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Abstract: Understanding the rate of evolution provides insight into how rapidly species have
historically evolved. We investigate the often-overlooked concept of asymmetry in evolutionary
rates. We observe the variation in the rates at which different traits within the same organism, or
the same traits across different organisms, evolve. Influenced by factors such as environmental
pressures and genetic constraints, this asymmetry might lead to inconsistent rates of biological
changes. To capture these diverse rates, we propose three advanced statistical models, transcending
the traditionally employed Brownian motion model. These models—the phylogenetic multivariate
Ornstein–Uhlenbeck model, the early burst model, and the mixed model—were applied to body
length, forelimbs, and head length in salamanders. The results from our substantial dataset show
these models’ effectiveness in highlighting the asymmetrical patterns of trait evolution, enhancing
our understanding of the complex dynamics in species evolution. Therefore, our study underscores
the importance of considering asymmetry when studying evolutionary rates.

Keywords: evolutionary rate; phylogenetic comparative method; Brownian motion; Gaussian process;
multivariate normal distribution; trait evolution

1. Introduction

All species on Earth evolved, a process in which their traits changed gradually [1].
Changes in traits are sometimes necessary because species must adapt to their environment
for survival and reproduction. For example, hummingbirds, which weigh less than approx-
imately 50 g, have a relatively long beak to probe deeply into flowers [2,3]. Although the
main purpose of probing flowers is for food, hummingbirds also serve to transfer pollen
for plant reproduction [4]. Another example is a salamander, a lizard-like amphibian,
which has a slender body, round head, short limbs, and long tail. The adult salamander is
capable of regenerating its tail and limbs when lost, enabling it to survive better during its
lifetime [5]. A salamander with a larger body shape generally has longer forelimbs, and its
head length is also correlated with jaw length [6].

An interesting approach to exploring the relationship between evolutionary traits
among species is to investigate the evolutionary rate, which is defined as the speed of
change in a lineage across many generations. The rate of change can also be studied by
comparing single or multiple traits. In a single-trait case, a higher rate implies a faster
change of organisms among species. For example, in flowering plants, the evolutionary
rates of the genome size for herbaceous species (e.g., sunflower) have higher variance
compared to woody species (e.g., trees) [7,8]. For the case of two traits or multiple traits,
detecting heterogeneous rates reveals the different speeds of change among traits (e.g.,
head length vs. body width in salamanders), while homogeneous rates for a pair of traits
indicate that the rate changes for both traits might be indistinguishable [6]. On the other
hand, a comparison of the rate of change can be made between clades of one or more
trees. For example, a study of the body size of lizard clades in South America (subfamily:
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Liolaemini) reveals a 1.7-fold higher rate of evolution of the overall body size than lizard
clades in North America (subfamily: Phrynosomatinae) [9].

Currently, statistical methods developed for comparing evolution rates mainly use
the Brownian motion model [6], a continuous random process with favorable statistical
properties. In Section 2, we intend to integrate previous work to allow comparison of
evolution rates along a tree, from a univariate trait model (Section 2.1) or multiple-trait
models (Section 2.2), using several popular models expanded from the Brownian motion
model, in particular, for multivariate trait evolution [6,9–11]. These models include the mul-
tivariate Brownian motion model [6] in Section 2.2.1, the multivariate Ornstein–Uhlenbeck
model (extension of [12], analogous to [13]) in Section 2.2.2, the multivariate early burst
model (extension of [14]) in Section 2.2.3, and the multivariate phylogenetic mixed model
(extension of [15]) in Section 2.2.4. The novelty of our work resides in the proposition and
validation of innovative multivariate phylogenetic models: the early burst model and the
mixed model. These cutting-edge models offer a more nuanced perspective on evolutionary
processes, evidenced by the congruence of our results with the prevailing literature. The
gap this research aims to fill is that, unlike the Brownian motion model, which assumes
natural selection, our other models (the Ornstein–Uhlenbeck process, early burst process,
and mixed models) incorporate more evolutionary information. The Ornstein–Uhlenbeck
process considers stabilizing selection, the early burst process accounts for adaptive evo-
lution, and the mixed models offer inferences beyond the reach of the Brownian motion
process. These new models aim to provide more comprehensive insights, addressing the
limitations of the Brownian motion model. In doing so, we successfully underscore the
utility and relevance of our newly introduced methods in the field of evolutionary studies.

In the following, we briefly outline the models commonly used in phylogenetic com-
parative analysis. Statistical inference using simulation is described in Section 3. Then,
we direct these novel methodologies towards the investigation of plausible heterogene-
ity in the rates of evolution of different organismal traits. Specifically, we hypothesize a
potential discordance in the evolutionary pace of body width compared to head length
and forelimb length in salamanders. To substantiate this hypothesis, our models are ap-
plied to test the heterogeneity in evolutionary rates between head length and body width,
followed by a similar analysis between forelimb length and body width. This research
endeavor not only validates our innovative models but also pioneers the application of
these models in exploring complex evolutionary phenomena. The results are provided
in Section 4. The discussion is provided in Section 5, and the conclusion is provided
in Section 6. The scripts and relevant files developed for this project can be accessed at
http://tonyjhwueng.info/phymvrates (accessed on 10 July 2023).

2. Method

In this methodological section, we commence by providing a fundamental under-
standing of Gaussian processes and their application to the statistical model for single
and multiple-traits evolution. In Section 2.1, we present a statistical model focused on the
evolution of a single trait across a phylogenetic tree. This section serves as the foundation
of our analytical approach, concentrating on how individual traits evolve over time across
various species. Transitioning into a multivariate domain in Section 2.2, we extend the
principles we established for single-trait evolution to multiple traits. In this section, we
examine how these multiple traits can evolve concurrently.

