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Abstract: In this article, we investigate some of the qualitative properties of a class of fourth-order
neutral differential equations. We start by obtaining new inequalities and relations between the
solution and its corresponding function, as well as with its derivatives. The new relations allow us to
improve the monotonic and asymptotic properties of the positive solutions of the studied equation.
Then, using an improved approach, we establish new criteria that test the oscillation of all solutions.
We also rely on the principle of symmetry between positive and negative solutions to obtain the new
criteria. The paper provides illustrative examples that highlight the significance of our findings.
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1. Introduction

Differential equations (DEs) play a fundamental role in many areas of science and
engineering, including physics, chemistry, biology, economics, and computer science.
They provide a powerful tool for modeling and analyzing complex phenomena, making
predictions, and designing control systems, see [1,2].

Differential equations of neutral type are a kind of DE that arises in various scientific
and engineering fields due to their ability to model delay phenomena. They are called
”neutral” because they involve derivatives with respect to time and also with respect to a
delayed time. The study of neutral DEs has numerous crucial applications in controlling
chemical processes, mechanical systems, and electrical circuits. They are also used in
modeling population dynamics, epidemiology, and ecological systems. Furthermore, these
equations are employed in economics, finance, and game theory. Therefore, neutral DEs
offer a potent tool for comprehending complex systems with time delays and have extensive
applications in different fields, including science, engineering, and economics, see [3,4].

The oscillation theorem is a crucial outcome in DE theory that characterizes the
oscillatory behavior of solutions. According to the theorem, if a solution to a DE oscillates
by alternately switching between positive and negative values an infinite number of times,
it is considered an oscillation. This theorem has significant applications in diverse fields,
including physics, engineering, and economics. For instance, it is used to analyze oscillating
systems such as pendulums and vibrating strings, as well as in the study of population
dynamics and infectious disease transmission. Additionally, the oscillation theorem has
applications in control theory and signal processing, where it is utilized to assess the
stability and performance of feedback systems, see [5–7].
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There is currently significant interest in obtaining sufficient conditions for the oscil-
latory behavior of solutions to different types of differential equations. Many researchers
have focused on studying oscillatory properties and convergence, particularly for second-
order DEs with advanced delay/conditions. Duzrina and Jadlovska [8], Baculikova [9],
and Bohner et al. [10] have developed approaches and techniques for optimizing the oscil-
lation parameters of these equations. In addition, Moaaz et al. [11,12] have extended this
research to differential equations of the neutral type. Over the past few decades, there has
also been extensive study of the oscillation of fourth-order neutral differential equations,
as seen in [13–16].

As a result, there are now numerous studies available on the oscillatory properties
of various DEs, both in canonical and non-canonical cases. These studies are discussed in
works such as [8,10,17,18].

This research is interested in the oscillation behavior of the solutions of the fourth-order
quasi-linear neutral DE(

µ(s)
(
Φ′′′(s)

)γ
)′

+ q(s)xγ(λ(s)) = 0, s ≥ s0, (1)

where Φ(s) = x(s) + η(s)x(ζ(s)). We assume throughout this paper that:

(H1) γ is the ratio of two positive odd integers;
(H2) ζ, λ, µ ∈ C1([s0, ∞)), and q(s) ∈ C([s0, ∞));
(H3) ζ(s) ≤ s, λ(s) ≤ s, λ′(s) > 0, and lims→∞ ζ(s) = lims→∞ λ(s) = ∞;
(H4) µ(s) > 0, µ′(s) ≥ 0, 0 ≤ η(s) < η0, q(s) ≥ 0, and∫ s

s0

1
µ1/γ(υ)

dυ→ ∞ as s→ ∞. (2)

A function x ∈ C3([sx, ∞),R), sx > s0, is said to be a solution of (1), which has the property
µ(Φ′′′)γ ∈ C1[sx, ∞), and it satisfies the Equation (1) for all x ∈ [sx, ∞). We consider only
those solutions x of (1) that exist on some half-line [sx, ∞) and satisfy the condition

sup{|x(s)| : s > S} > 0, for all S ≥ sx.

A solution of (1) is called oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is said to be non-oscillatory. Equation (1) is said to be oscillatory if
all of its solutions are oscillatory.

Several studies have examined the oscillatory behavior of solutions to various DEs.
For example, Tongxing Li and Rogovchenko [19] studied a class of second-order superlinear
Emden–Fowler neutral DE(

µ(s)(x(s) + η(s)x(ζ(s)))′
)′

+ q(s)|x(λ(s))|γ−1x(λ(s)) = 0,

in the canonical case
∫ ∞

s0
1/µ(υ)dυ = ∞. Zhang et al. [20] explored the oscillatory behavior

of solutions of a delay fourth-order differential equation((
µ(s)x′′′(s)

)γ
)′

+ q(s)xγ(ζ(s)) = 0,

using the Riccatti technique. Grace et al. [21] analyzed the oscillatory behavior of the
fourth-order nonlinear DE((

µ(s)x′(s)
)γ
)′′′

+ q(s) f (x(ζ(s))) = 0.

