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Abstract: In this article, we propose a new transmuted modified power-generalized family of distri-
butions constructed from the transmuted-generated and modified power-generated families. The
proposed approach is flexible and provides a tradeoff between the two baseline families. For a prime
study, we identify the main characteristics of the new transmuted modified power family, such as
the asymptotic results, quantile function, series representation, and the various kinds of moment
measures. By using the exponential distribution as the baseline, a new three-parameter lifetime
distribution is constructed. The associated probability functions (density and hazard rate) are flexible
and have a variety of asymmetric shapes, which make them attractive for statistical purposes. In
particular, for the related probability density function, reversed-J, unimodal, and right-skewed shapes
are observed. Measures relating to risk theory are also computed, such as the value at risk and
the expected shortfall. By using both simulation analysis and the maximum likelihood approach,
the estimation of the model parameters is evaluated. The effectiveness of the proposed model is
demonstrated by two real-world cases (one in insurance and the other in reliability), and we show
that it yields better fits when compared to other extended models connected to the exponential model.

Keywords: statistical model; transmuted family; modified power distribution; estimation; actuarial
measures; simulation
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1. Introduction
1.1. Context

In the realm of reliability analysis, the study of failure characteristics of aged ma-
chinery, tools, and gadgets has long been a topic of interest for experts. Traditionally,
(probability) distributions derived from various fields have been employed to investi-
gate these characteristics. Among the commonly used distributions were the exponential,
Weibull, Kumaraswamy, Pareto, Lindley, Lomax, log-logistic, gamma, Rayleigh, log-normal,
Fréchet, and Gumbel distributions. However, with the ever-increasing complexity and
dynamic nature of modern datasets, these traditional distributions have proven inadequate
for modeling intricate data. Recognizing this limitation, researchers have dedicated their
efforts to enhancing the efficiency and applicability of these distributions, seeking better fits
for diverse and evolving complex datasets encountered in practice. The literature on this
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subject is rich in the wide range of techniques proposed to address the challenges posed by
complex data. Numerous pioneering authors have contributed to the development of novel
families of distributions designed to overcome the limitations of their predecessors. Notable
examples include the skew normal-G family [1] (G stands for generated), Marshall–Olkin-G
family [2], exponentiated-G family [3], Kumaraswamy-G family [4], beta-G family [5], odd
log-logistic-G family [6], exponentiated-generalized-G family [7], odd Weibull-G family [8],
odd generalized exponential family [9], logistic-G family [10], Topp–Leone-G family [11],
weighted-G family [12], Marshall–Olkin odd Lindley-G family [13], and sin-G family [14].
These extended distributions exhibit enhanced flexibility and resilience compared with their
original counterparts. For some, the inclusion of new parameters enables better capture of the
nuances of complex datasets and ensures a more accurate representation of the underlying
phenomena. By embracing these innovative approaches, researchers and practitioners can
unlock new insights and make informed decisions in the field of reliability analysis.

1.2. Idea

In order to solve difficulties relating to financial mathematics, refs. [15,16] presented
an unusual approach of adding a new parameter to an existing distribution, calling this
family of distributions the quadratic transmuted-generated (QT-G) family. The transmuted-
generated (T-G) family was introduced by [17]. It is defined by the following cumulative
distribution function (cdf):

F1(x) = 1− [1− λG(x; ξ)][1− G(x; ξ)], x ∈ R,

where G(x; ξ) denotes the cdf of a baseline continuous distribution, ξ denotes the parame-
ters involved, and λ ∈ [−1, 1]. See [17] for the detailed functional motivations. The main
idea is to have a tradeoff between the baseline, and “min” and “max” distributions of two
independent random variables. The past works on the T-G family include the generalized
T-G family [18], exponentiated T-G family [19], transmuted T-G family [20], Kumaraswamy
T-G family [21], transmuted Weibull-G family [22], transmuted geometric-G family [23],
transmuted Topp–Leone G family [24], etc.

On the other side, in [25], the modified power-generated (MPo-G) family was intro-
duced and defined by the following cdf:

F2(x) = G(x; ξ)αG(x;ξ)−1, x ∈ R,

where α ≥ e−1 ≈ 0.3678794 (if not, the cdf is not valid). It can be presented as a valuable
generalization of the baseline distribution (obtained with α = 1), with modulating function-
alities provided by the parameter α. The complete details are given in [25] (Section 2.1).

In this article, based on the above findings, a hybrid approach is considered: we
propose to use the parametric scheme of the MPo-G family to increase the modeling
capabilities of the T-G family. More concretely, we develop the transmuted modified
power-generated (TMPo-G) family defined by the following composed cdf:

F(x) = F1(F2(x)) = 1− [1− λG(x; ξ)αG(x;ξ)−1][1− G(x; ξ)αG(x;ξ)−1], x ∈ R, (1)

always with α ≥ e−1. Taking α = 1 produces the original T-G family; other values for α
produce new distributions that can be used for data fitting, regression modeling, and so on.
The aim of this article is to study some of these applications. The motivations behind the
TMPo-G family are as follows:

• This is a new and simple family that combines the functionalities of two well-recognized
families.

• By setting a baseline, we are able to make the shape of the corresponding probability
density function (pdf) and hazard rate function (hrf) more flexible.

• In light of the above, statistical advances are possible: in comparison to the existing
models, we can achieve better and more precise fits.
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To demonstrate these points in detail, we employ the exponential distribution as the
baseline, with cdf and pdf given by G(x; θ) = 1− e−θx and g(x; θ) = θe−θx, with x > 0,
respectively, where θ is a shape parameter. The TMPo-G family structure aims to greatly
improve this distribution of usable features. In particular, the shapes of the corresponding
pdf are right-skewed, unimodal, and reversed-J, and those of the corresponding hrf are
increasing, decreasing, increasing with a long-flat phase (useful time), and an upside-down
bathtub shape with a long-flat phase. We will show that the new distribution can give
better fit results on data sets in reliability and insurance than a wide panel of competent
extended exponential distributions. Overall, the wide-ranging applicability of the created
model, coupled with its simplicity and superior performance compared with other mod-
els, cements its position as a motivating force in the realm of insurance and reliability
data analysis.

1.3. Structure of the Article

The general mathematical and structural characteristics of the TMPo-G family are cov-
ered in Section 2. In Section 3, a special distribution of the family based on the exponential
distribution is proposed, and its characteristics are discussed. Section 4 is devoted to its
actuarial metrics. In Section 5, a simulation analysis is presented. In Section 6, two practical
data sets are fitted and commented, and Section 7 closes the work with concluding remarks.