To establish a general framework for our exploration, the multivariate Brownian
motion model is introduced in Section 2.2.1. This model, which assumes that traits drift
randomly along phylogenetic branches, provides a baseline for our study. Once the ground-
work is laid, we progress to our innovative methodologies. Section 2.2.2 presents the
multivariate Ornstein–Uhlenbeck model, a method that considers stabilizing selection by
incorporating an evolutionary “pull” towards an optimal trait value. In Section 2.2.3, we
discuss the multivariate early burst model. This model becomes particularly relevant in
scenarios where evolutionary rates decrease over time, encapsulating situations of rapid
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evolution in early stages followed by a deceleration. Finally, in Section 2.2.4, we examine
the multivariate phylogenetic mixed model. This model, integrating various evolutionary
processes, offers a comprehensive perspective on trait evolution.

Throughout these sections, we discuss each model extensively, providing relevant
background information and mathematical formulas to ensure a thorough understanding
of the methodologies implemented in our research.

2.1. Gaussian Process for Trait Evolution along Tree

A Gaussian process is a collection of random variables indexed by time or space
such that every finite set of these variables has a multivariate normal distribution. Let
xt denote a Gaussian process variable. Its variance at any given time t is finite, that is,
var[x(t)] = E[|x(t)− E[x(t)]|2] < ∞ for all t ∈ T. A key fact of Gaussian processes is that
they are completely defined by their second-order statistics. This fact holds for Brownian
motion, Ornstein-Uhlenbeck processes and the early burst process [16,17].

For single-trait evolution, a widely accepted assumption is that species share an evolu-
tionary history modeled by a phylogenetic tree. The distribution of the trait variable of n
species can be considered as a random vector X = (x1, x2, · · · , xn)t ∈ Rn, where vt denotes
the transpose of a vector v. Under this evolutionary dependence is a multivariate distribu-
tion X ∼ Nn(µ1n, σ2ΣΘ) with mean vector µ1n, where 1n = (1, 1, · · · , 1)t is a vectors of 1s,
and the symmetrical variance-covariance matrix σ2ΣΘ depends on the specific processes
with parameter Θ (see the following sections for more details). Here, µ is the common
ancestor of the n species, σ is the common rate of evolution, and ΣΘ is the phylogenetic
affinity matrix, with elements transformed from a given rooted phylogenetic tree with
branch lengths and the corresponding model of stochastic processes (e.g., Brownian motion,
Ornstein–Uhlenbeck process or early burst process) [18]. Note that a higher value of σ
results in a wider spread of traits, whereas a lower value indicates changes in traits within
a narrower range. An example of a phylogenetic tree of three taxa, where each species
adapted a dynamic Gaussian process along the tree, can be found in Figure 1.

Figure 1. (Left) A phylogenetic tree illustrating the evolutionary relationships among three species
x, y, and z, originating from a common root. (Right) Depiction of evolutionary trait trajectories
derived from a Brownian process, progressing along the structure of the tree. Each color on each
branch represents the evolutionary trajectories. The circle in black at time t = 0 is the root node, the
circle in red at time t = 105 is the ancestral node, and the circles in black, blue, and orange are the tip
nodes at t = 200.

2.2. Statistical Model for Multiple Traits Evolution

When assessing the evolutionary rates of two or more phenotypic traits within a
phylogenetic tree, the employment of a multivariate Gaussian model is necessary [19]. For
characterizing multi-dimensional trait evolution within such a tree, a multivariate normal
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distribution model can be effectively applied. Let X = (X1, · · · , Xp) be an n× p data matrix
containing p traits of n species. Let Xu = (xu1 , xu2 , · · · , xun)

t and Xv = (xv1 , xv2 , · · · , xvn)
t

be the uth and vth trait vectors. The covariances for Xu and Xv, defined as σuv, measure the
strength of impact from each other. In general, the variance-covariance matrix R among
the p traits can be defined as a matrix, as in Equation (1):

R = Cov[Xu, Xv] = [σuv]. (1)

Assuming a Gaussian process for trait evolution, the joint distribution of X follows a
matrix normal distribution

(
i.e., X ∼MN n×p(M, R, ΣΘ)

)
, which is mathematically equiv-

alent to the multivariate normal distribution, as illustrated in Equation (2):

vect(X) ∼ Nnp(µ, R⊗ ΣΘ), (2)

where vect(X) ∈ Rnp×1 is an np × 1 random vector, µ = (µ11t
n, µ21t

n, · · · , µp1t
n)

t =
E[vect(X)] is the expected value of the random vector vect(X), and R⊗ ΣΘ is an np× np
variance covariance matrix where ⊗ is the tensor product operator.

Given trait data X, and a phylogenetic tree T with know topology and branch lengths,
the negative log-likelihood function for the statistical model in Equation (2) is given by Equation
(3):

− log L(µ, R, ΣΘ|X, T ) = pn
2

log(2π) +
1
2

log |R⊗ ΣΘ|

+
1
2
(vect(X)− µ)t(R⊗ ΣΘ)

−1(vect(X)− µ),
(3)

where |R ⊗ ΣΘ| denotes the determinant of the matrix R ⊗ ΣΘ, and Σ−1
Θ is the inverse

of ΣΘ.

2.2.1. Multivariate Brownian Motion Model

Brownian motion has long been employed as a preferred continuous-time Markov
process for modeling various biological phenomena, including trait evolution. The evolution
of traits can be effectively captured by a Brownian motion variable, which is useful for
representing both genetic drift and selection [14]. Consider the example shown in Figure 1,
where the tree, scaled from root (at 0) to tip (x, y, z), spans a length of 200. For numerical
convenience, we can rescale the tree to a tree height of 1. The species z and y share an
evolutionary history of length 100/200 = 0.5 (marked by the red horizontal line in Figure 1),
leading to the assignment of czy = cyz = 0.5 in the matrix C. Since a species shares its entire
history with itself, diagonal elements are assigned as cxx = cyy = czz = 200/200 = 1. Species
x, having no shared evolutionary history with z and y, results in elements czx = cxz = cyx =
cxy = 0. The resultant matrix C is detailed in Equation (4).