Muhib et al. [22] obtained new properties of solutions to the neutral DE(
µ(s)(x(s) + η(s)x(ζ(s)))′′′

)′
+ q(s) f (s, x(λ(s))) = 0,
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in the non-canonical case ∫ ∞

s0

1
µ1/γ(υ)

dυ < ∞. (3)

Chatzarakis et al. [23] developed oscillation criteria for a fourth-order nonlinear neutral
DE, expressed as(

µ(s)
(
(x(s) + η(s)x(ζ(s)))′′′

)γ)′
+
∫ b

c
q(s, υ) f (x(ζ(s, υ)))dυ = 0,

subject to the constraint (2). Dassios and Bazighifan [24] utilized the Riccati transform to
demonstrate that the fourth-order nonlinear DE((

µ(s)(x(s) + η(s)x(ζ(s)))′′′
)γ)′

+ q(s)xγ(λ(s)) = 0,

is nearly oscillatory provided (3) is satisfied.
The objective of this research is to extend the field of study to include neutral DEs

of the fourth order. This paper presents novel criteria for examining oscillatory solutions
of a quasi-linear fourth-order neutral DE (1). The investigation utilizes the comparison
technique and the Riccati method to derive the desired results.

2. Preliminary Results

We begin with some useful lemmas concerning the monotonic properties of the non-
oscillatory solutions of the studied equations. For convenience, we assume that

ρ′+(s) := max
{

0, ρ′(s)
}

, ρ̃′+(s) := max
{

0, ρ̃′(s)
}

,

π0(s) :=
∫ s

s0

1
µ1/γ(υ)

dυ, πi(s) :=
∫ s

s0

πi−1(υ)dυ, i = 1, 2,

F[0](s) = F(s) and F[j](s) = F
(

F[j−1](s)
)

, for j = 1, 2, ..., n,

ψ0(s) := π0(s) +
1
γ

∫ s

s1

π0(υ)q(υ)π
γ
2 (λ(υ))B

γ
0 (λ(υ), n)dυ,

ψi(s) =
∫ s

s1

ψi−1(υ)dυ, i = 1, 2,

φ0(s) = exp
(∫ s

s0

1
ψ0(υ)µ1/γ(υ)

dυ

)
, φi(s) =

∫ s

s0

φ0(υ)dυ, i = 1, 2,

η1(s; n) =
n

∑
k=0

(
2k

∏
i=0

η
(

ζ[i](υ)
)) 1

η
(

ζ[2k](s)
) − 1

π2

(
ζ[2k](s)

)
π2(s)

,

η̂1(s; n) =
n

∑
k=1

2k−1

∏
i=1

1

η
(

ζ−1
[i] (s)

)
π2

(
ζ−1
[2k−1](s)

)
π2

(
ζ−1
[2k](s)

) − 1

η
(

ζ−1
[2k](s)

)
,

η2(s; n) =
n

∑
k=0

(
2k

∏
i=0

η
(

ζ[i](υ)
)) 1

η
(

ζ[2k](s)
) − 1

φ2

(
ζ[2k](s)

)
φ2(s)

,

and

η̂2(s; n) =
n

∑
k=1

2k−1

∏
i=1

1

η
(

ζ−1
[i] (s)

)
φ2

(
ζ−1
[2k−1](s)

)
φ2

(
ζ−1
[2k](s)

) − 1

η
(

ζ−1
[2k](s)

)
.
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Lemma 1 (See [25], Lemma 13). Let y ∈ Cn([s0, ∞), (0, ∞)), y(i)(s) > 0 for i = 1, 2, ..., n,
and y(n+1)(s) ≤ 0, eventually. Then, eventually, y(s)/y′(s) ≥ εs/n for every ε ∈ (0, 1).

Lemma 2 (See [26]). Let γ be a ratio of two odd positive integers. Assume L > 0 and K are real
numbers. Then

Ku− Lu(γ+1)/γ ≤ γγ

(γ + 1)γ+1
Kγ+1

Lγ
. (4)

Remark 1. In what follows, we need only to study the eventually positive solutions of (1), since if
x satisfies (1), then −x is also its solution. We begin with the following lemmas.

Lemma 3 (See [27]). Assume that x is an eventually positive solution of (1), then x satisfies
eventually the following cases:

C1 : Φ(s) > 0, Φ′(s) > 0, Φ′′(s) > 0, Φ′′′(s) > 0,
(

µ(s)
(
Φ′′′(s)

)γ
)′

< 0,

C2 : Φ(s) > 0, Φ′(s) > 0, Φ′′(s) < 0, Φ′′′(s) > 0,

for s > s1 > s0.

In the following, by Ω, we mean all positive solutions to Equation (1) with Φ(s)
satisfying C1.