2. Presentation and Properties of the TMPo-G Family
2.1. Presentation

The mathematical properties of the TMPo-G family are investigated in this subsec-
tion. Classically, a cdf or a pdf describes a distribution for a continuous random variable.
After differentiating Equation (1), the pdf of the TMPo-G family is described by

f (x) = g(x; ξ)αG(x;ξ)−1[1 + (log α)G(x; ξ)][1 + λ− 2λG(x; ξ)αG(x;ξ)−1], x ∈ R, (2)

where g(x; ξ) denotes the pdf associated with the baseline cdf G(x; ξ). Thus, the parameters
that can have an effect on this pdf are symbolized by ξ, α under the condition α ≥ e−1

and λ under the condition λ ∈ [−1, 1]. It is worth noting that the pdf of the T-G family
is obtained by taking α = 1, the one of the MPo-G family for λ = 1, and the one of the
baseline distribution for α = 1 and λ = 1 simultaneously. The tradeoff between these
top families is, thus, realized. On the other hand, the survival function (sf) and hrf of the
TMPo-G family are obtained by the following transformations:

S(x) = 1− F(x) = [1− λG(x; ξ)αG(x;ξ)−1][1− G(x; ξ)αG(x;ξ)−1] (3)

and

h(x) =
f (x)
S(x)

=
g(x; ξ)αG(x;ξ)−1[1 + (log α)G(x; ξ)][1 + λ− 2λG(x; ξ)αG(x;ξ)−1]

[1− λG(x; ξ)αG(x;ξ)−1][1− G(x; ξ)αG(x;ξ)−1]
, x ∈ R, (4)

respectively.
Note that we can write the hrf in Equation (4) as

h(x) =
1 + λ− 2λG(x; ξ)αG(x;ξ)−1

1− λG(x; ξ)αG(x;ξ)−1
h∗(x), x ∈ R,

where h∗(x) is the hrf associated with the MPo-G family. In this sense, the term [1 + λ−
2λG(x; ξ)αG(x;ξ)−1]/[1− λG(x; ξ)αG(x;ξ)−1] plays the role of a correction term for the hrf
h∗(x). In addition, an immediate hrf ordering property holds: for any λ ∈ [0, 1], we have
h∗(x) ≤ h(x) ≤ (1 + λ)h∗(x), and the reversed inequality is fulfilled for any λ ∈ [−1, 0].

Obviously, the shapes of the pdf and hrf depend on the chosen baseline distribu-
tion, and the more these shapes are different, the more the modeling properties of the
corresponding distribution are attractive from a statistical viewpoint.
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2.2. Asymptotics

In this part, we discuss the asymptotic behavior of the previously introduced functions.
This is important for understanding their numerical capabilities at the extremities and
seeing the effects of the parameters involved. Using standard limit developments, when
G(x; ξ)→ 0, we obtain

F(x) ∼ (1 + λ)α−1G(x; ξ), f (x) ∼ (1 + λ)α−1g(x; ξ), h(x) ∼ (1 + λ)α−1g(x; ξ).

With similar techniques, when G(x; ξ)→ 1, we obtain

S(x) ∼ (1− λ)[1 + log(α)][1− G(x; ξ)], f (x) ∼ (1− λ)[1 + log(α)]g(x; ξ), h(x) ∼ g(x; ξ)

1− G(x; ξ)
.

We, thus, see the combined impact of λ and α on the limit bounds, also depending on
the choice of the baseline distribution.

2.3. Quantile Function

The quantile function (qf) plays an important role in statistics: it is mainly used to gen-
erate random numbers, and quality control sampling methods, value at risk, and expected
shortfall can be applied. The next result examines the qf of the proposed TMPo-G family.

Proposition 1. The qf of the TMPo-G family is given by the following expression:

Q(u) =



G−1

[
1

log α
W0

{
α log α

2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

)}
; ξ

]
, λ 6= 0, α 6= 1

G−1

[
1
2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

)
; ξ

]
, λ 6= 0, α = 1

G−1
[

1
log α

W0(uα log α); ξ

]
, λ = 0, α 6= 1

G−1(u; ξ), λ = 0, α = 1,

where u ∈ (0, 1) and G−1(u; ξ) denotes the qf of the baseline distribution and W0(x) is the principal
branch of the standard Lambert function.

Proof. Let us focus on the more technical case where λ 6= 0 and α 6= 1. By using
Equation (1) and Q(u) = F−1(u), we obtain

u = (1 + λ)G(Q(u); ξ)αG(Q(u);ξ)−1 − λG(Q(u); ξ)2α2[G(Q(u);ξ)−1].

It follows from [17] (Equation (12)) that

G(Q(u); ξ)αG(Q(u);ξ)−1 =
1
2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

)
,

which can be rewritten as

(log α)G(Q(u); ξ)e(log α)G(Q(u);ξ) =
α log α

2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

)
.

By the direct use of the principal branch of the standard Lambert function, we obtain

Q(u) = G−1

[
1

log α
W0

{
α log α

2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

)}
; ξ

]
.
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The other cases can be proved in similar and more simple manner. This ends the
proof.

The qf presented in Proposition 1 has the advantage of being manageable from a
practical viewpoint. Indeed, most of the mathematical software packages have the Lambert
function implemented, which facilitates its use for numerical operations. Furthermore, we
can immediately express some famous quantile measures, such as the median, defined as

M = Q
(

1
2

)
=



G−1

[
1

log α
W0

{
α log α

2

(
1
λ
+ 1−

√
λ2 + 1

λ

)}
; ξ

]
, λ 6= 0, α 6= 1

G−1

[
1
2

(
1
λ
+ 1−

√
λ2 + 1

λ

)
; ξ

]
, λ 6= 0, α = 1

G−1
[

1
log α

W0

(
1
2

α log α

)
; ξ

]
, λ = 0, α 6= 1

G−1
(

1
2

; ξ

)
, λ = 0, α = 1.

The first and third quartiles can be expressed in a similar manner, and the same for
various quantile skewness and kurtosis measures (see [26]).

2.4. Series Representations

In distribution theory, we often use series representation to convert the pdf and
cdf into a simple form, which involves baseline distribution functions. We can use this
representation further to find moments, incomplete moments, etc.

In the next result, a series representation of the cdf of the TMPo-G family is suggested
in terms of controllable baseline distribution functions.

Proposition 2. The cdf of the TMPo-G family can be expanded as

F(x) = (1 + λ)α−1
+∞

∑
k=0

(log α)k

k!
G(x; ξ)k+1 − λα−2

+∞

∑
k=0

(2 ln α)k

k!
G(x; ξ)k+2.

Proof. To begin, the following decomposition holds:

F(x) = 1− [1− λG(x; ξ)αG(x;ξ)−1][1− G(x; ξ)αG(x;ξ)−1]

= (1 + λ)G(x; ξ)αG(x;ξ)−1 − λG(x; ξ)2α2[G(x;ξ)−1].

Using the usual exponential series expansion, we obtain

αG(x;ξ)−1 = α−1e(log α)G(x;ξ) = α−1
+∞

∑
k=0

(log α)k

k!
G(x; ξ)k

and

α2[G(x;ξ)−1] = α−2e2(log α)G(x;ξ) = α−2
+∞

∑
k=0

(2 log α)k

k!
G(x; ξ)k.

We immediately obtain

F(x) = (1 + λ)α−1
+∞

∑
k=0

(log α)k

k!
G(x; ξ)k+1 − λα−2

+∞

∑
k=0

(2 log α)k

k!
G(x; ξ)k+2.

The desired result is obtained.
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Proposition 2 finds interest in the fact that most of the exponentiated versions of the
standard baseline distributions, as well as their properties, are very well known. We, thus,
aim to transpose them into our new family.

Based on Proposition 2, the pdf of the TMPo-G family can be expanded as

f (x) = (1 + λ)α−1
+∞

∑
k=0

(log α)k(k + 1)
k!

g(x; ξ)G(x; ξ)k

− λα−2
+∞

∑
k=0

(2 log α)k(k + 2)
k!

g(x; ξ)G(x; ξ)k+1. (5)

This result is applied to express moments of various types in the following subsection.