C =


z y x

z 1 0.5 0
y 0.5 1 0
x 0 0 1

. (4)

Here, C represents a constant matrix derived from the phylogenetic tree, where each
element within C measures the length of the shared branch.

In the context of single-trait evolution within a group of n species, the trait vector
X = (x1, x2, · · · , xn)t adheres to a multivariate normal distribution, symbolized as X ∼
Nn(µ1n, σ2C) (i.e., ΣΘ = C).

For multidimensional trait evolution on a phylogenetic tree, one can apply a multivari-
ate Brownian diffusion (MBD) model [6]. Let X = (X1, · · · , Xp) represent an n× p data
matrix that includes p traits of n species. The uth and the vth trait vectors are denoted as Xu
and Xv, respectively. The covariance for Xu and Xv, denoted as σuv, measures the mutual
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influence of each trait on the other. Assuming Brownian motion for trait evolution, the
joint distribution of X ∼ MN n×p(M, R, C) follows a matrix normal distribution [20,21],
which is mathematically equivalent to the multivariate normal distribution, as illustrated
in Equation (5):

vect(X) ∼ Nnp(µbm, R⊗ C), (5)

where µbm = E[vect(X)] is the expected value of the vect(X), and for i, j = 1, 2, · · · , n;
u, v = 1, 2, · · · , p, Cov[Xui , Xvj ] = R⊗ C[xui , xvj ] can be expressed as

R⊗ Σ[xui , xvj ] = σxu σxv cij, (6)

where with each block being an n× n matrix in an np× np block matrix R⊗ Σ, the element
σxu σxv cij can be located in this block matrix at the intersection of the uth row block, the ith
row, the vth column block, and the jth column.

The negative log-likelihood function is given by Equation (7):

− log L(µbm, R|X, C)=
pn
2

log(2π) +
1
2

log |R⊗ C|

+
1
2
(vect(X)− µbm)

t(R⊗ C)−1(vect(X)− µbm).
(7)

2.2.2. Multivariate Ornstein–Uhlenbeck Model

Since the variation of trait change under Brownian motion is proportional to time,
the trait may change without a reasonable bound, which cannot be a realistic situation in
evolution (e.g., an ant weighing less than 5 mg is presumably unlikely to be able to evolve
to a 3000 kg African elephant). Instead, one may consider that the species evolve in a more
stable way, where traits shall evolve to an evolutionary peak and stay around it. Under this
circumstance, another popular continuous-time Markov process, the Ornstein–Uhlenbeck
(OU) process, was used to model the change in the trait [12,22]. Let xit denote a trait variable
of the ith species observed at time t. If xit follows an OU process, a canonical representation
for an OU variable xit using a diffusion equation is expressed in Equation (8).

dxit = α(θ − xit)dt + σdWt, (8)

where α is the force, θ is the optima, σ is the rate of evolution, and Wt is a Brownian motion
variable. The deterministic form α(θ − xit) in Equation (8) measures the quantity inherited
from the previous generation in a relatively short time period dt, and the stochastic term
σdWt models random changes in the current environment [22]. Note that xit is expected
to eventually move toward an optimum θ (the evolutionary niche). The selection force α,
under the OU process, is introduced to pull trait xit back to the optima θ. For a stronger
force (larger α), xit moves at a faster tempo toward the optimum θ, while a weak force
(smaller α) gradually pulls the trait to the optimum θ. A special case is when α = 0:
Equation (8) reduces to dxit = σdWt, which is the diffusion process for a Brownian motion
variable xit.

For any T > 0, xit = exp(−αt)x0 + θ(1− exp(−αt)) + σ
∫ T

0 exp(α(T − s))dWs is a
normal distribution with mean µou = exp(−αt)x0 + θ(1− exp(−αt)) and variance Σα =
σ2(exp(2αT − 1))/(2α) [22]. For a pair of species (species i and species j) evolved along a
phylogenetic tree, under the OU process, the covariance matrix σ2Σα (i.e., ΣΘ = Σα) has the
following elements:

Σα[i, j] = exp(−2α(cii − cij))(1− exp(−2αcij))/(2α). (9)

For instance, with czy = 0.5, czz = cyy = 1, shown in Equation (4), can be expressed as
Cov[z, y] = σ2(exp(−2α(1− 0.5)))(1− exp(−2α× 0.5))/(2α).

For single trait evolution on a phylogenetic tree T , the trait vector X for n species
follows a multivariate normal distribution X ∼ Nn(µ1n, σ2Σα).
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For multidimensional trait evolution on a phylogenetic tree T , the joint distribution
of trait matrix X ∼MN n×p(M, R, Σα), α = (α1, · · · , αp) follows a matrix normal distribu-
tion [13], which is mathematically equivalent to the multivariate normal distribution, as
illustrated in Equation (10):

vect(X) ∼ Nnp(µou, R⊗ Σα), (10)

where µou = E[vect(X)] is the expected value of the vect(X), and for i, j = 1, 2, · · · , n;
u, v = 1, 2, · · · , p, Cov[Xui , Xvj ] = R⊗ Σα[xui , xvj ] can be expressed as follows [13,23,24]:

R⊗ Σα[xui , xvj ] = σxu σxv

exp
(
−(αu + αv)(cii − cij)

)(
1− exp

(
−(αu + αv)cij

))
αu + αv

(11)

The negative log-likelihood function is given by Equation (12):

− log L(µou, Σα, R|X, C) =
pn
2

log(2π) +
1
2

log |R⊗ Σα|

+
1
2
(vect(X)− µou)

t(R⊗ Σα)
−1(vect(X)− µou).