Lemma 4 (See [28], Lemma 1). Suppose that x is a solution of (1) and is eventually positive.
If η0 < 1, then,

x(s) >
n

∑
k=0

(
2k

∏
i=0

η
(
ζ [i](s)

))Φ
(

ζ[2k](s)
)

η
(

ζ[2k](s)
) −Φ

(
ζ[2k+1](s)

),

for any integer n ≥ 0.

Lemma 5. Suppose that x is a solution of (1) and is eventually positive. If η0 > 1, then,

x(s) >
n

∑
k=1

2k−1

∏
i=1

1

η
(

ζ−1
[i] (s)

)
Φ

(
ζ−1
[2k−1](s)

)
− 1

η
(

ζ−1
[2k](s)

)Φ
(

ζ−1
[2k](s)

).

Proof. From
Φ(s) = x(s) + η(s)x(ζ(s)),

we deduce that

x(s) =
1

η(ζ−1(s))

[
Φ
(

ζ−1(s)
)
− x
(

ζ−1(s)
)]

=
1

η(ζ−1(s))
Φ
(

ζ−1(s)
)

− 1
η(ζ−1(s))

1

η
(

ζ−1
[2] (s)

)[Φ(ζ−1
[2] (s)

)
− x
(

ζ−1
[2] (s)

)]

=
1

η(ζ−1(s))
Φ
(

ζ−1(s)
)
−

2

∏
i=1

1

η
(

ζ−1
[i] (s)

)Φ
(

ζ−1
[2] (s)

)

+
3

∏
i=1

1

η
(

ζ−1
[i] (s)

)[Φ(ζ−1
[3] (s)

)
− x
(

ζ−1
[3] (s)

)]
.
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By repeating the same technique a number of times, we obtain

x(s) >
n

∑
k=1

2k−1

∏
i=1

1

η
(

ζ−1
[i] (s)

)
Φ

(
ζ−1
[2k−1](s)

)
− 1

η
(

ζ−1
[2k](s)

)Φ
(

ζ−1
[2k](s)

).

Here, the proof ends.

Lemma 6. Assume that x ∈ Ω. Then,
(Y1,1) Φ(s) > µ1/γ(s)Φ′′′(s)π2(s);
(Y1,2) Φ′′(s)/π0(s), Φ′(s)/π1(s) and Φ(s)/π2(s) are decreasing;
(Y1,3) Φ(s) > Φ′′(s)π2(s)/π0(s).

Proof. (Y1,1) The monotonicity of µ1/γ(s)Φ′′′(s) implies that

Φ′′(s) ≥
∫ s

s1

µ1/γ(υ)Φ′′′(υ)
1

µ1/γ(υ)
dυ

≥ µ1/γ(s)Φ′′′(s)
∫ s

s1

1
µ1/γ(υ)

dυ

≥ µ1/γ(s)Φ′′′(s)π0(s). (5)

Integrating twice more from s1 to s, we obtain

Φ′(s) ≥ µ1/γ(s)Φ′′′(s)π1(s), (6)

and
Φ(s) ≥ µ1/γ(s)Φ′′′(s)π2(s).

(Y1,2) From (5), we obtain(
Φ′′(s)
π0(s)

)′
=

µ1/γ(s)Φ′′′(s)π0(s)−Φ′′(s)
µ1/γ(s)π2

0(s)
≤ 0.

Since Φ′′(s)/π0(s) is decreasing, then

Φ′(s) ≥
∫ s

s1

Φ′′(υ)
π0(υ)

π0(υ)dυ ≥ Φ′′(s)
π0(s)

π1(s). (7)

From this we deduce that(
Φ′(s)
π1(s)

)′
=

Φ′′(s)π1(s)− π0(s)Φ′(s)
π2

1(s)
≤ 0.

Since Φ′(s)/π1(s) is decreasing, then

Φ(s) ≥
∫ s

s1

Φ′(υ)
π1(υ)

π1(υ)dυ ≥ Φ′(s)
π1(s)

π2(s). (8)

Consequently (
Φ(s)
π2(s)

)′
=

Φ′(s)π2(s)− π1(s)Φ(s)
π2

2(s)
≤ 0.

(Y1,3) From (7) and (8), we find

Φ(s) ≥ π2(s)
π0(s)

Φ′′(s).

Here, the proof ends.
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Lemma 7. Suppose that x is a solution of (1) and is eventually positive. Then,

x(s) > B0(s, n)Φ(s),

eventually, where

B0(s, n) =

{
η1(s; n) for η0 < 1,
η̂1(s; n) for η0 > π2(s)

π2(ζ(s))
.

