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Abstract: Ear images are easy to capture, and ear features are relatively stable and can be used for
identification. The ear images are all asymmetric, and the asymmetry of the ear images collected
in the unconstrained environment will be more pronounced, increasing the recognition difficulty.
Most recognition methods based on hand-crafted features perform poorly in terms of recognition
performance in the face of ear databases that vary significantly in terms of illumination, angle,
occlusion, and background. This paper proposes a feature fusion human ear recognition method
based on channel features and dynamic convolution (CFDCNet). Based on the DenseNet-121 model,
the ear features are first extracted adaptively by dynamic convolution (DY_Conv), which makes
the ear features of the same class of samples more aggregated and different types of samples more
dispersed, enhancing the robustness of the ear feature representation. Then, by introducing an
efficient channel attention mechanism (ECA), the weights of important ear features are increased and
invalid features are suppressed. Finally, we use the Max pooling operation to reduce the number of
parameters and computations, retain the main ear features, and improve the model’s generalization
ability. We performed simulations on the AMI and AWE human ear datasets, achieving 99.70%
and 72.70% of Rank-1 (R1) recognition accuracy, respectively. The recognition performance of this
method is significantly better than that of the DenseNet-121 model and most existing human ear
recognition methods.

Keywords: ear recognition; dynamic convolution; ECA; max pooling; asymmetric

1. Introduction

Human ear recognition is a biometric technology that emerged at the end of the last
century. It has unique physiological characteristics and viewing angles [1]. This gives ear
recognition technology natural advantages compared with other biometric technologies.
Currently, relatively mature biometric technologies include face recognition, fingerprint
recognition, iris recognition, etc. [2]. Among them, face recognition is influenced by
various factors, such as changes in facial expression, whether or not to wear glasses, and
whether or not to have a beard. In contrast, ear recognition is almost independent of
these factors [3]. Acquiring human ear image information is much easier than receiving
fingerprint information. This is because it can be collected secretly without a person’s
cooperation. Compared to iris recognition, the installation cost of ear image capture devices
is relatively low. Moreover, acquiring iris information is more complex than ear image
acquisition. Therefore, human ear recognition technology can be applied in many fast-
paced identity identification scenarios. Although there is much research on human ear
recognition at home and abroad, the technology could be more mature, and there is still a
long way to go before it can be applied to real life. In-depth research on this technology
can actively promote and improve contactless remote identification. The explosion of
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COVID-19 worldwide in the past three years has affected many biometric systems. For
example, facial recognition will be severely impacted by people wearing masks. At this
time, ear recognition can benefit identity confirmation [4]. In addition, it performs well in
financial and surveillance security [5].

Computer vision and machine learning techniques have been significantly developed
in recent years. Among them, deep convolutional neural networks have been popular
among most researchers and applied to almost all areas of computer vision, especially ear
recognition tasks. Deep convolutional neural networks have the feature of fusing feature
extraction and classification into an end-to-end model that can handle different practical
problems by learning the representations of the input data. Most ear recognition methods
based on hand-crafted features do not use standard performance evaluation metrics and
baseline ear databases, and the variation in the collected subject ear images is slight. When
these methods are confronted with an ear database with significant asymmetry in an
unconstrained environment, the recognition performance is significantly worse than that
of deep learning-based approaches. In deep feature extraction methods, the parameters
of static convolution are artificially set and fixed, which can reduce the extraction effect
of ear image features. However, dynamic convolution [6] can dynamically aggregate
multiple parallel convolution kernels to adaptively adjust the convolution parameters to
further refine ear features. The ECA [7] module can realize cross-channel information
interaction, suppress invalid features, and improve the feature weights of the ear geometry
region. The dynamic convolution and ECA modules can significantly enhance the feature
representation ability of the model, which has shown excellent performance in the fields
of CIFAR and ImageNet database classification [6–10], scene recognition [10], ancient
Chinese character recognition [11], fine-grained image classification [12], and plant disease
recognition [13]. Therefore, we propose a feature fusion human ear recognition method
based on channel features and dynamic convolution (CFDCNet).