(12)

2.2.3. Multivariate Early Burst Model

An early burst model is useful for describing adaptive radiation, where species can
evolve very quickly in relatively short periods to form many new species [14,25]. The
finch species on the Galapagos Islands provide an example. The common ancestor of the
finches was estimated to arrive on the Galapagos Islands about two million years ago
and has now evolved into 15 species with different body sizes, beak shapes, songs, and
feeding behaviors [26]. When modeling adaptive radiation under early burst process, it is
assumed that the evolutionary rate σt increases exponentially over a long time. One can
describe σt = σ0 exp(τt/2), where σ0 is the rate at the beginning of evolution, and τ < 0
is the parameter rate of decay of the rate. For a pair of species (e.g., green warbler finch
and woodpecker finch [27]) evolved along a phylogenetic tree, under the EB process, their
covariation relationship can be described by the covariance matrix σ2Στ where

Στ [i, j] = (exp(τcij)− 1)/τ, τ < 0. (13)

For example, the covariance under the EB model between a pair of species z and y
shown in Figure 2 is Cov[z, y] = σ2(exp(0.5τ))/τ. When using an early burst model for
trait evolution, the trait vector X of n species follows a multivariate normal distribution
with mean µeb = µ and covariance σ2ΣΘ = σ2Στ (i.e., X ∼ Nn(µ1n, σ2Στ)).

For studying a multi-trait case, the joint distribution of X ∼ MN n×p(M, R, Στ), τ =
(τ1, · · · , τp) follows a matrix normal distribution, which is mathematically equivalent to the
multivariate normal distribution, as illustrated in Equation (14):

vect(X) ∼ Nnp(µeb, R⊗ Στ), (14)

where µeb = E[vect(X)] is the expected value of the vect(X), and for i, j = 1, 2, · · · , n;
u, v = 1, 2, · · · , p, Cov[Xui , Xvj ] = R⊗ Στ [xui , xvj ] can be expressed as

R⊗ Στ [xui , xvj ] = σxu σxv [exp((τu + τv)cij/2)− 1]. (15)

The derivation of the covariance matrix R⊗ Στ [i, j] is provided in Appendix A.2.1.
The negative log-likelihood function is given by Equation (16):

− log L(µeb, Στ , R|X, C)=
pn
2

log(2π) +
1
2

log |R⊗ Στ |

+
1
2
(vect(X)− µeb)

t(R⊗ Στ)
−1(vect(X)− µeb).

(16)



Symmetry 2023, 15, 1445 7 of 20

The evolution trajectories along a three-taxa phylogenetic tree in a two-dimensional
Euclidean space under the Brownian motion model, the Ornstein–Uhlenbeck process
models, and the early burst model are shown in Figure 2, respectively.

Figure 2. This figure presents the evolutionary trajectories of three species in a two-dimensional
trait space. The top left shows the phylogenetic tree of the species. The remaining panels simulate
trajectories under different models: Brownian motion (BM) at top right, Ornstein–Uhlenbeck (OU)
at bottom left, and early burst (EB) at bottom right. All models start from the origin with zero
covariation and specific parameters: for BM and OU, rates are set at σ1 = σ2 = 0.1; for OU, force
parameters are α1 = α2 = 0.01 and optimal parameters are θ1 = θ2 = 1; and for EB, decay parameters
are τ1 = τ2 = −0.18.

2.2.4. Multivariate Phylogenetic Mixed Model

The phylogenetic mixed model (PMM) is an application of the quantitative genetic
mixed model to interspecific data, partitioning phenotypes into additive genetic (heritable)
and non-heritable components [15]. The genetic component illustrates heritability, while the
non-heritable partition corresponds to current environmental impacts and is independent
of ancestors. A representative example of this phenomenon is the Daphnia species, which
can develop helmets and beak teeth for protection in response to the presence of predators
during growth, a trait not observed in other species.

Mathematically, the mixed model describes the trait phenotype (xi for the ith individ-
ual or ith taxon mean) as the sum of a grand mean (µ), a heritable factor (ai: from a normal
distribution with a variance-covariance matrix σ2

a C (i.e., ai ∼ N (0, σ2
a C)), and a residual

deviation (ei: independent normal variable with variance σ2
e ) [28] xi = µ + ai + ei, where

the grand mean µ can be interpreted as the genotypic state of the ancestor at the root of a
phylogeny in the phylogenetic context.

The PMM estimates the relative contribution of these two types of evolutionary
change (X ∼ Nn(µ1, σ2

a C + σ2
e I)), where σ2

a and σ2
e are the variances for the heritable factor

a and environmental factor e, respectively. However, fitting this model is challenging,
possibly because the components of variance are confounded and cannot be estimated
separately [28]. To overcome this, Ref. [15] recommended a re-parameterization of the
model with total variance σ2 = σ2

a + σ2
e and a heritability factor h2 = σ2

a /(σ2
a + σ2

e ), h2 ∈
[0, 1], eliminating some of the difficulties, and developed a new estimation algorithm for
both original maximum likelihood and new restricted maximum likelihood estimators. The
correlation in the trait value between two species stems partially from the phylogenetic
relationship between species (proportion h2) and partially from an independent, species-
specific contribution (proportion 1 − h2). This forms a transformation to the original
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phylogeny that pictorially describes the correlation structure in the trait values between
species. The statistical model for the PMM for a trait vector X follows a multivariate normal
distribution with mean µpmm = µ and covariance σ2Σh. For a pair of species i, j evolved
along a phylogenetic tree, the covariance matrix Σh has the following element:

Σh[i, j] = h2cij + (1− h2)Iij, h ∈ [0, 1]. (17)

The PMM provides rich evolutionary insights that can be drawn from its model
parameters. It is worthwhile to discuss the interpretation of these parameters in a specific
comparative analysis. When applying PMM for trait evolution, the trait vector X for n
species follows a multivariate normal distribution X ∼ Nn(µ1n, σ2Σh).