Proof. If η0 < 1, then, due to the fact that Φ(s) is increasing and ζ[2k](s) ≥ ζ[2k+1](s), we
have

Φ
(

ζ[2k](s)
)
≥ Φ

(
ζ[2k+1](s)

)
,

which, along with Lemma 4 implies that

x(s) >
n

∑
k=0

(
2k

∏
i=0

η
(
ζ [i](s)

))Φ
(

ζ[2k](s)
)

η
(

ζ[2k](s)
) −Φ

(
ζ[2k+1](s)

)
≥

n

∑
k=0

(
2k

∏
i=0

η
(
ζ [i](s)

)) 1

η
(

ζ[2k](s)
) − 1

Φ
(

ζ[2k](s)
)

. (9)

Moreover, as Φ(s)/π2(s) is decreasing and ζ[2k](s) ≤ s, we have

Φ
(

ζ[2k](s)
)

π
(

ζ[2k](s)
) ≥ Φ(s)

π(s)
,

and

Φ
(

ζ[2k](s)
)
≥

π
(

ζ[2k](s)
)

π(s)
Φ(s).

Thus, using the above inequality and substituting in (9), we obtain

x(s) >
n

∑
k=0

(
2k

∏
i=0

η
(
ζ [i](s)

)) 1

η
(

ζ[2k](s)
) − 1

π
(

ζ[2k](s)
)

π(s)
Φ(s)

= η1(s; n)Φ(s).

On the other hand, if η0 > 1, then Φ(s)/π2(s) is decreasing and ζ−1
[2k](s) ≥ ζ−1

[2k−1](s),
implying that

Φ
(

ζ−1
[2k−1](s)

)
π2

(
ζ−1
[2k−1](s)

) ≥ Φ
(

ζ−1
[2k](s)

)
π2

(
ζ−1
[2k](s)

) ,

and

Φ
(

ζ−1
[2k−1](s)

)
≥

π2

(
ζ−1
[2k−1](s)

)
π2

(
ζ−1
[2k](s)

) Φ
(

ζ−1
[2k](s)

)
.

Using Lemma 5, we can conclude that

x(s) >
n

∑
k=1

2k−1

∏
i=1

1

η
(

ζ−1
[i] (s)

)
π2

(
ζ−1
[2k−1](s)

)
π2

(
ζ−1
[2k](s)

) − 1

η
(

ζ−1
[2k](s)

)
Φ
(

ζ−1
[2k](s)

)
.
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As Φ(s) is increasing and ζ−1
[2k](s) ≥ s, we have

x(s) >
n

∑
k=1

2k−1

∏
i=1

1

η
(

ζ−1
[i] (s)

)
π2

(
ζ−1
[2k−1](s)

)
π2

(
ζ−1
[2k](s)

) − 1

η
(

ζ−1
[2k](s)

)
Φ(s)

= η̂1(s, n)Φ(s).

Here, the proof ends.

Lemma 8. Assume that x ∈ Ω. Then,
(Y2,1) Φ′′(s) ≥ ψ0(s)µ1/γ(s)Φ′′′(s);
(Y2,2) Φ′′(s)/φ0(s), Φ′(s)/φ1(s), and Φ(s)/φ2(s) are decreasing;
(Y2,3) x(s) > B1(s, n)Φ(s);
(Y2,4) Φ(s) ≥ ψ2(s)µ1/γ(s)Φ′′′(s),
eventually, where,

B1(s, n) =

{
η2(s; n) for η0 < 1,
η̂2(s; n) for η0 > φ2(s)

φ2(ζ(s))
.

Proof. (Y2,1) For convenience, we assume that

w(s) = µ1/γ(s)Φ′′′(s).

In light of Lemma 7, it can be deduced

x(s) > B0(s, n)Φ(s) for s ≥ s1.

Then, (1) becomes

(wγ(s))′ = −q(s)xγ(λ(s)) ≤ −q(s)Bγ
0 (λ(s), n)Φγ(λ(s)).

Thus, we have(
Φ′′(s)− π0(s)w(s)

)′
= −π0(s)w′(s)

= −π0(s)
(
(wγ(s))1/γ

)′
= − 1

γ
π0(s)w1−γ(s)(wγ(s))′

≤ 1
γ

π0(s)w1−γ(s)q(s)Bγ
0 (λ(s), n)Φγ(λ(s)). (10)

From Lemma 6, we note that

Φ′′(s)− π0(s)w(s) ≥ 0.

Integrating (10) from s1 to s, we obtain

Φ′′(s) ≥ π0(s)w(s) +
1
γ

∫ s

s1

π0(υ)w1−γ(υ)q(υ)Bγ
0 (λ(υ), n)Φγ(λ(υ))dυ. (11)

Using the facts that Φ(s)/π2(s) and w′(s) are decreasing, we have

Φ(λ(υ)) ≥ π2(λ(s))w(λ(s)) ≥ π2(λ(s))w(s).
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which with (11) gives

Φ′′(s) ≥ π0(s)w(s) +
1
γ

∫ s

s1

π0(υ)q(υ)π
γ
2 (λ(υ))B

γ
0 (λ(υ), n)w(υ)dυ

≥ w(s)
(

π0(s) +
1
γ

∫ s

s1

π0(υ)q(υ)π
γ
2 (λ(υ))B

γ
0 (λ(υ), n)dυ

)
= ψ0(s)w(s). (12)

(Y2,2) Multiplying (12) by

φ0(s) = exp
(∫ s

s1

dυ

ψ0(υ)µ1/γ(υ)

)
,

we see that (
Φ′′(s)
φ0(s)

)′
=

φ0(s)Φ′′′(s)− φ0(s) 1
ψ0(s)µ1/γ(s)

Φ′′(s)

φ2
0(s)

=
ψ0(s)µ1/γ(s)w(s)−Φ′′(s)

ψ0(s)µ1/γ(s)φ0(s)
≤ 0.