Our contributions can be summarized as follows: (1) a feature fusion human ear recog-
nition method based on channel features and dynamic convolution [6] is proposed, which
has good recognition performance in both constrained and unconstrained ear recognition
scenarios; (2) in the case of significant differences in ear sample features between the same
category and different categories. This paper introduces dynamic convolution to extract ear
image features adaptively, enhancing the robustness of ear feature representation; (3) an
ECA mechanism [7] is introduced to efficiently fuse the depth and spatial information of
ear images and suppress invalid features such as background and noise; (4) we utilize
the maximum pooling operation in the network to retain the primary feature information
of the ear contour to the maximum extent and prevent the model from overfitting; and
(5) we performed simulations on AMI [14] and AWE [15–17] human ear databases and
achieved 99.70% and 72.70% Rank-1 (R1) recognition accuracy, respectively. The recognition
performance of our method is significantly better than that of the DenseNet-121 [18] model
and most existing human ear recognition methods.

The rest of this paper is organized as follows. Section 2 briefly reviews past work;
Section 3 discusses our proposed method; Section 4 discusses the experimental results and
analysis; and Section 5 presents a conclusion.

2. Related Work

Earlier researchers performed ear identification based on handcrafted features. In [19],
the author used Haar wavelets for ear localization. Their method has good robustness
against occlusions, and the recognition performance is significantly better than Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Orthogonal Locality
Preserving Projection (OLPP). The drawback of this method is that it was evaluated on
small datasets, and no fixed-value performance evaluation metrics were used to assess
it. In [20], the authors proposed an ear recognition method combining homographic
distance and Scale-invariant feature transform (SIFT) features. The method outperforms
PCA in recognition and shows robustness to slight angle changes, background noise, and
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occlusions. The drawback of their method is that it does not use a benchmark database
or specify evaluation metrics to assess the model’s performance. In [21], the authors first
segmented the ear features using Fourier and morphological descriptors and then used
log-Gabor, Gabor, and complex Gabor filters for local ear feature extraction. The method
was evaluated on a private database containing 465 ear images. The results show that
log-Gabor has the best feature extraction performance. The disadvantage is that no exact
performance evaluation metrics or benchmark database were used. In [22], the authors
proposed an ear recognition method using 2D orthogonal filters for ear feature extraction.
It was evaluated on the IITD and UND ear databases. The method shows that the 2D
orthogonal filter performs better than others. The disadvantage is that the database used to
evaluate the method slightly varies. In [23], the authors first localize the ear information
using the snake model and then use geometric features for ear identification. The model
was evaluated on the IIT Delhi ear database. The drawback of their method is that it was
validated only on a small database, and the ear images in this database were collected
indoors with slight variation. In [24], the authors use a robust pattern recognition technique
for human ear recognition. The method uses descriptors for ear feature extraction, and
the extracted features are powerful for rotation and illumination. The authors tested it
on AMI [14], IITD-II, and AWE [15–17] databases, and the recognition performance is
significantly better than other descriptor methods. The disadvantage is that it needs better
recognition performance on unconstrained datasets. In [25], the authors first extracted
the local features of the ear using the local phase quantization operator, then removed the
global features of the ear using the Gabor–Zernike operator, and finally put the optimal
features of the ear together using a genetic algorithm. The recognition performance of this
method evaluated on three constrained databases is ideal, but on unconstrained databases,
the recognition performance is lower than that of the deep learning-based method.

Researchers have found some application-specific scenarios with high-security index
requirements that require the combination of multiple biometrics, so they started to utilize
multimodal approaches for ear recognition. In [26], the authors proposed a multi-modal
biometric technique combining the ear and iris. They used a local feature descriptor, SIFT,
for feature fusion. It was evaluated on the USTB-II ear database and the CASIA iris database.
According to accuracy, the method is more accurate than ear biometric recognition alone.
In [27], the authors propose a multimodal recognition system combining side faces and
ears. They first augmented the images in the database, then obtained the local optima
of the pictures using the Hessian matrix, and finally used Speeded Up Robust Features
(SURF) to construct the scale space and localize the image feature points. The results of this
method on three ear and side face databases show that multimodal recognition of ears and
side faces performs better than ear recognition alone. In [28], the authors used ears and
fingerprints for multi-pattern recognition. Local Binary Patterns (LBP) were used to extract
the local texture features of the images. The system achieved an accuracy of 98.10%. The
drawback is that they did not evaluate the system with a benchmark database.