2.5. Moments

Let u(x) be a function and X be a random variable with the pdf of the TMPo-G family
so that E[u(X)] exists. Then, Proposition 2 gives

E[u(X)] =
∫ +∞

−∞
u(x) f (x)dx

= (1 + λ)α−1
+∞

∑
k=0

(log α)k(k + 1)
k!

wk − λα−2
+∞

∑
k=0

(2 log α)k(k + 2)
k!

wk+1,

where

wk =
∫ +∞

−∞
u(x)g(x; ξ)G(x; ξ)kdx.

The coefficient wk is calculable for most of the standard baseline distributions (an
example will be detailed later).

This formula can be used to calculate the mean, variance, standard deviation, coeffi-
cients of skewness and kurtosis of X, and other statistics based on the following formulas:
µ′r = E(Xr) or µr = E[(X − µ′1)

r], where r denotes a positive integer. Thus, they are
obtained by taking u(x) = xr and u(x) = (x − µ′1)

r. In particular, for u(x) = xr, we
can write

µ′r =
∫ +∞

−∞
xr f (x)dx

= (1 + λ)α−1
+∞

∑
k=0

(log α)k(k + 1)
k!

wk,r − λα−2
+∞

∑
k=0

(2 log α)k(k + 2)
k!

wk+1,r,

where

wk,r =
∫ +∞

−∞
xrg(x; ξ)G(x; ξ)kdx.

In this case, the coefficient wk,r is already evaluated in the literature for many baseline
distributions, which is the main interest of such expansions.

Basically, the nature of the shapes of a distribution can be determined by the different
moments it contains. The first four moments of X are as follows: The first moment is the
mean of X, which indicates the central tendency of a distribution. The variance of X is
represented by the second central moment, µ2 = µ′2 −

(
µ′1
)2, which indicates the width

or deviation. The third central moment of X is µ3 = µ′3 − 3µ′1µ′2 + 2
(
µ′1
)3, and the fourth

central moment of X is µ4 = µ′4 − 4µ′3µ′1 + 6µ′2
(
µ′1
)2 − 3

(
µ′1
)4.

The moment-based skewness of X is CS = µ3/µ3/2
2 , which indicates any asymmetric

leaning to either left or right, and the moment-based kurtosis of X is CK = µ4/µ2
2, which

indicates the degree of central peakedness or, equivalently, the fatness of the outer tails.
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In addition, the incomplete moments can be investigated. Incomplete moments have
several advantages in statistical analysis. First, they provide a way to estimate popula-
tion moments using incomplete data, making them useful when dealing with missing or
censored observations. Second, the incomplete moments can handle non-standard distribu-
tions and are robust to outliers, making them more versatile in modeling real-world data
compared to traditional complete moments. In our context, the rth incomplete moment
of X is defined by µ′r(t) = E(Xrδ{X≤t}) =

∫ t
−∞ u(x) f (x)dx, where δ denotes the indicator

operator. Then, Proposition 2 gives

µ′r(t) =
∫ t

−∞
xr f (x)dx

= (1 + λ)α−1
+∞

∑
k=0

(log α)k(k + 1)
k!

wk,r(t)− λα−2
+∞

∑
k=0

(2 log α)k(k + 2)
k!

wk+1,r(t),

where

wk,r(t) =
∫ t

−∞
xrg(x; ξ)G(x; ξ)kdx.

Again, the main interest of such expansions is the coefficient wk,r(t), which has already
been calculated in the literature for numerous baseline distributions.

2.6. Estimation

Here, we describe how we can estimate the parameters involved in the TMPo-G family
using the maximum likelihood method. Both analytical and numerical approaches can
be used to manage the normal approximation associated with the maximum likelihood
estimates (MLEs). In particular, when creating confidence intervals, the MLEs provide
simple approximations that perform well in finite samples and have the desired features.
By taking a sample from the TMPo-G family with the observed values x1, x2, . . . , xn, the
corresponding log-likelihood function of the vector parameter η = (α, λ, ξ)τ is

`(η) =
n

∑
i=1

log[g(xi; ξ)] +
n

∑
i=1

(log α)[G(xi; ξ)− 1] +
n

∑
i=1

log[1 + (log α)G(xi; ξ)]

+
n

∑
i=1

log
[
1 + λ− 2λG(xi; ξ)αG(xi ;ξ)−1

]
.

The MLEs are defined by the values of the parameters that maximize this function.
Once we have the MLEs, we have to substitute them for the parameters in the functions

of the TMPo-G family to obtain efficient estimates of these functions.
On the other hand, the standard error (SE) associated to a parameter is the sampling

distribution’s standard deviation or an estimate of the standard deviation of the estimator
of the parameter. As a result, there is a greater likelihood that the sample estimate will be
close to the outcome of equal, complete coverage. A small SE implies that the fluctuation in
values around the parameter estimate from repeated samples is moderate (see [27]).

Based on the asymptotic properties of the random versions of the MLEs and their SEs,
we can construct confidence intervals and statistical test procedures (see [28]).

In an alternative way, the Bayesian method also provides a flexible and powerful
framework for statistical inference, allowing researchers to make probabilistic statements
about unknown parameters and quantify uncertainty in a principled manner (see [29,30]).
Here, we focus on the maximum likelihood approach because it is more widely used and
has well-known theoretical and practical guarantees.

The rest of the study is devoted to a special member of the TMPo-G family, with the
exponential distribution as the baseline distribution.
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3. The TMPoE Distribution
3.1. Presentation

We now define the TMPo exponential (TMPoE) distribution by taking the exponential
distribution as the baseline, with the cdf G(x; θ) = 1− e−θx and the pdf g(x; θ) = θe−θx,
with x > 0 and θ > 0. By considering the general cdf in Equation (1), the TMPoE
distribution has the following cdf:

F(x) = 1−
[
1−

(
1− e−θx

)
α−e−θx

][
1− λ

(
1− e−θx

)
α−e−θx

]
, x > 0, (6)

where α ≥ e−1. Defined like this, the TMPoE distribution forms a new and simple three-
parameter lifetime distribution that benefits from the combined functionalities of the T-G
and MPo-G families and the exponential distribution.

It is interesting to note that, by putting λ = 0, the resultant cdf will be a product of the
cdf of the exponential distribution and the cdf of the Gumbel distribution (also known as
the type-I generalized extreme value distribution).

The famous transmuted exponential distribution also appears by taking α = 1
(see [31]).

On the other hand, the pdf corresponding Equation (6) becomes

f (x) = θe−θxα−e−θx
[
1 + (log α)− (log α)e−θx

][
1 + λ− 2λ

(
1− e−θx

)
α−e−θx

]
(7)

and the corresponding hrf is

h(x) =
θe−θxα−e−θx [

1 + (log α)− (log α)e−θx][1 + λ− 2λ
(
1− e−θx)α−e−θx

]
[
1−

(
1− e−θx

)
α−e−θx

][
1− λ

(
1− e−θx

)
α−e−θx

] . (8)

Figures 1 and 2 display some plots of the pdf and hrf of the TMPoE distribution
for a set of selected parameter values. Figure 1 reveals that the TMPoE distribution is
right-skewed, unimodal, and reversed-J-shaped. In addition, Figure 2 demonstrates that
the corresponding hrf can produce increasing and decreasing shapes, increasing shapes
with a long-flat phase (useful time), and upside-down bathtub shapes with a long-flat
phase. The long useful period is important and perhaps one of the most significant phases
for reliability prediction and evaluation activities, as it explains the normal lifetime of the
component or system. Therefore, having a model that can adequately capture flat regions
with other hrf shapes is very essential.