Since Φ′′(s)/φ0(s) is decreasing, then

Φ′(s) ≥
∫ s

s1

Φ′′(υ)
φ0(υ)

φ0(υ)dυ ≥ Φ′′(s)
φ0(s)

φ1(s).

From this we deduce that(
Φ′(s)
φ1(s)

)′
=

Φ′′(s)φ1(s)− φ0(s)Φ′(s)
φ2

1(s)
≤ 0.

Since Φ′(s)/φ1(s) is decreasing, then

Φ(s) ≥
∫ s

s1

Φ′(υ)
φ1(υ)

φ1(υ)dυ ≥ Φ′(s)
φ1(s)

φ2(s).

Consequently (
Φ(s)
φ2(s)

)′
=

Φ′(s)φ2(s)− φ1(s)Φ(s)
φ2

2(s)
≤ 0.

(Y2,3) Now, as in the proof of Lemma 7, we find

x(s) > B1(s, n)Φ(s).

(Y2,4) Integrating (12) from s1 to s, we have

Φ′(s) ≥
∫ s

s0

ψ0(s)w(s)dυ ≥ w(s)
∫ s

s0

ψ0(s)dυ = w(s)ψ1(s).

Integrating this inequality from s1 to s, we arrive at

Φ(s) ≥ ψ2(s)w(s).

Here, the proof ends.
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3. Oscillatory Theorems

The objective of this section is to use the results obtained in the previous section
to develop improved oscillation criteria for Equation (1). The goal is to determine the
conditions that guarantee the non-existence of any positive solutions.

Theorem 1. If there is a ρ ∈ C([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

(
ρ(υ)q(υ)Bγ

1 (λ(υ), n)
φ

γ
2 (λ(υ))

φ
γ
2 (υ)

− 1

(γ + 1)γ+1
(ρ′(υ))γ+1

(ρ(υ)ψ1(υ))
γ

)
dυ = ∞, (13)

and there is a ρ̃ ∈ C([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

ρ̃(υ)
∫ ∞

υ

(
1

µ(u)

∫ ∞

u
Q(υ)

(
λ(v)

v

)γ/ε

dv

)1/γ

du− (ρ̃′+(υ))
2

4ρ̃(υ)

dυ = ∞ (14)

hold for some ε ∈ (0, 1), then (1) is oscillatory, where Q(s) = q(v)(1− η(λ(v)))γ.

Proof. We define

w(s) = ρ(s)
µ(s)(Φ′′′(s))γ

Φγ(s)
. (15)

Hence, w(s) > 0. Differentiating (15), we get

w′(s) = ρ′(s)
µ(s)(Φ′′′(s))γ

Φγ(s)
+ ρ(s)

(
µ(s)(Φ′′′(s))γ)′

Φγ(s)

−γρ(s)
µ(s)(Φ′′′(s))γΦ′(s)

Φγ+1(s)

=
ρ′(s)
ρ(s)

w(s)− ρ(s)
q(s)xγ(λ(s))

Φγ(s)
− γw(s)

Φ′(s)
Φ(s)

. (16)

From (Y2,3), we see that

w′(s) ≤ ρ′(s)
ρ(s)

w(s)− ρ(s)q(s)Bγ
1 (λ(s), n)

Φγ(λ(s))
Φγ(s)

− γw(s)
Φ′(s)
Φ(s)

.

From (Y2,2), we obtain
Φ′(s) ≥ µ1/γ(s))Φ′′′(s)ψ1(s). (17)

Therefore, (16) can be expressed as

w′(s) ≤ ρ′(s)
ρ(s)

w(s)− ρ(s)q(s)Bγ
1 (λ(s), n)

Φγ(λ(s))
Φγ(s)

−γλ′(s)w(s)
µ1/γ(s)Φ′′′(s)ψ1(s)

Φ(s)

=
ρ′(s)
ρ(s)

w(s)− ρ(s)q(s)Bγ
1 (λ(s), n)

Φγ(λ(s))
Φγ(s)

− γψ1(s)
ρ1/γ(s)

w(γ+1)/γ(s). (18)

Since Φ(s)/φ2(s) is decreasing, we obtain

Φ(λ(s))
φ2(λ(s))

≥ Φ(s)
φ2(s)

,

and
Φ(λ(s))

Φ(s)
≥ φ2(λ(s))

φ2(s)
,
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which with (18) leads to

w′(s) ≤ ρ′(s)
ρ(s)

w(s)− ρ(s)q(s)Bγ
1 (λ(s), n)

φ
γ
2 (λ(s))
φ

γ
2 (s)

− γψ1(s)
ρ1/γ(s)

w(γ+1)/γ(s).