In recent years, ear recognition methods based on deep feature learning have achieved
good human ear feature recognition results. In [29], the authors used a Convolutional
Neural Network (CNN) consisting of convolutional, maximum pooling, and fully con-
nected layers for ear feature extraction. The evaluation was performed on the USTB-III
ear database. The disadvantage is that the method does not use standard evaluation pa-
rameters, and the database used for the assessment is constrained and small in number.
In [30], the authors fine-tune the CNN frameworks of VGG face, VGG, ResNet, AlexNet,
and GoogleNet to perform ear recognition. To enable the network to learn multi-scale
information, the last pooling layer of each CNN model is replaced with a spatial pyra-
mid pooling layer. A combination of softmax and center loss is used for training. The
authors also created an unconstrained ear dataset called USTB HelloEar. The results show
that the VGG face model has the best recognition performance. The drawback of this
method is that performance evaluation metrics are not used to evaluate the model. In [31],
the authors first used Refinet for ear detection and then hand-crafted feature-based and
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ResNet models for ear recognition. The models were tested on the UERC database, and
the recognition performance of the deep learning-based approach was significantly better
than that of the hand-crafted feature-based approach. The disadvantage of the model is
that the novelty could be better, and the ear detection and recognition are performed using
existing models. In [32], the authors used integrated learning, feature extraction, and other
learning strategies for ear recognition based on network models such as Inception, ResNext,
and VGG. They evaluated the model’s performance by resizing the image input network
and achieved good recognition results on the EarVN1.0 unconstrained ear database. The
drawback is that it was tested on only one dataset and not compared with other human ear
recognition techniques. A CNN model that can be used for ear recognition was designed
in [2]. It was evaluated on the AMI and IITD-II databases. The authors did not use stan-
dard performance evaluation metrics, and the database used was constrained, with slight
variation in the ear images. In [33], ear recognition is performed with the NASNET model,
and the performance is compared with MobileNet, VGG, and ResNet. The method was
evaluated on the UERC-2017 unconstrained ear database and achieved the best recognition
performance.

It is worth mentioning that most recognition methods based on hand-crafted features
exhibit poor recognition performance in the face of human ear datasets with highly variable
illumination, angle, occlusion, and background. Therefore, we propose a feature fusion
human ear recognition method based on channel features and dynamic convolution (CFD-
CNet). Based on the DenseNet-121 [18] model, the robustness of ear feature representation
is enhanced by replacing the original convolutional layer with dynamic convolution [6] for
adaptive extraction of ear image features. Then the weights of the important ear features are
increased by an efficient channel attention mechanism (ECA) [7]. Finally, we improved the
model’s generalization ability by using the maximum pooling operation to retain the ear’s
key features. We evaluated our model on two publicly available ear datasets exhibiting
good recognition performance.

3. The Proposed Approach
3.1. Introduction to CFDCNet

Figure 1 is the overall structure diagram of CFDCNet, and the input is the ear image
of the R, G, and B channels. The model mainly consists of 9 ECA blocks, 58 modified dense
layers, and three modified transition layers. We can divide the model into the following
parts: a shallow feature extraction block (SFE block), four deep feature extraction blocks
(DFE block), a Max pooling layer, and a classification layer. Figure 2 shows the SFE block
and the first DFE block.