In order to understand the limit behavior of the above functions, we can investigate
their asymptotic properties. Using standard limit developments, when x → 0, we obtain

F(x) ∼ (1 + λ)α−1θx, f (x) ∼ (1 + λ)α−1θ, h(x) ∼ (1 + λ)α−1θ.

With similar techniques, when x → +∞, we obtain

S(x) ∼ (1− λ)[1 + log(α)]e−θx → 0, f (x) ∼ (1− λ)[1 + log(α)]θe−θx → 0, h(x)→ θ.

These asymptotic results reflect the complex combined roles of the parameters in the shapes
of the functions. They are in accordance with what can be observed in Figures 1 and 2.
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Figure 1. Plots of the pdf of the TMPoE distribution for some parametric values.

Figure 2. Plots of the hrf of the TMPoE distribution for some parametric values.
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3.2. Expansion of the TMPoE Distribution

This section focuses on the various characteristics of the TMPoE distribution, including
linear representation, quantile function, moments, moment measures, and estimation.
In order to examine some characteristics of the distribution involving integral terms, we
now express the pdf of the TMPoE distribution as straightforward linear exponential terms.

Proposition 3. The pdf of the TMPoE distribution can be represented as follows:

f (x) =
+∞

∑
k=0

[
k

∑
p=0

wk,pe−θx(p+1) −
k+1

∑
p=0

zk,pe−θx(p+1)

]
,

where

wk,p = θ(1 + λ)α−1 (log α)k(k + 1)
k!

(−1)p
(

k
p

)
and

zk,p = θλα−2 (2 log α)k(k + 2)
k!

(−1)p
(

k + 1
p

)
.

Proof. Based on Equation (5), we have

f (x) = (1 + λ)α−1
+∞

∑
k=0

(log α)k(k + 1)
k!

θe−θx(1− e−θx)k

− λα−2
+∞

∑
k=0

(2 log α)k(k + 2)
k!

θe−θx(1− e−θx)k+1.

Since k is an integer, the standard binomial expansion gives

(1− e−θx)k =
k

∑
p=0

(−1)p
(

k
p

)
e−θpx,

and the same holds with k + 1 instead of k. Hence, the pdf f (x) reduces to

f (x) =
+∞

∑
k=0

k

∑
p=0

wk,pe−θx(p+1) −
+∞

∑
k=0

k+1

∑
p=0

zk,pe−θx(p+1).

The proof ends.

As for the general case, the obtained representation will provide manageable series ex-
pansions of various moment measures, which is always a plus for computational purposes.

3.3. Quantile Function

In the context of lifetime analysis, the qf is a precise statistical metric that can be used
to construct artificial survival time data sets for biological case studies, calculate percentiles
for time-to-failure distributions, and investigate specific risk indicators in an actuarial
setting. The qf corresponding to the TMPoE distribution is examined in the next result.
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Proposition 4. The qf of the TMPoE distribution is given by

Q(u) =



−1
θ

log

[
1−

{
1

log α
W0

(
α log α

2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

))}]
, λ 6= 0, α 6= 1

−1
θ

log

[
1− 1

2

(
1
λ
+ 1−

√
λ2 + 2λ− 4λu + 1

λ

)]
, λ 6= 0, α = 1

−1
θ

log
[

1− 1
log α

W0(uα log α)

]
, λ = 0, α 6= 1

−1
θ

log(1− u), λ = 0, α = 1,

where u ∈ (0, 1).

Proof. The proof immediately follows from Proposition 1 and the fact that the qf of the
exponential distribution is

G−1(u; θ) = −1
θ

log(1− u).

This completes the proof.

The qf presented in Proposition 4 is quite manageable, as already mentioned for
the general case in Proposition 1. In particular, the median of the TMPoE distribution is
obtained as

M = Q
(

1
2

)
=



−1
θ

log

[
1−

{
1

log α
W0

(
α log α

2

(
1
λ
+ 1−

√
λ2 + 1

λ

))}]
, λ 6= 0, α 6= 1

−1
θ

log

[
1− 1

2

(
1
λ
+ 1−

√
λ2 + 1

λ

)]
, λ 6= 0, α = 1

−1
θ

log
[

1− 1
log α

W0

(
1
2

α log α

)]
, λ = 0, α 6= 1

1
θ

log(2), λ = 0, α = 1.

In addition to diverse quantile measures, the generation of values from a random
variable with the TMPoE distribution can be implemented.

3.4. Moment Measures

As already sketched, the two most popular methods for summarizing the character-
istics of a lifetime distribution are the measure of central tendency and dispersion. Two
commonly used metrics are expected value and variance. Moment skewness and kurtosis
are other characteristics that could be condensed. These measures are investigated in this
subsection for the TMPoE distribution.

The following result is dedicated to a tractable expansion of the moments of the
TMPoE distribution.

Proposition 5. Let r be a positive integer and X be a random variable with the TMPoE distribution.
Then the rth moment of X exists, and it can be expanded as

µ′r = E(Xr) =
+∞

∑
k=0

[
k

∑
p=0

wk,p
r!

[θ(p + 1)]r+1 −
k+1

∑
p=0

zk,p
r!

[θ(p + 1)]r+1

]
.



Symmetry 2023, 15, 1458 12 of 26

Proof. Based on the expansion in Proposition 3, we have

µ′r = E(Xr) =
∫ +∞

−∞
xr f (x)dx

=
+∞

∑
k=0

[
k

∑
p=0

wk,p

∫ +∞

0
xre−θx(p+1)dx−

k+1

∑
p=0

zk,p

∫ +∞

0
xre−θx(p+1)dx

]
.

By changing the variable y = θx(p + 1) and employing the property of the standard
gamma function Γ(x), we obtain∫ +∞

0
xre−xθ(p+1)dx =

Γ(r + 1)
[θ(p + 1)]r+1 =

r!
[θ(p + 1)]r+1 .

The proof ends.

For some parametric values, Table 1 displays the first four raw moments (µ′1, µ′2, µ′3, µ′4),
central moments (µ2, µ3, µ4), coefficient of kurtosis (CK) and (Pearson) coefficient of
skewness (CS) of a random variable X with the TMPoE distribution. The following
four different scenarios of parametric values are used: S-1 = (θ = 0.5, α = 0.2,
λ = 1); S-2 = (θ = 2.5, α = 0.4, λ = −1.2); S-3 = (θ = 1.85, α = 0.75, λ = 0.2); and
S-4 = (θ = 1.5, α = 2.5, λ = 0.5).

Table 1. Measures of dispersion of the TMPoE distribution for some parametric values.

Measures S-1 S-2 S-3 S-4

µ′1 0.2254 0.3017 0.4108 0.7313
µ′2 0.3088 0.1553 0.3841 0.9611
µ′3 1.2482 0.1281 0.5793 1.8525
µ′4 6.3303 0.1581 1.2085 4.7827
µ2 0.2579 0.0642 0.2153 0.4263
µ3 1.0370 0.0424 0.2445 0.5261
µ4 5.2913 0.0634 0.5600 1.5897
CS 4.0211 2.9154 2.4556 1.8907
CK 76.5684 12.3822 9.0809 5.7475

Thus, we can see how these metrics can be adjusted based on the values of the
parameters. Particularly, low and high values for the kurtosis are observed, as well as
positive values for the skewness. Figures 3 and 4 show the plots of the mean, variance,
skewness, and kurtosis associated with the TMPoE distribution for various parametric
values. In particular, they emphasize the importance of the role of λ.
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Figure 3. Graphical illustrations of the mean (a) and variance (b) associated with the TMPoE distribution.
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Figure 4. Graphical illustrations of the skewness (a) and kurtosis (b) associated with the TMPoE
distribution.

