z; |z| = r}. These lead to

M = max
{

MR := max
|z|=R
|ψ(z)|, Mr := max

|z|=r
|ψ(z)|

}
.

The same computations determine the maximum points on the circles of radiuses R,
respective of radius r. Namely, one finds

|z| = R⇐⇒ z = Reiθ , θ ∈ [0, 2π) =⇒∣∣∣∣z + 1
z

∣∣∣∣ = ∣∣∣∣z + z̄
zz̄

∣∣∣∣ = ∣∣∣∣Reiθ +
Re−iθ

R2

∣∣∣∣ =∣∣∣∣R(cos(θ) + isin(θ)) +
1
R
(cos(θ)− isin(θ))

∣∣∣∣ =∣∣∣∣(R +
1
R

)
cos(θ) + i

(
R− 1

R

)
sin(θ)

∣∣∣∣ =((
R +

1
R

)2
cos2(θ) +

(
R− 1

R

)2
sin2(θ)

)1/2

=

(
R2 +

1
R2 + 2

(
cos2(θ)− sin2(θ)

))1/2
≤
(

R2 +
1

R2 + 2
)1/2

= R +
1
R

.

Of note, equality occurs in the last inequality if and only if sin2(θ) = 0, which means
cos2(θ) = 1. Thus, the maximum value on [0, 2π) is attained at θ = 0 and θ = π. The first
conclusion is

MR := max
|z|=R

∣∣∣∣12
(

z +
1
z

)∣∣∣∣ = 1
2

(
R +

1
R

)
,
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and this maximum is attained at z1 = R and at z2 = −R. Repeating the same calculations
on the circle |z| = r, one obtains:

Mr := max
|z|=r

∣∣∣∣12
(

z +
1
z

)∣∣∣∣ = 1
2

(
r +

1
r

)
= ψ(r).

Hence, (12) is proven. Next, one must compare MR with Mr. Namely, to prove (a),
assume that 0 < r < R ≤ 1. Then, one computes the difference

MR −Mr =
1
2

(
R− r +

(
1
R
− 1

r

))
=

1
2
(R− r)

(
1− 1

Rr

)
. (13)

This results in MR −Mr > 0 ⇐⇒ Rr > 1, MR −Mr < 0 ⇐⇒ Rr < 1, MR −Mr =
0⇐⇒ Rr = 1. If 0 < r < R ≤ 1, then Rr < 1; hence, MR < Mr, that is, M = Mr. Similarly,

1 ≤ r〈R =⇒ Rr〉1⇐⇒ MR > Mr =⇒ M = MR.

Clearly, Rr = 1 if and only if MR = Mr. According to (13), or simply because r = 1/R,
this implies

ψ(R) = ψ

(
1
R

)
= ψ(r).

If 0 < r < 1 < R and R 6= 1
r , then one cannot derive any conclusion regarding the

signature of Rr− 1, and one has ψ(R) 6= ψ(r). Using (13), this means one cannot decide
the signature of MR −Mr. In this case, the conclusion remains the equality written in (12).
The proof is complete. �

Corollary 2. If 0 < r < R < 1, then max
z∈Kr,1

|ψ(z)| = 1
2

(
r + 1

r

)
= ψ(r).

Proof. One applies Theorem 6 (a) for R = 1. �

Next, the minimum value m of the modulus is discussed for the same function ψ,
ψ(z) = 1

2

(
z + 1

z

)
, on the subset KR,r, also determining the corresponding minimum points.

Theorem 7. With the above notations, the following statements hold:

(i) If [r, R] ⊂ (0, 1), then m = 1
2

(
!
R − R

)
= ψ(iR) = ψ(−iR);

(ii) If [r, R] ⊂ (1,+∞), then m = 1
2

(
r− 1

r

)
= ψ(ir) = ψ(−ir);

(iii) If 1 ∈ [r, R], then m = 0 = ψ(i) = ψ(−i).

Proof. For z = ρeiθ , ρ > 0, θ ∈ [0, 2π), following the computation from the proof of
Theorem 6, one finds∣∣∣∣z + 1

z

∣∣∣∣ = (ρ2 +
1
ρ2 + 2

(
cos2(θ)− sin2(θ)

))1/2
≥(

ρ2 +
1
ρ2 − 2

)1/2
=

∣∣∣∣ρ− 1
ρ

∣∣∣∣, ∀θ ∈ [0, 2π).

Observe that equality occurs in the last inequality if and only if cos2(θ) = 0 (that is,
sin2(θ) = 1), which is equivalent to θ ∈ {π/2, 3π/2}. Thus,

m = min
ρ∈[r,R]

(
min

θ∈[0,2π)

∣∣∣ψ(ρeiθ
)∣∣∣) =

1
2

min
ρ∈[r,R]

∣∣∣∣ρ− 1
ρ

∣∣∣∣. (14)
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If ρ ∈ [r, R] ⊂ (0, 1), then
∣∣∣ρ− 1

ρ

∣∣∣ = 1
ρ − ρ and min

ρ∈[r,R]

∣∣∣ρ− 1
ρ

∣∣∣ = min
ρ∈[r,R]

(
1
ρ − ρ

)
= 1

R − R,

since the function g(ρ) = 1
ρ − ρ is decreasing on (0,+∞). Hence, m = 1

2

(
!
R − R

)
and the

minimum value is attained for

ρ = R, θ ∈ {π/2, 3π/2}.