First, the ear image is adjusted by a 7× 7 convolutional layer in the SFE block and a 3×
3 Max pooling layer to change the number of channels and extract the practical information.
Then, the depth and spatial information of the ear image are efficiently fused by the ECA
mechanism to suppress invalid features such as background and noise and achieve shallow
feature extraction of the ear image. The previously extracted data features are used to
extract the depth features of the ear image through four DFE blocks. The DFE blocks
extract ear features adaptively through the modified dense and transition layers, increase
the weight of essential features, make the ear features of the same category of samples
more aggregated and different categories more dispersed, and enhance the robustness of
the ear feature representation. Finally, the Max pooling layer retains the primary feature
information of ear contour to prevent overfitting [34–38], and a linear classification layer is
used to achieve ear image classification [18].
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Figure 2. Schematic diagram of the SFE block and the first DFE block structure.

3.2. DDE Layer and TDE Layer

We improved the dense and transition layers. By introducing the ECA module,
the main features of the ear image are preserved, and the unfavorable features, such as
background and noise, are ignored. The robustness of ear feature representation is enhanced
by dynamic convolution, which makes features of ear samples of the same category more
aggregated and ear features of different types more dispersed. Figure 3a shows the dense
layer fused with dynamic convolution and the ECA mechanism (DDE layer). We add an
ECA module before each dense layer and replace the original 1 × 1 convolutional layer
and 3 × 3 convolutional layers with 1 × 1 dynamic convolutional layer and 3 × 3 dynamic
convolutional layers. Figure 3b shows the transition layer fused with dynamic convolution
and the ECA mechanism (TDE layer). We added an ECA module before each transition
layer and replaced the original 1× 1 convolutional layer with a 1× 1 dynamic convolutional
layer. To reduce the parameters and computation of the model, prevent overfitting, and
improve the model’s generalization ability. We changed the 2 × 2 Avg pooling layer in
the original network transition layer to the 2 × 2 Max pooling layer. The 7 × 7 Global
Max pooling is used to replace the 7 × 7 Global Average pooling before the linear classifier.
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The specific impact of the pooling method on the simulation has been given in Table 3 in
Section 4.
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3.3. DenseNet-121

The connection mechanism of the residual network [39] is a short-circuit connection
between each layer and one or two layers in front of it through element-by-element addition,
i.e., Equation (1):

Pz = Qz(Pz−1) + Pz−1 (1)

In contrast, DenseNet [18] is layer-to-layer interconnected, where each layer accepts as
input the feature information of all previous layers and connects the feature maps of each
layer in the channel dimension, i.e., Equation (2):

Pz = Q([P0, P1, · · · , Pz−1]) (2)

where Qz(·) is the nonlinear transformation function, which is a combined operation
containing the batch normalization (BN), the rectified linear unit (ReLU), and the convo-
lution layer, and z is the index of the layer. Pz represents the output of the z layer and
[P0, P1, · · · , Pz−1] represents the feature map spliced from the 0 layers to the (z− 1) layer.

The DenseNet-121 network structure is mainly composed of multiple densely con-
nected blocks (Dense blocks) and Transition layer composition, and each Dense block is
composed of multiple dense layers. The Dense layer and Transition layer before improve-
ment are shown in Figure 4.
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3.4. Dynamic Convolution

Due to the variety of image types in actual situations, there will be significant differ-
ences between samples of different categories and even between samples of the same type.
This phenomenon is prevalent in the unconstrained ear dataset. Static convolution usually
uses a single convolution kernel to perform the same operation on all input images, making
it difficult to perform accurate feature extraction on images. Equations (3) and (4) list the
conventional convolutional and dynamic convolutional [6], respectively. In (3) W and b are
the weight matrix and bias vector and g is the activation function. In (4), πk is the attention
weight of the kth linear function ŴT

k x + b̂k. As the input x changes, the attention weight

πk(x) also changes, resulting in an optimal aggregation of linear models
{

ŴT
k x + b̂k

}
[6].
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However, the aggregation model ŴT(x)x + b̂(x) is a nonlinear function, so the dynamic
perceptron has a more robust feature representation ability than the static perceptron [6].

y = g
(
WTx + b

)
,

y = g
(

ŴTx + b̂
)

,
(3)

Ŵ =
K
∑

k=1
πk(x)Ŵk, b̂ =

K
∑

k=1
πk(x)b̂k,

s.t.0 ≤ πk(x) ≤ 1,
K
∑

k=1
πk(x) = 1

(4)