We end this part by the incomplete moments associated with the TMPoE distribution
in the next proposition.

Proposition 6. Let r be a positive integer, X be a random variable with the TMPoE distribution
and t ≥ 0. Then, the rth incomplete moment of X at t exists, and it can be expanded as

µ′r(t) = E(Xrδ{X≤t}) =
+∞

∑
k=0

[
k

∑
p=0

wk,p
γ[r + 1, θt(p + 1)]

[θ(p + 1)]r+1 −
k+1

∑
p=0

zk,p
γ[r + 1, θt(p + 1)]

[θ(p + 1)]r+1

]
,

where γ(a, b) =
∫ b

0 xa−1e−xdx is the lower incomplete gamma function.

Proof. Based on the expansion in Proposition 3, we have

µ′r(t) = E(Xrδ{X≤t}) =
∫ t

−∞
xr f (x)dx

=
+∞

∑
k=0

[
k

∑
p=0

wk,p

∫ t

0
xre−θx(p+1)dx−

k+1

∑
p=0

zk,p

∫ t

0
xre−θx(p+1)dx

]
.

By changing the variable y = θx(p + 1) and employing the lower incomlete gamma
function, we obtain ∫ t

0
xre−xθ(p+1)dx =

γ[r + 1, θt(p + 1)]
[θ(p + 1)]r+1 .

The proof ends. �

3.5. Estimation

The work in Section 2.6 on the maximum likelihood estimation for the general TMPo-
G family can be transposed for the TMPoE distribution by considering the exponential
distribution for the baseline distribution. As a result, by taking into account the observed
values x1, x2, . . . , xn from the TMPoE distribution, the log-likelihood function for the vector
of parameters η = (θ, α, λ)> is
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`(η) = n log(θ) + θ
n

∑
i=1

xi − (log α)
n

∑
i=1

e−θ xi +
n

∑
i=1

log
[
1 + (log α)− log αe−θxi

]
+

n

∑
i=1

log
[
1 + λ − 2λ(1− e−θxi )α−e−θxi

]
.

The MLEs are obtained by maximizing this function with respect to η. Then, based
on the MLEs, we can estimate the functions depending on the parameters by substitu-
tion, calculate the related SEs, construct confidence intervals, and conduct statistical tests
(see [28]).

4. Some Actuarial Measures

In this section, we discuss some important risk measures including value at risk,
expected shortfall, and tail value at risk of the TMPoE distribution.

4.1. Value at Risk

The value at risk (VaR) determines an investment’s potential loss based on a speci-
fied time frame and confidence level. It plays a crucial role in many business decisions.
The value of the loss portfolio is determined by a specific level of confidence, say q, with
q ∈ (0, 1). The VaR of a given distribution is its qf, i.e., VaR = Q(q) (see [32]). In the setting
of the TMPoE distribution, it is given in Proposition 4.

4.2. Expected Shortfall

Another important financial risk measure is called an expected shortfall (ES) intro-
duced by [33] and generally considered a better measure than value at risk. It is defined by
the following expression:

ES =
1
q

∫ q

0
Q(x)dx, q ∈ (0, 1). (9)

Using Proposition 4, the ES of the TMPoE distribution can be obtained.

4.3. Numerical Illustration of VaR and ES under the TMPoE Distribution

Here, we demonstrate the visual and numerical representation of the two primary risk
measurements, ES and VaR. It is feasible to compare the ES and VaR of the proposed TMPoE
distribution to the exponentiated exponential Poisson (EEP) and exponentiated exponential
(EE) distributions by employing the MLEs of the parameters for certain configurations. For
comparison purposes, it is important to note that a distribution is said to have a heavier
tail if the risk measurement has greater values.

The scale and shape parameters are executed in various combinations described as
follows: I = (θ = 0.45, α = 3.5, λ = 1), II = (θ = 0.25, α = 5.0, λ = 1), III = (θ = 1, α = 4.6,
λ = 1), and IV = (θ = 9.5, α = 8.0, λ = 1). Figure 5 shows the change in the VaR and ES
curves associated with the TMPoE distribution for some parametric values.

The ES and VaR for the TMPoE, EEP, and EE distributions are numerically illustrated
in Table 2, which also shows that the TMPoE distribution has a higher value of both risk
measures than the EEP and EE distributions.

In addition, it has a slightly heavier tail than the EEP and EE distributions, according
to the visual representation of the distributions in Figure 6. Ref. [34] is recommended for a
detailed discussion of VaR and ES, and how they are computed using an R–Programming
Language.
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Figure 5. Plots of the VaR (a) and ES (b) of the TMPoE distribution for some parametric values.
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Figure 6. Plots of the VaR (a) and ES (b) of the TMPoE, EEP, and EE distributions.

Table 2. A summary of the ES and VaR of the TMPoE distribution.

q TMPoE EEP EE

ES

0.50 14.1472 3.9010 4.3658
0.60 14.7885 4.3764 4.9788
0.65 15.4987 4.8922 5.6449
0.70 16.2968 5.4580 6.3736
0.75 17.2117 6.0877 7.1787
0.80 18.2917 6.8024 8.0803
0.85 19.6288 7.6371 9.1102
0.90 21.4495 8.6587 10.3254

VaR

0.50 20.8744 8.9362 10.8462
0.60 22.8665 10.3070 12.6367
0.65 25.2533 11.8979 14.6862
0.70 28.2040 13.7881 17.0727
0.75 32.0171 16.1057 19.9178
0.80 37.2870 19.0764 23.4249
0.85 45.4590 23.1516 27.9765
0.90 61.7136 29.4353 34.4308
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5. Simulation Analysis

Here, we develop a simulation study to look at the actions of MLEs inside the frame-
work of the TMPoE model paradigm. The performance of the estimates over predefined
replications at different sample sizes is assessed using simulation analysis, which is one
of the most crucial statistical procedures. To this end, a simulation process is repeated
1000 times with different sample sizes (n = 25, 50, 100, 150, 200, and 500). The parameters
θ, α, and λ are combined in the following different scenarios: θ = 0.3, α = 0.8, and λ = 1,
named Scenario-I; θ = 0.2, α = 1.8, and λ = 1, named Scenario-II; θ = 1.5, α = 3.3,
and λ = 1, named Scenario-III; and θ = 5, α = 0.38, and λ = 0.2, named Scenario-IV. As
the main benchmark measures, we recall that the bias and mean square error (MSE) are
defined by

Bias(Θ̂) =
1000

∑
r=1

Θ̂i
1000

−Θ and MSE(Θ̂) =
1000

∑
r=1

(Θ̂i −Θ)2

1000
,

where Θ ∈ {θ, α, λ}, and Θ̂i is an estimate of Θ constructed from the ith sample. We
also consider the coverage probability (CP), lower bound (L.Bound) and upper bound
(U.Bound) of a parameter confidence interval, and the average width (AW).

The bias, MSE, AW, CP, L.Bound, and U.Bound at various sample sizes are shown
together with a thorough overview of the Monte Carlo simulation in Tables 3 and 4.