This means the minimum points are iR and −iR. Thus, the assertion stated at point
(i) is proven. The point (ii) follows via similar reasoning, with the remarks that

∣∣∣ρ− 1
ρ

∣∣∣ =
ρ − 1

ρ = −g(ρ) for ρ ∈ [r, R] ⊂ (1,+∞) and −g is increasing. The minimum points
correspond to ρ = r, θ ∈ {π/2, 3π/2}. Thus, (ii) is proven. To prove (iii), observe that the
global minimum value zero for m from (14) is attained if and only if ρ = 1. The condition
θ ∈ {π/2, 3π/2} remains from the optimization in the variable θ, so that, in this case, the
only minimum points are i and −i. This concludes the proof. �

Remark 6. Now, note the connection of the function ψ with the functional equations
appearing in the preceding section. As is well-known and easy to prove directly, the unique
nontrivial solution f of the functional equation ψ( f (z)) = ψ(z), z 6= 0, is

f (z) =
1
z

, z 6= 0.

Starting from the function Ψ and an arbitrary sequence (an)n≥0 ∈ l1, define

a−n := an, n ∈ N,

ψ(z) := ∑
n∈Z

anzn, z ∈ T.

Then, clearly,

ψ(z) = a0 + ∑
n≥1

an

(
zn +

1
zn

)
, z ∈ T,

verifies ψ(z) = ψ
(

1
z

)
.

From the last two theorems, one derives the following consequence involving frac-
tional power of the variable z.

Corollary 3. Let α ∈ (0, ∞) and ψα(z) := ψ(zα) = (1/2)(zα + z−α), z ∈ Cr {0}. Then, the
following hold:

(i) 0 < r < R ≤ 1 =⇒ max
r≤|z|≤R

1
2

∣∣∣zα + 1
zα

∣∣∣ = 1
2

(
rα + 1

rα

)
;

(ii) 0 < r < R < 1 =⇒ min
r≤|z|≤R

1
2

∣∣∣zα + 1
zα

∣∣∣ = 1
2

(
1

Rα − Rα
)

.

Proof. The following equalities hold:

z = ρeiθ , w := zα := eα log (z) = eα(log(ρ)+iθ) = ρα := eiαθ .

This implies
|w| = |zα| = ρα = |z|α.

This results in
r ≤ |z| ≤ R⇐⇒ rα ≤ |w| ≤ Rα.
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Using Theorem 6, assertion (a), these further yield

max
r≤|z|≤R

1
2

∣∣∣∣zα +
1
zα

∣∣∣∣ = max
rα≤|w|≤Rα

1
2

∣∣∣∣w +
1
w

∣∣∣∣ = 1
2

(
rα +

1
rα

)
.

Thus, the implication (i) is proven. The assertion (ii) follows by means of Theorem 7,
point (i). This ends the proof. �

It seems that condition α ∈ (0, ∞) is not necessary, since ψ−α(z) = ψα(z) for all
α ∈ R, z 6= 0. An interesting problem could be that of applying the results of Section 3.4 to
normal operators having their spectrum in a circular anulus Kr,R.

4. Discussion

The present article provides new, or improved and completed, versions of previous
results on polynomial approximations on unbounded closed subsets, Markov moment prob-
lems on such subsets, polynomial solutions for reduced interpolation problems, functional
equations, and optimization of the functions ψ and ψα in circular annuluses. In the first part, a
scalar version of previous theorems on the existence and the uniqueness of the solution for
the full Markov moment problem is pointed out (see Theorems 1 and 2). Such theorems use
polynomial approximation of any function from

(
L1

dν

)
+

by special nonnegative polynomials,
which are expressible in terms of sums of squares, in the space L1

dν. Here, ν is a product
ν1 × ν2, with ν1 being a moment-determinate measure on R and ν2 a moment-determinate
measure on R+. On the other hand, at the end of the paper, it is pointed out that, in the
simplest case of the function ψ(x) = x + 1/x, x > 0, the graph of ψ is not symmetric with
respect to the vertical line of equation x = 1, passing through the minimum point 1 of ψ
located in the interval (0, ∞). However, in the complex analysis framework, considering
the meromorphic function

Ψ(z) = a0 + ∑
n≥1

an

(
zn +

1
zn

)
, z ∈ T,

note the symmetry of its coefficients (see Remark 6). Additionally, for z ∈ T, one has
Ψ(z) = Ψ(1/z) = Ψ(z) and z is the symmetric of z with respect to the real axis. If all the
coefficients an, n ∈ N are real numbers, (an)n≥0 ∈ l1, one finds that Ψ(z) ∈ R for all z ∈ T.
Part of the previous results is the basis for the new ones. Theorem 3 provides all the Fourier
coefficients of the unknown polynomial solution in the orthonormal base defined by the
eigenvectors of the Hankel matrix Md in terms of the given moments, unlike the previous
result on this topic [36]. In addition to the results pointed out in the Abstract, in Theorem 5,
an inequality valid for any positive self-adjoint operator with sufficiently small norm is
deduced from Theorem 4.

5. Conclusions

Sections 3.2–3.4 are directly related to notions and/or results involving symmetry. To
name a few of them, in Section 3.2, the matrix Md is a special symmetric matrix with real
entries. In Section 3.3, the graph of the unknown function f is symmetric with respect to
the line of equation y = x, since f is its own inverse for the operation of composition of
functions. In Section 3.4, the symmetry of the coefficients of the meromorphic function Ψ
from Remark 6 has already been discussed. As a common aspect of Sections 3.1 and 3.3, in
both these sections, one can prove significant properties of the solutions, without know-
ing their expressions in terms of elementary functions, although the given functions are
elementary (see Theorem 2, Example 1, and Theorem 4).
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