With the deepening of the network depth, the image resolution and feature details
after the deep network will suffer considerably. When training many images, more ad-
vanced general rules can be obtained, and the feature extraction mode of each image
sample can be obtained through multi-layer combination adjustment. The basic idea of
dynamic convolution is to adaptively adjust the convolution parameters of the input image
according to attention and dynamically aggregate multiple parallel convolution kernels.
The convolution kernels after aggregation are small in size and computationally efficient,
and they are aggregated in a non-linear manner through attention. They are more capable
of feature representation. Figure 5 shows a dynamic perceptron and a dynamic convolution
layer (DY_Conv).
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3.5. Efficient Channel Attention Mechanism

Efficient Channel Attention (ECA) [7], used in this paper, is a lightweight module. It
can suppress the ear image’s background, noise, and other invalid features. In addition, this
mechanism can efficiently fuse the depth and spatial information of the ear image and focus
on extracting the main features of the ear, thus improving the recognition accuracy of the
ear image. Figure 6 shows the structure diagram of Efficient Channel Attention (ECA). It
first performs a global average pooling of the input feature maps with a value representing
each channel’s feature layer. Then a one-dimensional convolution of size three is used to
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generate weights for each channel to obtain the interdependencies between each channel
and normalize them using a Sigmoid activation function. Finally, the weights generated for
each channel are multiplied by the input feature map to enhance the extraction of essential
features in the ear. In Figure 6, C is the number of channels, H is the height of the input data,
W is the width of the input data, GAP is the global average pool, K is the one-dimensional
convolutional cross-channel interaction size (K = 3 in this paper), and σ is the Sigmoid
activation function.
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ECA generates weights for each channel through one-dimensional convolutional
cross-channel interactions of size K, i.e.,

ω = δ(CIDK(y)) (5)

ω is the channel weight, δ is the sigmoid Activation function, CID is the one-dimensional
convolution, and y ∈ RC is the aggregation feature. As the number of input feature map
channels C increases, the K value rises, i.e.,

C = 2(γ∗K−b) (6)

In this paper, the value of K is determined adaptively by a function related to the
number of channel dimensions, i.e.,

K =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

(7)

In the equation, |t|odd is the odd number closest to t, γ and b are set to 2 and 1,
respectively.

4. Simulation Results
4.1. Dataset Introduction

To evaluate the model’s performance, we use two human ear datasets in our simu-
lations. The first dataset is the AMI human ear dataset [14]. A total of 100 subjects’ ear
images were collected; each person has six right ear images and one left ear image, and
the total number of images is 700. The five images of the right ear slightly change the
shooting angle. The sixth image of the right ear shows the subject looking forward but with
a different focus. The last is an image of the left ear, with the subject looking forward. The
dataset was taken indoors with a Nikon D100 camera under constant lighting conditions.
All images have a resolution of 492× 702 pixels. It is a constrained dataset. In Figure 7a, we
randomly selected the ear images of three subjects. The second dataset is the AWE Human
Ear Database [15–17], which is one of the most challenging datasets for ear recognition.
Most of its images are collected from the Internet, including 100 subjects; each subject has
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ten images, and the total number of images is 1000. This dataset’s image resolution, head
angle, and posture vary greatly, and the lighting conditions are also different. The left and
right ears are distinguished, the image contrast is poor, and even earrings, accessories, and
hair in individual images will cause severe occlusion. In short, significant changes in the
same category and between different categories in this dataset dramatically increase the
difficulty of identification. This dataset is a typical unconstrained dataset, and in Figure 7b,
we randomly select the ear images of three subjects for display.
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4.2. Data Augmentation

To suppress the overfitting of the model during the training process, we performed
random cropping, random angle rotation, random brightness change, random scaling,
random contrast change, and other operations on the original images of the AMI dataset
and AWE dataset to achieve data expansion. Figure 8 shows a series of different images
after data augmentation. This ensures that the images received by our model during
training are all different, which dramatically improves the robustness of feature extraction
and generalization.
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4.3. Parameter Settings