The general finding of the simulation analysis yields that the estimates become stable
as n becomes large, the MSE reduces as n increases, and the bias reduces as n becomes very
large. Also, the AW decreases as the sample size increases. Moreover, the CP is close to the
nominal level of 95%. As a result, it is possible to estimate and create confidence intervals
for the suggested TMPoE model parameters using the MLEs and their asymptotic results.
Readers can refer to [35] for a simple and comprehensive method of designing a Monte
Carlo simulation research study using the R–programming language.

The R code used for this simulation work is given in Appendix A.

Table 3. Biases, MSEs, CPs, L.Bounds, U.Bounds, and AWs for different scenarios.

Scenario-I

n Bias MSE CP L.Bound U.Bound AW

θ 25 0.136 0.038 0.992 0.174 1.012 1.154
α 0.029 0.430 0.978 0.550 2.1687 2.679
λ −0.496 0.280 1.000 0.815 1.800 2.593
θ 50 0.136 0.036 0.980 0.138 0.921 0.970
α 0.087 0.288 0.986 0.284 2.018 2.262
λ −0.431 0.230 0.990 0.603 1.647 2.157
θ 100 0.142 0.032 0.970 0.137 0.835 0.786
α 0.167 0.207 0.962 0.215 1.907 1.879
λ −0.370 0.187 0.978 0.482 1.487 1.715
θ 150 0.140 0.030 0.966 0.148 0.809 0.737
α 0.188 0.171 0.966 0.289 1.834 1.692
λ −0.318 0.145 0.976 0.447 1.467 1.568
θ 200 0.139 0.025 0.986 0.128 0.639 0.837
α 0.172 0.151 0.976 0.249 1.254 1.372
λ −0.310 0.135 0.996 0.437 1.927 1.958
θ 500 0.130 0.010 0.986 0.108 0.509 0.417
α 0.158 0.111 0.986 0.219 1.104 1.022
λ −0.218 0.105 0.996 0.407 1.237 1.250
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Table 3. Cont.

Scenario-II

n Bias MSE CP L.Bound U.Bound AW

θ 25 0.089 0.015 0.984 0.071 0.570 0.561
α 0.724 8.497 0.918 2.103 7.150 9.253
λ −0.486 0.277 1.000 0.967 1.981 2.933
θ 50 0.082 0.010 0.978 0.085 0.499 0.435
α 0.612 3.873 0.960 0.540 5.361 5.898
λ −0.393 0.200 0.994 0.610 1.711 2.209
θ 100 0.083 0.009 0.966 0.117 0.459 0.351
α 0.612 1.192 0.992 0.486 4.467 4.112
λ −0.360 0.174 0.996 0.513 1.544 1.807
θ 150 0.076 0.008 0.940 0.131 0.429 0.306
α 0.516 0.758 0.994 0.740 3.955 3.279
λ −0.322 0.145 0.996 0.435 1.432 1.507
θ 200 0.066 0.005 0.980 0.129 0.629 0.306
α 0.310 0.738 0.964 0.840 2.955 2.249
λ −0.312 0.125 0.992 0.535 1.032 1.437
θ 500 0.026 0.001 0.960 0.231 0.925 0.216
α 0.116 0.658 0.984 0.940 4.015 2.172
λ −0.222 0.105 0.876 0.335 1.912 1.823

Table 4. Biases, MSEs, CPs, L.Bounds, U.Bounds, and AWs for different scenarios.

Scenario-III

n Bias MSE CP L.Bound U.Bound AW

θ 25 0.568 0.568 0.986 0.606 3.736 3.337
α 2.630 103.598 0.920 7.822 19.683 27.505
λ −0.545 0.3547 1.000 1.199 2.099 3.290
θ 50 0.530 0.409 0.972 0.788 3.310 2.560
α 1.331 21.844 0.962 1.925 11.188 13.113
λ −0.465 0.282 0.996 0.756 1.718 2.367
θ 100 0.515 0.371 0.950 0.997 3.083 2.136
α 1.054 4.940 0.988 0.602 8.560 8.411
λ −0.397 0.219 1.000 0.584 1.537 1.869
θ 150 0.514 0.358 0.908 1.117 2.913 1.797
α 1.021 3.498 0.988 1.082 7.847 7.051
λ −0.393 0.224 0.996 0.541 1.413 1.613
θ 200 0.494 0.338 0.970 1.019 3.913 1.047
α 1.010 3.458 0.908 1.282 5.847 6.951
λ −0.380 0.214 0.986 0.821 2.413 1.923
θ 500 0.414 0.208 0.958 1.237 4.913 2.017
α 1.001 3.288 0.948 1.102 3.847 4.091
λ −0.359 0.194 0.986 0.301 1.943 2.018
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Table 4. Cont.

Scenario-IV

n Bias MSE CP L.Bound U.Bound AW

θ 25 1.365 0.965 0.972 0.234 2.313 2.254
α 1.032 0.330 0.948 0.450 1.148 1.379
λ 1.226 0.789 0.986 0.712 1.503 1.593
θ 50 1.360 0.954 0.990 0.128 1.221 2.170
α 1.012 0.318 0.966 0.384 1.099 1.162
λ 1.123 0.780 0.950 0.503 2.647 1.037
θ 100 1.289 0.943 0.990 0.127 1.435 1.786
α 1.008 0.310 0.972 0.615 0.987 0.879
λ 1.111 0.773 0.988 0.382 2.437 2.002
θ 150 1.275 0.930 0.967 0.188 1.829 1.337
α 0.987 0.298 0.986 0.389 2.134 1.292
λ 1.101 0.764 0.956 0.543 3.467 1.968
θ 200 1.275 0.914 0.976 0.248 0.703 1.437
α 0.987 0.287 0.946 0.189 0.994 1.392
λ 1.101 0.758 0.986 0.453 1.037 2.568
θ 500 1.275 0.810 0.993 0.128 1.309 1.137
α 0.987 0.240 0.996 0.189 1.234 0.692
λ 1.101 0.623 0.986 0.487 0.967 0.948

6. Practice for the TMPoE Model

Here, we present two data examples to show how the suggested TMPoE distribution
is adaptable and useful.

The first data set, referred to as Data 1, examines the most prevalent grievances against
automobile insurance companies during a two-year period as a percentage of their total
business, including non-renewal of insurance and no fault claims. This data set was also
considered in [36].

The second data set, referred to as Data 2, was taken from [19], which represents the
Kevlar 373/epoxy material life of fatigue fractures.

Several modified versions of the well-known exponential models are used in the
comparative analysis, including transmuted generalized exponential (TGE) model [37],
gamma-exponentiated exponential (GEE) model [38], exponential (E) model, exponentiated
exponential (EE) model, exponentiated Weibull (EW) model [39], odd Weibull exponential
(OWE) model [8], Kumaraswamy exponential (KwE) model [40], and beta exponential (BE)
model [41].

The R–programming language is used for all statistical computations. The MLEs and SEs
of the estimates of the fitted models for Data 1 and Data 2 are displayed in Tables 5 and 6.