From Lemma 2, with K = ρ′(s)/ρ(s), L = γψ1(λ(s))/ρ1/γ(s), and u = w, we obtain

ρ′(s)
ρ(s)

w(s)− γψ1(s)
ρ1/γ(s)

w(γ+1)/γ(s) ≤ 1

(γ + 1)γ+1
(ρ′(s))γ+1

ργ(s)ψγ
1 (s)

.

Thus, from (18), we get

w′(s) ≤ −ρ(s)q(s)Bγ
1 (λ(s), n)

φ
γ
2 (λ(s))
φ

γ
2 (s)

+
1

(γ + 1)γ+1
(ρ′(s))γ+1

(ρ(s)ψ1(s))
γ . (19)

Integrating (19) from s1 to s, we arrive at

∫ s

s1

(
ρ(υ)q(υ)Bγ

1 (λ(υ), n)
φ

γ
2 (λ(υ))

φ
γ
2 (υ)

− 1

(γ + 1)γ+1
(ρ′(υ))γ+1

(ρ(υ)ψ1(υ))
γ

)
dυ ≤ w(s1),

which contradicts (13).
Assume now that x is a positive solution of (1) with Φ(s) satisfying C2. Integrating (1)

from s to ∞ and using the fact that
(
µ(Φ′′′)γ)′ ≤ 0, we obtain

µ(s)
(
Φ′′′(s)

)γ
=

∫ ∞

s
q(υ)xγ(λ(υ))dυ

≥
∫ ∞

s
q(υ)(1− η(λ(υ)))γΦγ(λ(υ))dυ. (20)

As Φ > 0, Φ′ > 0, and Φ′′ < 0, Lemma 1 implies that Φ ≥ εsΦ′ for all ε ∈ (0, 1). Integrating
this inequality from λ(s) to s, we obtain

Φ(λ(s))
Φ(s)

≥
(

λ(s)
s

)1/ε

.

Therefore, (20) becomes

µ(s)
(
Φ′′′(s)

)γ ≥
∫ ∞

s
Q(υ)

(
λ(υ)

υ

)γ/ε

Φγ(υ)dυ.

Since Φ′(s) > 0, then

µ(s)
(
Φ′′′(s)

)γ ≥ Φγ(s)
∫ ∞

s
Q(υ)

(
λ(υ)

υ

)γ/ε

dυ,

or equivalently

Φ′′′(s) ≥ Φ(s)

(
1

µ(s)

∫ ∞

s
Q(υ)

(
λ(υ)

υ

)γ/ε

dυ

)1/γ

.
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Integrating this inequality from s to ∞, we have

Φ′′(s) ≤ −Φ(s)
∫ ∞

s

(
1

µ(u)

∫ ∞

u
Q(υ)

(
λ(υ)

υ

)γ/ε

dυ

)1/γ

du. (21)

Now, define

w(s) := ρ̃(s)
Φ′(s)
Φ(s)

.

Then, w(s) ≥ 0 for s ≥ s1 ≥ s0 and

w′ = ρ̃′(s)
Φ′(s)
Φ(s)

+ ρ̃(s)
Φ′′(s)
Φ(s)

− ρ̃(s)
(Φ′(s))2

Φ2(s)

= ρ̃(s)
Φ′′(s)
Φ(s)

+
ρ̃′(s)
ρ̃(s)

w(s)− 1
ρ̃(s)

w2(s). (22)

Hence, by (21), we obtain

w′(s) ≤ −ρ̃(s)
∫ ∞

s

(
1

µ(u)

∫ ∞

u
Q(υ)

(
λ(υ)

υ

)γ/ε

dυ

)1/γ

du

+
ρ̃′+(s)
ρ̃(s)

w(s)− 1
ρ̃(s)

w2(s).

Using Lemma 2 with K = ρ̃′+(s)/ρ̃(s), and L = 1/ρ̃(s), we obtain

ρ̃′+(s)
ρ̃(s)

w(s)− 1
ρ̃(s)

w2(s) ≤
(ρ̃′+(s))

2

4ρ̃(s)
.

Consequently, (22) leads to

w′(s) ≤ −ρ̃(s)
∫ ∞

s

(
1

µ(u)

∫ ∞

u
Q(υ)

(
λ(υ)

υ

)γ/ε

dυ

)1/γ

du +
(ρ̃′+(s))

2

4ρ̃(s)
.