The simulations in this paper are run on NVIDIA Tesla V100 SXM2 16G, and the
PyTorch open-source framework is used to verify the recognition effect of the CFDCNet
network model on ear images. Regarding the optimizer, we choose the stochastic gradient
descent method (SGD), and the parameters are set to support momentum parameters, the
learning decay rate, and the Nesterov momentum. Regarding the learning rate, we set the
cosine scheduler and defined the learning rate decay. The specific changes in the learning
rate are shown in Figure 9. Regarding the number of training iterations, the number of
iterations we train in the AMI dataset is 100. In the AWE dataset, the number of training
iterations is 500. The batch size is set to 16. Considering that CFDCNet belongs to a deep
network and uses the ReLU Activation function to facilitate model convergence, we adopt
the weight initialization method introduced in [40]. To objectively and effectively reflect
the model’s performance, we partition the dataset using hold-out cross-validation [41] and
use the average of 10 tests to evaluate the model’s performance.
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4.4. Evaluation Metrics

We used quantitative performance evaluation metrics (R1 [42–46], R5 [42–46], and
AUC [42–46]) to evaluate the performance of each ear recognition model and plotted the
cumulative matching characteristics (CMC [42–46]) curve for each ear recognition model.

The Rank-1 (R1) recognition rate is the percentage of correct identities found to be the
best matching probe ear images in the ear database.

The Rank-5 (R5) recognition rate is the percentage of probe ear images where the
correct identity is found as the top five matches in the ear database.

The AUC is the area under the cumulative matching feature (CMC) curve.
Cumulative matching feature (CMC) curve: the probability that the model returns a

correct identity within the first z (z ≤ N) ranks, where N is the number of subjects in the
entire ear database.

4.5. The Impact of Data Augmentation

To demonstrate the effectiveness of data augmentation in the ear recognition task, the
original and data-augmented ear databases were input to the CFDCNet model for training
and testing, respectively. The experimental results are shown in Table 1. The original
images were directly input into the CFDCNet model for training, and the R1 recognition
accuracies were 91.25% and 55.10%, respectively. After the data augmentation, the R1
recognition accuracy of CFDCNet increases to 99.70% and 72.70%, respectively. Similarly,
the R5 recognition accuracy also improved significantly, indicating that data augmentation
can enhance the generalization ability and robustness of the model and effectively suppress
overfitting.

Table 1. The impact of data augmentation on the recognition performance of the proposed CFDC-
Net model.

Database Augmentation R1 R5

AMI
5 91.25% 96.47%
3 99.70% 100.00%

AWE
5 55.10% 72.21%
3 72.70% 89.90%

4.6. Ablation Studies

To ensure the rigor of the simulations, we conducted an ablation study before dis-
cussing the impact of the pooling approach on the simulations. The simulations were done
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on the AMI and AWE datasets, respectively, and the quantitative performance metrics (R1,
R5, AUC, and FLOPs) are presented in Table 2. We also plotted CMC curves to show the
differences in recognition performance for different simulation cases, as shown in Figure 10.
The results show that the original DenseNet-121 model exhibits the worst recognition
performance. When we introduce dynamic convolution or an efficient channel attention
mechanism alone, the recognition performance of the model is slightly improved. However,
when we consider both dynamic convolution and efficient channel attention mechanisms,
optimal recognition performance is obtained, highlighting the effectiveness of our method.
The efficient channel attention mechanism will not increase computational complexity,
while dynamic convolution will increase computational complexity by 13 M. CFDCNet has
increased the computational complexity by only 13 M compared to DenseNet-121, but it
has significantly improved recognition performance.

Table 2. We compared the quantitative performance metrics (R1, R5, AUC, and FLOPs) under
different ablation studies and highlighted the best values of the performance metrics in bold.