Subsequently, the following statistical measures are considered: Akaike information
criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information
criterion (BIC) (all depending on the maximized log-likelihood function denoted as ˆ̀),
Hannan–Quinn information criterion (HQIC), Anderson–Darling (A∗), Cramér–von Mises
(W∗) statistic, and Kolmogorov–Smirnov (K-S) statistic. For the TMPoE model, we find that
AIC = 637.172, CAIC = 637.455, BIC = 644.638, HQIC = 640.182, A∗ = 1.451, W∗ = 0.209,
K-S = 0.100, and p-value = 0.313, which are the best of the other comparable models. Sim-
ilarly, using the second data set provided AIC = 247.336, CAIC = 247.666, BIC = 254.325,
HQIC = 250.127, A∗ = 0.453, W∗ = 0.076, K-S = 0.086, and p-value = 0.588. Thus, the TM-
PoE distribution provides a better fit than other comparable distributions.
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Table 5. Estimated parameters and SEs for Data 1 and Data 2.

Dist. Parameter
Data 1 Data 2

Estimate SE Estimate SE

TMPoE θ̂ 0.027 0.007 0.714 0.143
α̂ 0.452 0.095 0.586 0.331
λ̂ 0.667 0.263 7.570 4.211

TGE α̂ 0.0441 0.009 0.458 0.146
λ̂ 0.772 0.169 0.842 0.341
β̂ 0.938 0.117 1.701 0.309

GEE α̂ 0.055 0.009 0.603 0.086
β̂ 1.501 0.736 4.507 4.697
λ̂ 0.557 0.276 0.362 0.395

EE α̂ 0.062 0.009 0.702 0.092
β̂ 0.837 0.117 1.709 0.282

OWE α̂ 0.003 0.0007 0.024 0.022
â 12.232 3.349 41.056 24.289
b̂ 0.778 0.056 1.274 0.111

KwE α̂ 0.008 0.005 0.314 0.588
â 0.818 0.074 1.549 0.358
b̂ 6.1325 3.408 2.575 5.671

BE α̂ 0.015 0.016 0.484 0.328
â 0.818 0.106 1.679 0.317
b̂ 3.870 4.197 1.511 4.551

TLE α̂ 0.031 0.004 0.351 0.046
â 0.837 0.117 1.709 0.282

E α̂ 0.071 0.007 0.510 0.058

Table 6. The statistics − ˆ̀, AIC, CAIC, BIC, HQIC, A∗, W∗, K-S, and p-value for Data 1 and Data 2.

Dist. − ˆ̀ AIC CAIC BIC HQIC A∗ W∗ K-S p-value

Data 1

TMPoE 315.586 637.172 637.455 644.638 640.182 1.451 0.209 0.100 0.313
TGE 318.906 643.812 644.094 651.278 646.821 1.801 0.262 0.117 0.155
GEE 322.692 651.385 651.667 658.850 654.394 2.190 0.322 0.121 0.134
EE 323.550 651.101 651.241 656.079 653.108 2.270 0.335 0.124 0.1139

OWE 322.400 650.801 651.083 658.266 653.810 2.011 0.291 0.134 0.072
KwE 321.659 649.319 649.601 656.785 652.328 2.030 0.295 0.118 0.151
BE 323.121 652.243 652.526 659.709 655.253 2.226 0.328 0.113 0.448

TLE 323.550 651.101 651.241 656.079 653.108 2.270 0.335 0.125 0.113
E 324.379 650.758 650.804 653.246 651.761 2.232 0.329 0.161 0.016

Data 2

TMPoE 120.666 247.336 247.666 254.325 250.127 0.453 0.076 0.086 0.588
TGE 121.933 249.866 250.199 256.858 252.661 0.617 0.103 0.086 0.519
GEE 121.993 249.987 250.320 256.979 252.781 0.652 0.109 0.093 0.496
EE 122.243 248.487 248.651 253.148 250.350 0.693 0.116 0.094 0.479

OWE 122.841 251.682 252.016 258.675 254.477 0.817 0.139 0.114 0.253
KwE 122.094 250.189 250.522 257.181 252.983 0.681 0.115 0.099 0.418
BE 122.227 250.455 250.788 257.447 253.249 0.693 0.116 0.095 0.461

TLE 122.243 248.487 248.651 253.148 250.350 0.693 0.116 0.094 0.480
E 127.114 256.228 256.282 258.559 257.160 0.707 0.119 0.166 0.026

A graphical analysis can complete these results. The probability–probability (P-P)
plot can be used to assess how well our data set fits our distribution. When the two cdfs
are plotted against one another, the data will resemble a virtually straight line if they are
identical. In addition, the shapes of the distributions are compared using a quantiles–
quantiles (Q-Q) plot, which gives a graphical representation of how characteristics, like
location, scale, and skewness, are the same or different between the two distributions.
Comparing sets of data or theoretical distributions can be conducted using Q-Q plots.
On the other hand, the main goal of the total time on test (TTT) plot is to identify a constant
hrf, an increasing hrf, or a decreasing hrf.

With a focus on TMPoE model, the Figures 7 and 8 provide a graphical representation
of both data sets, which include estimated pdf, estimated cdf, P-P, TTT, estimated hrf,
and Q-Q plots for Data 1 and Data 2, respectively. These figures demonstrate a high
correlation between the actual and projected results.
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On the basis of our results from the earlier statistics, it is clear that the TMPoE model
performs better than a number of well-known models.
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Figure 7. Plots of the (a) estimated pdf, (b) estimated cdf, (c) P-P, (d) TTT, (e) estimated hrf, and (f) Q-Q
for Data 1.
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Figure 8. Plots of (a) estimated pdf, (b) estimated cdf, (c) P-P, (d) TTT, (e) estimated hrf, and (f) Q-Q
for Data 2.

7. Concluding Remarks

We have introduced a new and flexible family of distributions, named the TMPo-G
family. In a first part, we derived its main general mathematical characteristics, including
the series expansion of the probability density function, and performed in-depth investiga-
tions of the quantile function, moments, incomplete moments, and parameter estimation.
An exponential distribution was used as the baseline for creating the TMPoE distribution.
The advantage of the TMPoE distribution is that it is flexible in the statistical modeling
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sense. Indeed, the shape of the corresponding pdf is right-skewed, unimodal, and reversed-
J. In addition, the shape of the hrf increases with the long-flat phase (useful time) and can
be upside-down bathtub with a long-flat phase. In another part, actuarial risk measures,
such as expected shortfall and value at risk, were developed, along with a simulation
analysis. As a result, it was shown that the TMPoE distribution has a heavier tail than
the EEP and EE distributions. Then, we applied it to two real-world data sets (one in
insurance and the other in reliability). During the statistical data analysis, we discovered
that it outperformed some of its predecessors. Consequently, some other subdistributions
of the proposed family, like the TMPo-Weibull distribution, the TMPo-Burr XII distribution,
and the TMPo-Kumaraswamy distribution, can be employed, as future work, for data
analysis in a specific area because of the complex and probabilistic structure of the data.
Overall, the TMPoE distribution can be applied to analyze similar types of data in many
different fields to enable comparisons and foster a better understanding of insurance data
across different regions.
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Abbreviations