Integrating this inequality from s1 to s, we find

∫ s

s1

ρ̃(υ)
∫ ∞

υ

(
1

µ(u)

∫ ∞

u
Q(υ)

(
λ(v)

v

)γ/ε

dv

)1/γ

du− (ρ̃′+(υ))
2

4ρ̃(υ)

dυ ≤ w(s1),

which contradicts (14).
Here, the proof ends.

Theorem 2. If

lim inf
s→∞

∫ s

λ(s)
q(υ)Bγ

1 (λ(υ), n)ψγ
2 (λ(υ))dυ >

1
e

, (23)

and (14) holds, then (1) is oscillatory.

Proof. Assume on the contrary that (1) is not oscillatory. Assume that it possesses an
eventually positive solution x(s). It follows from Equation (1) that there exist two possible
cases as in Lemma 3.

Assume that case (C1) holds. From (Y2,3) and (Y2,4), we have

x(s) > B1(s, n)ψ2(s)µ1/γ(s)Φ′′′(s).
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Let
ω(s) = µ(s)

(
Φ′′′(s)

)γ.

From (1), we deduce that

ω′(s) + q(s)Bγ
1 (λ(s), n)ψγ

2 (λ(s))ω(λ(s)) ≤ 0.

Using Theorem 1 in [29], we conclude that the equation

ω′(s) + q(s)Bγ
1 (λ(s), n)ψγ

2 (λ(s))ω(λ(s)) = 0, (24)

also has a positive solution. It follows from Theorem 2 in [30] that (24) is oscillatory under
condition (23), a contradiction.

Assume that case (C2) holds. The proof of the case (C2) is the same as that of
Theorem 1.

Here, the proof ends.

4. Examples

We illustrate the value of the findings we have obtained through the following examples.

Example 1. Consider the NDE(
s−γ

(
(x(s) + η0x(ζ0s))′′′

)γ)′
+

q0

s4γ+1 xγ(λ0s) = 0, s ≥ 1, (25)

with ζ0, λ0 ∈ (0, 1) and q0 > 0. By comparing (1) and (25) we see that µ(s) = s−γ, ζ(s) = ζ0s,
λ(s) = λ0s. Then π0(s) = s2/2, π1(s) = s3/6, π2(s) = s4/24, q(s) = q0/s4γ+1,

η1(s; n) = [1− η0]
n

∑
k=0

η2k
0 ζ8k

0 (s),

η̂1(s; n) =
[
η0ζ4

0 − 1
] n

∑
k=1

(
1
η0

)2k−2
,

B0(s, n) = B0 =

{
η1 for η0 < 1,
η̂1 for η0 > 1

ζ4
0
.

ψ0(s) = π0(s) +
1
γ

∫ s

s1

π0(υ)q(υ)π
γ
2 (λ(υ))B

γ
0 (λ(υ), n)dυ

= C0s2, C0 =

(
1
2
+

1
4γ

Bγ
0 λ

4γ
0 q0

24γ

)
,

ψ1(s) = C0
s3

3
, ψ2(s) = C0

s4

12
,

φ0(s) = exp
(∫ s

s0

1
ψ0(υ)µ1/γ(υ)

dυ

)
= s

1
C0 ,

φ1(s) =
1

1 + 1
C0

s1+ 1
C0 ,

φ2(s) =
1(

1 + 1
C0

)(
2 + 1

C0

) s2+ 1
C0 ,

η2(s; n) = η2 = [1− η0]
n

∑
k=0

η2k
0 ζ

2k
(

2+ 1
C0

)
0 ,
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η̂2(s; n) = η̂2 =

[
η0ζ

2+ 1
C0

0 − 1
] n

∑
k=1

(
1
η0

)2k−2
,

and

B1(s, n) = B1 =

{
η2 for η0 < 1,
η̂2 for η0 > 1

ζ4
0
.

If we consider the function ρ(s) = s4γ and condition (13), we obtain

lim sup
s→∞

∫ s

s0

(
ρ(υ)q(υ)Bγ

1 (λ(υ), n)
φ

γ
2 (λ(υ))

φ
γ
2 (υ)

− 1

(γ + 1)γ+1
(ρ′(υ))γ+1

(ρ(υ)ψ1(υ))
γ

)
dυ

= lim sup
s→∞

∫ s

s0

(
υ4γ q0

υ4γ+1 Bγ
1 λ

γ(2+C−1
0 )

0 − 1

(γ + 1)γ+1
4γ+1υ4γ2+3γ−1

υ4γ2 Cγ
0

υ3γ

3

)

= lim sup
s→∞

∫ s

s0

(
q0Bγ

1 λ
γ(2+C−1

0 )
0 − 3

(γ + 1)γ+1
4γ+1

Cγ
0

)
1
υ

=

(
q0Bγ

1 λ
γ(2+C−1

0 )
0 − 3

(γ + 1)γ+1
4γ+1

Cγ
0

)
lim sup

s→∞
ln

s
s0

= ∞,

which is satisfied if the following condition holds

q0Bγ
1 λ

γ(2+C−1
0 )