DY_Conv ECA MFLOPs
AMI AWE

R1 R5 AUC R1 R5 AUC

142 97.00% 99.11% 98.94% 62.00% 76.38% 95.29%
3 155 98.00% 99.62% 98.95% 70.00% 86.98% 96.95%

3 142 98.50% 99.83% 98.96% 71.45% 88.51% 96.99%
3 3 155 99.40% 99.90% 98.98% 72.38% 89.70% 97.05%
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4.7. The Effect of Pooling Methods

Since different pooling methods have a particular impact on feature extraction, af-
fecting the accuracy of human ear recognition, after the ablation studies, we used three
pooling methods: Avg pooling, Max + Avg, and Max pooling to conduct simulations. The
final simulation results show that only using the average pooling Rank-1 (R1) recognition
accuracy is the lowest. On the contrary, only using the maximum pooling Rank-1 (R1)
recognition accuracy is the highest. The specific quantitative performance metrics (R1, R5,
and AUC) are given in Table 3. We also plot the CMC curves for different pooling methods,
as shown in Figure 11.
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Table 3. We compare the quantitative performance metrics (R1, R5, and AUC) for different pooling
methods, and the best values of the performance metrics are marked in bold.

Pooling
Methods

AMI AWE

R1 R5 AUC R1 R5 AUC

Avg pooling 99.20% 99.88% 98.97% 72.00% 89.03% 97.02%
Max + Avg 99.40% 99.90% 98.98% 72.38% 89.70% 97.05%

Max pooling 99.70% 100.00% 99.01% 72.70% 89.90% 97.08%
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4.8. The Impact of the Dataset Division Ratio

We set up four different dataset division ratios to verify the influence of this factor on
simulations. The specific divisions are as follows: Training set:Validation set:Test set = 2:4:4,
Training set:Validation set:Test set = 4:3:3, Training set:Validation set:Test set = 6:2:2, and
Training set:Validation set:Test set = 8:1:1. The specific quantitative performance metrics
(R1, R5, and AUC) are given in Table 4. We also plotted the CMC curves for different dataset
segmentation ratios, as shown in Figure 12. From the analysis results, it can be concluded
that the recognition accuracy of the original model is more sensitive to the division ratio
of the dataset. When the training sample data input to the network is relatively small, the
recognition accuracy will fluctuate greatly, and the simulation results are not very satisfac-
tory. On the contrary, our proposed network (CFDCNet) performs very well on both the
constrained AMI dataset and the unconstrained AWE dataset, and the recognition accuracy
of CFDCNet fluctuates relatively little under different division ratios of the dataset. The
recognition accuracy of CFDCNet in the case of a small number of samples input (Training
set:Validation set:Test set = 2:4:4) is the same as that of DenseNet-121 in the case of a large
number of samples input (Training set:Validation set:Test set = 8:1:1). The recognition
accuracy is the same or even higher; that is to say, CFDCNet can accurately extract the
characteristics of ear images through a small number of ear samples and improve the
accuracy of human ear recognition.

4.9. Compared with Other Methods

To evaluate the performance of the CFDCNet model on human ear recognition, we
summarize past work and compare the recognition accuracy of CFDCNet on the AMI and
AWE datasets with past methods. The performance evaluation metrics (R1, R5, and AUC)
of the various methods are given in Tables 5 and 6 in percentage form. Among them, the
CFDCNet model has the best performance for human ear recognition on the AMI and
AWE datasets, with Rank-1 accuracy of 99.70% and 72.70%, respectively. By analyzing
the prediction results of the models on the test set, it can be concluded that incorrect
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predictions often occur when the ears are heavily obscured by hair and accessories. Correct
predictions are made if there are apparent hair and accessories as auxiliary information.
For images with small head rotation angles, the effect of occlusion on the recognition rate is
insignificant. On the contrary, for images with large head rotation angles, occlusion has a
significant impact on the recognition rate. The presence of earplugs and eyeglass frames
has a slight negative impact on the recognition rate, as do background features such as
facial skin texture and hair color that strongly contrast with ear features.

Table 4. Comparison of quantitative performance metrics (R1, R5, and AUC) of DenseNet-121 and
CFDCNet with different dataset division ratios.