For studying multi-trait cases, the joint distribution of X ∼ MN n×p(M, R, Σh), h =
(h1, . . . , hp) follows a matrix normal distribution, which is mathematically equivalent to the
multivariate normal distribution, as illustrated in Equation (18):

vect(X) ∼ Nn×p
(
µpmm, R⊗ Σh

)
, (18)

where µpmm = E[vect(X)] is the expected value of the vect(X), and for i, j = 1, 2, · · · , n;
u, v = 1, 2, · · · , p, Cov[Xui , Xvj ] = R⊗ Σh[xui , xvj ] can be expressed as

R⊗ Σh[xui , xvj ] = σxu σxv

(
h2

uvcij + (1− h2
uv)Iij

)
, huv ∈ [0, 1]. (19)

The negative log-likelihood function is given by Equation (20):

− log L(µpmm, Σh, R|X, C)=
pn
2

log(2π) +
1
2

log |R⊗ Σh|

+
1
2
(vect(X)− µpmm)

t(R⊗ Σh)
−1(vect(X)− µpmm).

(20)

In the following, we provide a matrix decomposition to reduce the computational load
from the inverse of V , V−1 = (R⊗ Σh)

−1 by the following Lemma 1, which reduces the
computation of the inverse of the n2 × n2 matrix into the inverse of the n× n matrices.

Lemma 1. Let h ∈ [0, 1] be the heritability parameter in the PMM model, and let the n× n matrix
C represent the affinity of the phylogenetic relationship for n taxa. Let R be a p× p covariance
matrix for p traits. Assuming all traits share the same heritability parameter h (i.e., hi = h for all
i = 1, · · · , p, Σh = h2C + (1− h2)I), then

[R⊗ Σh]
−1 =

1
2

h−2R−1 ⊗ C−1[I − 1− h2

h2 I ⊗ D−1
c ], (21)

where ⊗ is the tensor product operator, and Dc is a diagonal matrix of eigenvalues of C.

The proof of Lemma 1 is provided in Appendix A.2.2.
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3. Parameter Estimation and Testing
3.1. Estimation of the Rate Matrix and Compute the Likelihood

The rate matrix R for multiple traits under the Brownian motion model can be analyti-
cally estimated using trait data (X) and the phylogenetic tree matrix (C). In this context,
the covariance between the uth trait and vth trait in the BM model is σuvC. The rate matrix
R can be estimated as follows [11]:

R̂bm =
(X − 1nµt)C−1(X − 1nµt)

n− 1
, (22)

where µ is the ancestral state vector at the root of the tree. The multivariate Brownian motion
model thus provides a robust and efficient framework in a multivariate trait space [6].

Other models, such as the Ornstein–Uhlenbeck (OU), early burst (EB), and mixed phy-
logenetic model (PMM), incorporate an additional model parameter φ in their covariance
matrix, thus affecting the covariance of X. In particular, each trait i has its own parameters
µi, σi, φi, making the covariance of the traits u and v dependent on the parameters φi and
φj. In these cases, covariance in modelM are generally represented as follows:

RM = Cov[Xu, Xv|C] = σuσvΣφu ,φv . (23)

In our analysis, we utilize three different models to calculate covariance, with each one
accompanied by a distinct set of parameters. The first model we employ is the Ornstein–
Uhlenbeck (OU) model, which is delineated in Equation (11). The parameters for the OU
model include αu, αv > 0. These parameters are integral to the model, and the non-negative
constants cii, cij correspond to the elements of the covariance matrix. Next, we deploy the early
burst (EB) model, which can be seen in Equation (15). Similar to the OU model, this model
also uses the parameters τu, τv < 0 as key components, with cii, cij symbolizing the covariance
matrix elements. Lastly, we incorporate the phylogenetic mixed model (PMM), as shown in
Equation (19). Unlike the previous two models, this model uses hu, hv ∈ [0, 1] as heritability
estimates as its unique set of parameters. The implementation of the covariance calculations for
these models can be found in the code provided in Appendix A.1. For finding the maximum
likelihood estimates, we utilize R version 4.2.3 software’s numerical optimization [29], as
per the likelihood functions provided in Equation (12) for OU, Equation (16) for EB, and
Equation (20) for PMM.

3.2. Compare the Fit of Models

Given tree data T with known topology and branch lengths and trait data X, all
models considered use a Kronecker product covariance structure, denoted as R ⊗ ΣΘ.
Under the null hypothesis, the traits have the same rates. We apply the likelihood ratio
test to assess the null hypothesis for each of the models under the BM, OU, EB, and PMM,
specifically H0 : σ2

i = σ2
j vs. H1 : σ2

i 6= σ2
j . The test statistics are as follows:

χ2 = −2 log
LM0(Θ0|X, T )
LM1(Θ1|X, T ) , (24)

which obey a chi-square distribution with degree of freedom d f = |Θ1| − |Θ0|.
However, not all models are nested; for instance, the OU model, the EB model, and

the PMM model are not nested to each other. Hence, to compare their fit to the data, we use
the Akaike information criteria [30]: AIC = 2k− 2 log LM(Θ̂|X, T ), where k is the number
of parameters, log LM is the negative log likelihood function under the model M, Θ̂ is the
maximum likelihood estimator, X is the trait matrix..The AICc is most suitable when the
ratio between the sample size and the number of parameters is less than 40 (i.e., n/k < 40,
where n is taxa size). The AICc is calculated as follows:

AICc = AIC + 2k(k + 1)/(n− k + 1). (25)
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4. Results
4.1. Simulation: Power Analysis

To evaluate the performance of the models, we use simulations to assess the statistical
power. Two types of trees are used. The first type of tree is the balanced tree of taxa
16, 32, 64, 128 with Grafen branch, where the depth of each node of the tree is defined by
the number of branching events above it [31]. The second type of tree uses the random
split tree of taxa 25, 50, 80, 120 in ape 3.0 [32]. The root state is set to 0 for all models. Two
sets of model-specific parameters are used for each model: for the OU model (α1, α2) =
(0.2, 0.2), (0.1, 0.3); for the EB model (τ1, τ2) = (0.1, 0.1), (0.05, 0.2); for the PMM model
(h1, h2) = (0.5, 0.5), (0.25, 0.75). For each simulation, 1000 data sets are simulated for each
type of tree, model, rate ratio, and taxa. For the analysis of statistical power under the
null hypothesis and homogeneous rates between traits, the ratio of the two rates is set to
σ2/σ1 ∈ {1, 1.5, 2, 3, 4}, respectively.