0 >
3

(γ + 1)γ+1
4γ+1

Cγ
0

. (26)

Similarly, if we consider condition (14) with ρ̃(s) = s, we obtain

lim sup
s→∞

∫ s

s0

ρ̃(υ)
∫ ∞

υ

(
1

µ(u)

∫ ∞

u
Q(v)

(
λ(v)

v

)γ/ε

dv

)1/γ

du− (ρ̃′+(υ))
2

4ρ̃(υ)

dυ

= lim sup
s→∞

∫ s

s0

υ
∫ ∞

υ

(
uγ
∫ ∞

u

q0

v4γ+1 (1− η0)
γ
(

λ0v
v

)γ/ε

dv

)1/γ

du− 1
4υ

dυ

= lim sup
s→∞

∫ s

s0

(
1
2

(
q0

4γ
(1− η0)

γλ
γ/ε
0

)1/γ

− 1
4

)
1
υ

dυ

=

(
1
2

(
q0

4γ
(1− η0)

γλ
γ/ε
0

)1/γ

− 1
4

)
lim sup

s→∞
ln

s
s0

= ∞,

which is satisfied if the following condition holds

1
γ

q0(1− η0)
γλ

γ/ε
0 > 22−γ. (27)

Finally, considering condition (23), we obtain

lim inf
s→∞

∫ s

λ(s)
q(υ)Bγ

1 (λ(υ), n)ψγ
2 (λ(υ))dυ

= lim inf
s→∞

∫ s

λ0s

q0

υ4γ+1 Bγ
1 Cγ

0
υ4γ

12
dυ

=
1

12
q0Bγ

1 Cγ
0 lim inf

s→∞

∫ s

λ0s

1
υ

dυ

=
1

12
q0Bγ

1 Cγ
0 ln

1
λ0

,
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which is satisfied if the following condition holds

q0Bγ
1 Cγ

0 ln
1

λ0
>

12
e

. (28)

The oscillation of DE (25) can be tested by applying the above theorems. Theorem 1 ensures that
solutions will oscillate when conditions (26) and (27) are satisfied. Whereas Theorem 2 requires
conditions (28) and (27).

Example 2. Consider the NDE

(x(s) + η0x(ζ0s))(4) +
q0

s4 xγ(λ0s) = 0, s ≥ 1, (29)

with ζ0, λ0 ∈ (0, 1) and q0 > 0. By comparing (1) and (29) we see that γ = 1, µ(s) = 1,
ζ(s) = ζ0s, and λ(s) = λ0s. Then π0(s) = s, π1(s) = s2/2, π2(s) = s3/3, q(s) = q0/s4,

η1(s; n) = [1− η0]
n

∑
k=0

η2k
0 ζ6k

0 ,

η̂1(s; n) =
[
ζ3

0η0 − 1
] n

∑
k=1

(
1
η0

)2k−2
,

B0(s, n) = B0 =

{
η1 for η0 < 1,
η̂1 for η0 > 1

ζ3
0
.

ψ0(s) = Cs, C = 1 +
q0λ3

0B0

3
, ψ1(s) = C

s2

2
, ψ2(s) = C

s3

6
,

φ0(s) = s
1
C , φ1(s) =

s1+ 1
C

1 + 1
C

, φ2(s) =
s2+ 1

C(
1 + 1

C

)(
2 + 1

C

) ,

η2(s; n) = [1− η0]
n

∑
k=0

η2k
0 ζ

2k(2+ 1
C )

0 ,

and

η̂2(s; n) =
[

η0ζ
2+ 1

C
0 − 1

] n

∑
k=1

(
1
η0

)2k−2
,

B1(s, n) = B1 =

{
η2 for η0 < 1,
η̂2 for η0 > φ2(s)

φ2(ζ(s))
.

If we consider the functions ρ(s) = s3, and ρ̃(s) = s, the Conditions (13), (14), and (23) are
satisfied when

q0λ
2+ 1

C
0 B1 >

2
C

,

q0(1− η0)λ
1/ε
0 >

3
2

,

q0B1Cλ3
0 ln

1
λ0

>
6
e

,

respectively. Thus, from Theoerms 1 and 2, we can conclude that (29) is oscillatory.

5. Conclusions

In this study, we investigated the oscillatory behavior of fourth-order neutral DEs. We
improved the relationship between the solution and its corresponding function by utilizing
the modified monotonic properties of positive solutions and introduced new improved
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relationships in the main results. Based on the improved monotonic properties, we derived
new criteria for oscillation. We provided illustrative examples and notes to demonstrate
the significance of our findings. Our results contribute to the theoretical understanding
of neutral DEs. Despite some existing research on the study of the oscillatory behavior of
fourth-order DEs, this area still offers intriguing analytical points. Extending our results to
neutral DEs of a higher order would be an interesting avenue for future research.
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