List of Abbreviations
pdf Probability density function
cdf Cumulative distribution function
hrf Hazard rate function
MPo-G Modified power-generated
QT-G Quadratic transmuted-generated
T-G Transmuted-generated
TMPo-G Transmuted modified power-generated
TMPoE Transmuted modified power exponential
VaR Value at risk
ES Expected shortfall
MLE Maximum likelihood estimate
SE Standard error
MSE Mean square error
CP Coverage probabilities
AW Average width
TGE Transmuted generalized exponential
GEE Gamma exponentiated exponential
E Exponential
EE Exponentiated exponential
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EW Exponentiated Weibull
OWE Odd Weibull exponential
KwE Kumaraswamy exponential
BE Beta exponential
AIC Akaike information criterion
CAIC Consistent Akaike information criterion
BIC Bayesian information criterion
HQIC Hannan–Quinn information criterion
K-S Kolmogorov–Smirnov
P-P Probability–probability
Q-Q Quantile–quantile
TTT Total time on test
List of Symbols
ξ Baseline vector of parameters
θ, α, λ Main parameters used
G(x; ξ) Baseline cumulative distribution function
g(x; ξ) Baseline probability density function
f (x) Probability density function
S(x) Survival function
h(x) Hazard rate function
Q(u) Hazard rate function
M Median
X Random variable
µ′r rth moment
µ′r(t) rth incomplete moment at t
CS Coefficient of moment skewness
CK Coefficient of moment kurtosis
Γ(x) Gamma function
γ(a, x) Lower incomplete gamma function
η (θ, α, λ)>

`(η) Log-likelihood function
VaR Value at risk
ESq Expected shortfall
A∗ Anderson–Darling
W∗ Cramér–von Mises

Appendix A

R code for the simulation

pdf_PPL <- function(par,x){
c=par[1]
alpha=par[2]
delta=par[3]
G=1-exp(-c*x)
g=c*exp(-c*x)
F=1-(1-delta*(G*alpha^(G-1)))*(1-G*alpha^(G-1))
f=g*alpha^(G-1)*(1+log(alpha)*G)*(1+delta-2*delta*G*alpha^(G-1))
return(f)
}
ll.PPL <- function(par){
-sum(log(pdf_PPL(par,x)))
}
quantile <- function(c,alpha,delta,u){
t=lambertW0((1/2)*(alpha*log(alpha)+((alpha*log(alpha))/delta)
-alpha*log(alpha)*sqrt(1+2*delta-4*u*delta+delta^2)))/log(alpha)



Symmetry 2023, 15, 1458 23 of 26

q1=-1/c*log(1-t)
return(q1)
}
library(numDeriv)
c=0.5;alpha=0.3;delta=1
n1=c(25,50,100,500)
for (j in 1:length(n1)){
n=n1[j]
N=500
mle_c<- c(rep(0,N))
mle_alpha<-c(rep(0,N))
mle_delta<-c(rep(0,N))
LC_c<-c(rep(0,N))
UC_c<-c(rep(0,N))
LC_alpha<-c(rep(0,N))
UC_alpha<-c(rep(0,N))
LC_delta<-c(rep(0,N))
UC_delta<-c(rep(0,N))
temp=1
count_c=0;count_alpha=0;count_delta=0
HH1<-matrix(c(rep(2,9)),nrow=3,ncol=3)
HH2<-matrix(c(rep(2,9)),nrow=3,ncol=3)
for (i in 1:N)
{
#print(i)
#flush.console()
repeat{
x<-c(rep(0,n))
#Generate a random variable from uniform distribution
u<-0
u<-runif(n,min=0,max=1)
for (k in 1:n){
x[k]<-quantile(c=c,alpha=alpha,delta=delta,u[k])
}
#Maximum likelihood estimation
mle.result<-nlminb(c(c=c,alpha=alpha,delta=delta),
ll.PPL,lower=c(0,0,0),upper=c(Inf,Inf,Inf))
temp=mle.result$convergence
if(temp==0){
temp_c<-mle.result$par[1]
temp_alpha<-mle.result$par[2]
temp_delta<-mle.result$par[3]
HH1<-hessian(ll.PPL,
c(temp_c,temp_alpha,temp_delta))
if( sum(is.nan(HH1))==0 & (diag(HH1)[1]>0) &
(diag(HH1)[2]>0) & (diag(HH1)[3]>0) ){
HH2<-solve(HH1)
#print(det(HH1))
}
else{
temp=1}
}
if ((temp==0) & (diag(HH2)[1]>0) & (diag(HH2)[2]>0)
& (diag(HH2)[3]>0) & (sum(is.nan(HH2))==0)){
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break
}
else{
temp=1}
}
mle_c[i]<-mle.result$par[1]
mle_alpha[i]<-mle.result$par[2]
mle_delta[i]<-mle.result$par[3]
HH<-hessian(ll.PPL,c(mle_c[i],mle_alpha[i],
mle_delta[i]))
H<-solve(HH)
LC_c[i]<-mle_c[i]-qnorm(0.975)*sqrt(diag(H)[1])
UC_c[i]<-mle_c[i]+qnorm(0.975)*sqrt(diag(H)[1])
if( (LC_c[i]<=c) & (c<=UC_c[i])){
count_c=count_c+1
}
LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[2])
UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[2])
if( (LC_alpha[i]<=alpha) & (alpha<=UC_alpha[i])){
count_alpha=count_alpha+1
}
LC_delta[i]<-mle_delta[i]-qnorm(0.975)*sqrt(diag(H)[3])
UC_delta[i]<-mle_delta[i]+qnorm(0.975)*sqrt(diag(H)[3])
if( (LC_delta[i]<=delta) & (delta<=UC_delta[i])){
count_delta=count_delta+1
}
}
#Calculate Average Bias
ABias_c<-sum(mle_c-c)/N
ABias_alpha<-sum(mle_alpha-alpha)/N
ABias_delta<-sum(mle_delta-delta)/N
#print(cbind(ABias_c,ABias_alpha,ABias_delta))
#Calculate MSE
MSE_c<-sum((c-mle_c)^2)/N
MSE_alpha<-sum((alpha-mle_alpha)^2)/N
MSE_delta<-sum((delta-mle_delta)^2)/N
#print(cbind(RMSE_c,RMSE_alpha,RMSE_delta))
#Converge Probability
CP_c<-count_c/N
CP_alpha<-count_alpha/N
CP_delta<-count_delta/N
#print(cbind(CP_c,CP_alpha,CP_delta))
## ACI
ALC_c <- sum(abs(LC_c))/N
AUC_c <- sum(abs(UC_c))/N
ALC_alpha <- sum(abs(LC_alpha))/N
AUC_alpha <- sum(abs(UC_alpha))/N
ALC_delta <- sum(abs(LC_delta))/N
AUC_delta <- sum(abs(UC_delta))/N
#Average Width
AW_c<-sum(abs(UC_c-LC_c))/N
AW_alpha<-sum(abs(UC_alpha-LC_alpha))/N
AW_delta<-sum(abs(UC_delta-LC_delta))/N
#print(cbind(AW_c,AW_alpha,AW_delta))
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out.ML = rbind(
cbind(round(ABias_c,3), round(MSE_c,3),round(CP_c,3),round(ALC_c,3),
round(AUC_c,3),round(AW_c,3)),
cbind(round(ABias_alpha,3),round(MSE_alpha,3),round(CP_alpha,3),
round(ALC_alpha,3),round(AUC_alpha,3),round(AW_alpha,3)),
cbind(round(ABias_delta,3),round(MSE_delta,3),round(CP_delta,3),
round(ALC_delta,3),round(AUC_delta,3),round(AW_delta,3))
)
colnames(out.ML)= c("Bais", "MSE", "CP", "L.Bound", "U.Bound","AW")
cat("\n\n MLE for c=",c, "and alpha=",alpha, "fix n=",n1[j]," delta=",
delta,"\n")
print(out.ML)
}
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