Our analysis outcomes are presented in Figure 3. Consistent with the conventional
understanding that statistical power increases with larger sample sizes, our results exhibit
a similar pattern. A notable correlation is observed between the power and the ratio
of two rates for the Brownian motion (BM) model, the early burst (EB) model, and the
Ornstein–Uhlenbeck (OU) model. Interestingly, in the case of the phylogenetic mixed
model (PMM), the power levels remain significantly high, unfazed by variations in the
ratio of the two rates.

Figure 3. Statistical power for BM, PMM, EB, and OU models. Taxa 16, 32, 64, and 128 are shown in
black, blue, red, and purple, respectively.

4.2. Empirical Study: Heterogeneous Rate of Evolution of the Salamander

Our analysis utilizes data sourced from [6], encompassing linear measurements for
three phenotypic traits—head length, forelimb length, and body width—from 311 adult in-
dividuals. These individuals represent 44 out of the 45 known species of eastern Plethodon,
as depicted in Figure 4. For each species, we computed the mean value for each trait. Given
that all three traits were assessed in the same units (millimeters) and on the same scale, we
employed the untransformed values in our analysis.
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Figure 4. This phylogenetic tree represents 44 salamander species, based on data reproduced via the
TimeTrees tool as outlined by [33]. The species names used align with those provided in [6]. With the
evolutionary timescale extending from the root to the tip covering approximately 25.41 million years,
the tree helps in examining and analyzing the evolution of certain traits over time. Specifically, the
traits of interest in this context are head length, body width, and forelimb, which will be used for
later analysis.

We frame our inquiry in the context of the following biological considerations [6,34,35]:

(i) Head length: An increase in a creature’s head (and thereby, jaw) length is anticipated
to enhance its biting strength and its proficiency in prey capture.

(ii) Forelimb length: A longer forelimb is projected to augment the creature’s perceived
body size during aggressive displays, possibly offering a competitive edge.

(iii) Body width: Currently, there is no substantiated evidence indicating any impact of a
creature’s body width on competitive behavior.

Given these considerations, it’s conceivable that the rate of evolution for body width
may not align with that of the other traits. We will put our model to work, testing the
heterogeneity in evolutionary rates between traits (i) and (iii) in Section 4.2.1, and then
between traits (ii) and (iii) in Section 4.2.2, respectively.

4.2.1. Head Length vs. Body Width

Analyses of the comparison of head length and body width in salamanders are sum-
marized in Table 1.

The observed matrices (Obs) and constrained rate matrices (Con: under H0 : σ1 = σ2)
exhibit variations across models, reflecting the differences in how each model estimates
the relationship between head length and body width. This signifies the rejection of the
null hypothesis. The likelihood of the observed data (Lobs) surpassed the likelihood of
the constrained data (Lcon). This indicates that the models potentially provide a superior
fit to the observed data in comparison to the constrained data. Further validation of this
observation is evident in the likelihood ratio test (LRT), revealing a significant positive
relationship between head length and body width in salamanders across all models, as
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indicated by the notably low p-value. Moreover, the corrected Akaike information criterion
(AICc) for the observed data was consistently lower than the AICc for the constrained data
across all models, further suggesting that the models fit the observed data more effectively.
These findings align with the outcomes of the study by [6], particularly in the context of a
Brownian motion model.

Table 1. Summary of the results of the comparison of head length and body width in salamanders
using four different phylogenetic models. The Obs (σH , σB) represent the rate estimate under the
alternative, while Con (σH , σB) represents the rate estimate under the null hypothesis, where σH , σB

are the rate estimates for the head length and body width, respectively. Lobs and Lcon are the log
likelihood values, LRTest is the likelihood ratio test statistics, and AICcobs and AICccon are the sample
size correct Akaike information criteria.

BM OU PMM EB

Obs (σH , σB) 0.23, 0.13 0.23, 0.13 0.22, 0.13 0.23, 0.12
Con (σH , σB) 1.02, 0.13 1.02, 0.16 1.02, 0.13 1.02, 0.13

Lobs −126.85 −126.39 −126.82 −126.86
Lcon −188.32 −185.95 −187.82 −188.32

LRTest 122.94 119.11 121.99 122.91
p-value 1.44 × 10−28 9.90 × 10−28 2.32 × 10−28 1.46 × 10−28

AICcobs 261.70 264.79 265.65 265.72
AICccon 382.63 381.90 385.64 386.63

4.2.2. Forelimb Length vs. Body Width

The results are summarized in Table 2.

Table 2. Summary of the results of the comparison of body width and forelimb length in salamanders
using four different phylogenetic models.

BM OU PMM EB

Obs (σB, σF) (0.12, 0.20) (0.13, 0.21) (0.13, 0.20) (0.12, 0.20)
Con (σB, σF) (1.04, 0.20) (1.05, 0.24) (1.04, 0.21) (1.01, 0.11)

Lobs −134.21 −133.53 −134.25 −142.98
Lcon −193.43 -191.40 −192.87 −193.97

LRTest 118.43 115.75 117.24 101.99
p-value 1.40 × 10−27 5.40 × 10−27 2.54 × 10−27 5.57 × 10−24

AICcobs 276.43 279.05 280.50 297.95
AICccon 392.85 392.80 395.74 397.95

Similarly to the previous analysis, for all models, the observed rate matrices (Obs) and
constrained rate matrices (Con) varied between models, reflecting differences in the estima-
tion of the relationship between body width and forelimb length in the different models.
The likelihood of observed data (Lobs) was greater than the likelihood of constrained data
(Lcon), suggesting that the models fit the observed data better than they do the constrained
data. Further validation of this observation is evident in the likelihood ratio test (LRT),
revealing a significant positive relationship between forelimb length and body width in
salamanders across all models, as indicated by the notably low p-value. The AICc for the
observed data was less than the AICc for the constrained data across all models, suggesting
that the models provide a better fit to the observed data.