Dataset Division Ratio Method
AMI AWE

R1 R5 AUC R1 R5 AUC

2:4:4
DenseNet-121 60.00% 82.43% 96.51% 20.65% 49.95% 84.89%

CFDCNet 97.00% 99.41% 98.95% 62.12% 76.41% 95.32%

4:3:3
DenseNet-121 81.25% 90.02% 98.01% 43.97% 63.21% 93.11%

CFDCNet 99.58% 99.94% 98.99% 70.02% 87.01% 96.95%

6:2:2
DenseNet-121 96.40% 98.39% 98.87% 58.95% 70.42% 94.67%

CFDCNet 99.62% 99.98% 99.00% 72.61% 89.73% 97.07%

8:1:1
DenseNet-121 97.00% 99.11% 98.94% 62.00% 72.38% 95.29%

CFDCNet 99.70% 100.00% 99.01% 72.70% 89.90% 97.08%

Table 5. The quantitative performance metrics (R1, R5, and AUC) of our method (CFDCNet) on the
AMI ear database are compared with previous work. The best values of the performance metrics are
marked in bold.

Previous Work
AMI

R1 R5 AUC

Raghavendra et al. [47] 86.36% - -
Alshazly et al. [48] 70.20% - -

Chowdhury et al. [49] 67.26% - -
Hassaballah et al. [50] 73.71% - -

Alshazly et al. [42] 94.50% 99.40% 98.90%
Alshazly et al. [43] 97.50% 99.64% 98.41%
Omara et al. [51] 97.84% - -
Zhang et al. [52] 93.96% - -
Omara et al. [53] 96.82% - -
Khaldi et al. [44] 96.00% 99.00% 94.47%

Hassaballah et al. [24] 72.29% - -
Ahila et al. [2] 96.99% - -

Khaldi et al. [54] 98.33% - -
Alshazly et al. [45] 99.64% 100% 98.99%

Aiadi et al. [55] 97.67% - -
Sharkas [56] 99.45% - -

Ebanesar et al. [57] 98.99% - -
Kohlakala et al. [58] 99.20% - -

Our method (CFDCNet) 99.70% 100% 99.01%
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Table 6. The quantitative performance metrics (R1, R5, and AUC) of our method (CFDCNet) on the
AWE ear database are compared with previous work. The best values of the performance metrics are
marked in bold.

Previous Work
AWE

R1 R5 AUC

Hassaballah et al. [50] 49.60% - -
Emersic et al. [16] 49.60% - -
Dodge et al. [59] 56.35% 74.80% -
Dodge et al. [59] 68.50% 83.00% -
Zhang et al. [30] 50.00% 70.00% -

Emersic et al. [46] 62.00% 80.35% 95.51%
Khaldi et al. [44] 50.53% 76.35% 80.97%

Hassaballah et al. [24] 54.10% - -
Khaldi et al. [60] 48.48% - -
Khaldi et al. [54] 51.25% - -

Alshazly et al. [45] 67.25% 84.00% 96.03%
Regouid et al. [61] 43.00% - -

Kacar et al. [62] 47.80% 72.10% 95.80%
Sajadi et al. [25] 53.50% - -
Omara et al. [63] 72.22% - -

Our method (CFDCNet) 72.70% 89.90% 97.08%
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Figure 12. The CMC curves compare the recognition performance of DenseNet-121 and CFDC-
Net with different dataset division ratios. Where (a–d) are the CMC curves for the AMI dataset
with different division ratios, and (e–h) are the CMC curves for the AWE dataset with different
division ratios.

5. Conclusions

In this paper, we propose a feature fusion human ear recognition method based on
channel features and dynamic convolution. Favorable ear features are extracted adaptively
by dynamic convolution and an efficient channel attention mechanism and then combined
with maximum pooling operations to retain the main features of the ear contour. The
method achieves good recognition results on the AMI and AWE human ear databases, with
Rank-1 (R1) recognition accuracies of 99.70% and 72.70%, respectively. Compared with
the DenseNet-121 model and other methods, this method can extract feature information
from human ear images more accurately and has better recognition performance. We
will continue to optimize our approach and improve its recognition performance on the
challenging unconstrained ear dataset.
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