4.3. Accessing Adequacy of Models via Many Empirical Datasets

Model adequacy refers to how well a statistical or mathematical model fits the data
and underlying assumptions [36,37]. It evaluates whether the model’s assumptions are in
line with the structure of the data and if the model sufficiently captures the patterns and
relationships in the data. We use 9 trees and 221 empirical trait datasets, including a snow
skinks group [38], Drosophila group [39], lizards group [40,41], woodcreepers group [42],
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sponges group [43], and bats group [44]. The aim is to minimize distinguishability, implying
a higher adequacy of the model [36,37].

To achieve the aim, we first fit the modelM to the raw dataset to obtain the maximum
likelihood estimates (MLE) Θ̂ and compute the initial negative log-likelihood, `0. Then, we
simulate datasets using the model using Θ̂ and then compare these with observed datasets.
We generate each simulated data set X ′ from estimates obtained from the empirical data
under the modelM. We then compute the likelihood using Θ̂: `′ := − log LM(X ′|Θ̂, C). If
the normal distribution (as shown in this study)M is a candidate model, we can evaluate
its adequacy by fitting the modelM to the data X ′ to get the likelihood `′ and as well as
the MLE estimate for the parameter Θ̂′ [45].

We simulate data X ′s, s = 1, · · · , B (B = 1000) repeatedly using the MLE Θ̂ and
compute the negative log-likelihood `s. We then sort these results and find the relative
location of the initial negative log-likelihood, `0. If `0 falls within the 90% limit of `s, we
can say that the data can be adequately analyzed by the modelM. The results are shown
in Figure 5.

Figure 5. Assessing model adequacy using the empirical dataset. A total of 9 trees and 221 trait sets
are used. Each point in the subfigure represents the quantify of the maximum likelihood of the raw
dataset computed by the − log LM(Θ̂|X, C) concerning the maximum likelihood of the simulated
data − log LM(X ′s|Θ̂, C), s = 1, 2, · · · , 1000. The two horizontal lines are the 90% cut-off quantile.

Figure 5 presents the evaluation of model adequacy, indicating that most datasets are
appropriately analyzed using the proposed models. Specifically, the Brownian Motion (BM)
model displays a higher degree of adequacy in comparison to other models, including
the Ornstein-Uhlenbeck (OU), Phylogenetic Mixed Model (PMM), and Early Burst (EB).
This measure of adequacy is determined by the likelihood calculated, even though this
likelihood may exhibit substantial variations during the optimization search, particularly
when the bootstrap samples are similar to the raw data.

We advise researchers to apply a cautious approach when utilizing these models
in their analyses. It’s crucial to carry out an adequacy test to ensure that the data is
effectively analyzed under the selected models. Nevertheless, it is worth noting that while
the BM model showed the highest adequacy in our assessment, this does not devalue
the applicability or potential usefulness of the other models, such as OU, PMM, and EB.
Different models may be more appropriate depending on the specific characteristics of the
data and research questions being addressed.
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5. Discussion

The exploration of trait evolution has always been a crucial facet of evolutionary
biology. It aids in the understanding of both the diversity and the adaptive mechanisms
exhibited by different species. However, the traditional Brownian motion model, although
providing valuable insights, does not fully capture the complexity and variability inherent
in trait evolution across different species and traits. This limitation has prompted the need
for more advanced models.

The current study has presented a robust step forward by introducing three extended
statistical models: the phylogenetic multivariate Ornstein–Uhlenbeck model, the phylo-
genetic multivariate early burst model, and the phylogenetic multivariate mixed model.
These models were found to provide a more nuanced perspective of trait evolution, fitting
well to large datasets of varied traits in salamanders and lizards. Thus, these models appear
promising for a wider range of studies in evolutionary biology.

Looking ahead, there are two major areas for future exploration. Firstly, there is room
for refining the theoretical underpinnings of these models. This challenge involves the
estimation and testing of models with a unique Kronecker product covariance structure.
The traditional approaches such as the Taylor series, the convergence of the likelihood
ratio, and the asymptotic power function could be adapted for this context. Testing of
composite hypotheses, specifically in defining likelihood ratios under such hypotheses,
presents another intriguing avenue of investigation. The aim is to simplify the computation
and interpretation, thereby making these methods more accessible and applicable to a
broader array of problems.

Secondly, a more comprehensive analysis of the work by [9], which builds on the
methodology in [10], could prove to be valuable. We can use a likelihood-based ap-
proach to compare rates of phenotypic evolution for continuous traits across phyloge-
netic trees. While the model performs well, except in the case of very small trees, there
is a need for refinement to minimize complexity and computational challenges, which
presently limit its broad use. For example, it is known that a more efficient formula-
tion to compute the likelihood using Equation (3) is given by − log L(µ, R, ΣΘ|X, T ) =
pn
2 log(2π)+ n

2 log |R|+ p
2 log |ΣΘ|+ 1

2 (tr(R−1(X− E[X])tΣ−1
Θ (X− E[X]))), which reduce

the cost of computing the np× np matrix to a n× n matrix, where tr(·) denotes the trace of
a square matrix. It remains a challenge for large tree cases (e.g., 100 taxa or more). Simplifi-
cation, user-friendliness, optimizing algorithms such as the tree traversal algorithm [46] for
the multivariate likelihood calculation, and intuitive interpretation are some of the aspects
that need to be addressed.

Thirdly, while the primary focus has been centered around comparing rates among
different models, however, it’s important to note that each model possesses unique func-
tionalities that can be further explored. Thus, a deeper understanding of these models
may necessitate individualized and detailed research projects. Specifically, a future area
of investigation could involve interpreting the parameters of each model in the context
of specific datasets. Such an approach might reveal nuanced insights and offer a more
comprehensive view of each model’s capabilities and characteristics. This direction of
research could provide significant contributions to the field.

Finally, in light of the research conducted by Baken et al. [47], Juarez and Adams [48],
and Juarez et al. [49], we argue that implementing phylogenetic multivariate comparative
methods could greatly enhance our understanding of evolutionary trends in salamanders.
Future work should focus on improving theoretical understanding and developing prac-
tical tools that can investigate complex trait relationships, divergences, and the pace of
evolution in relation to sexual dimorphism and microhabitat predilections across differ-
ent species. These advanced models are a significant stride forward in the study of trait
evolution, offering new insights into the rates of trait changes and heterogeneity across
species and traits.
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6. Conclusions

In this work, we proposed novel approaches, the multivariate phylogenetic early
burst model and the multivariate phylogenetic mixed model, which serve to expand the
toolbox available for understanding evolutionary processes. These models allow for a more
nuanced and comprehensive investigation into trait covariance and evolution. Crucially,
the results derived from these innovative models are consistent with those obtained through
established models, namely the phylogenetic multivariate Brownian model [6] and the
multivariate phylogenetic Ornstein–Uhlenbeck process model [13].

Our study presents a significant exploration into the evolution of three key organismal
traits, head length, forelimb length, and body width, and their hypothesized impact on
competitive behavior. We assert the plausibility of divergent rates of evolution for body
width as compared to head length and forelimb length. Through our work, we apply and
test this hypothesis using our newly developed multivariate phylogenetic models. This
consistency not only validates our new methods but also reveals their utility and relevance
in evolutionary studies.

In this way, our work serves to bridge the past and future of phylogenetic comparative
methods, ensuring that our understanding of evolution is continually refined and improved
upon. We believe these advancements will contribute to a more sophisticated comprehen-
sion of evolution’s intricate mechanisms, facilitating future research and discovery in this
vital area of study.
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Appendix A

Appendix A.1. Code and Scripts

The following clickable links contain R scripts and files to reproduce the Figures 1–5
and Tables 1 and 2 from the simulation developed in this proposal. They can be accessed at
https://tonyjhwueng.info/phymvrates (accessed on 10 July 2023 ).

• Figure 1: https://tonyjhwueng.info/phymvrates/onetreetraj.html (accessed on 10
July 2023)

• Figure 2: https://tonyjhwueng.info/phymvrates/2dbmou.html (accessed on 10 July
2023)

• Figure 3: https://tonyjhwueng.info/phymvrates/powerplot.html (accessed on 10
July 2023)

a. BM: Power analysis for Brownian motion model https://tonyjhwueng.info/
phymvrates/simsBM.html (accessed on 10 July 2023)

b. OU: Power analysis for Ornstein–Uhlenbeck model https://tonyjhwueng.info/
phymvrates/simsOU.html (accessed on 10 July 2023)

c. EB: Power analysis for early burst model https://tonyjhwueng.info/phymvrates/
simsEB.html (accessed on 10 July 2023)

d. PMM: Power analysis for phylogenetic mixed model https://tonyjhwueng.info/
phymvrates/simsPMM.html (accessed on 10 July 2023)

• Figure 4: https://tonyjhwueng.info/phymvrates/phyratepic.html (accessed on 10
July 2023)

https://tonyjhwueng.info/phymvrates
https://tonyjhwueng.info/phymvrates/onetreetraj.html
https://tonyjhwueng.info/phymvrates/2dbmou.html
https://tonyjhwueng.info/phymvrates/powerplot.html
https://tonyjhwueng.info/phymvrates/simsBM.html
https://tonyjhwueng.info/phymvrates/simsBM.html
https://tonyjhwueng.info/phymvrates/simsOU.html
https://tonyjhwueng.info/phymvrates/simsOU.html
https://tonyjhwueng.info/phymvrates/simsEB.html
https://tonyjhwueng.info/phymvrates/simsEB.html
https://tonyjhwueng.info/phymvrates/simsPMM.html
https://tonyjhwueng.info/phymvrates/simsPMM.html
https://tonyjhwueng.info/phymvrates/phyratepic.html
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• Figure 5: https://tonyjhwueng.info/phymvrates/adequacy.html (accessed on 10 July
2023)

• Tables 1 and 2: https://tonyjhwueng.info/phymvrates/empsalamv3.R (accessed on
10 July 2023)

• Models code

d. BM: Section 2.2.1: Multivariate Brownian motion model https://tonyjhwueng.
info/phymvrates/ComparingBM.html (accessed on 10 July 2023)

e. OU: Section 2.2.2: Multivariate Ornstein–Uhlenbeck model https://tonyjhwueng.
info/phymvrates/ComparingOU.html (accessed on 10 July 2023)

f. EB: Section 2.2.3: Multivariate early burst model https://tonyjhwueng.info/
phymvrates/ComparingEB.html (accessed on 10 July 2023)

g. PMM: Section 2.2.4: Mixed multivariate phylogenetic model https://tonyjhwueng.
info/phymvrates/ComparingPMM.html (accessed on 10 July 2023)

Appendix A.2. Proof of Lemma

Appendix A.2.1. Covariance for EB Model

Below, we derive the covariance under the EB model for p traits variables, where
each trait variable contains n species. For u, v = 1, 2, · · · , p; i, j = 1, 2, · · · , n, let xuit and
xvjt be the two trait variables following the dynamics dxuit = σxu exp(τut/2)dWxu

t and
dxvjt = σxv exp(τvt/2)dWxv

t . Given the initial condition at t = 0, integrating both sides
with respect to time yields the following:

xuit = xui0 + σxu

∫ t

0
exp(τus/2)dWxu

s , (A1)

xvjt = xvj0 + σxv

∫ t

0
exp(τvs/2)dWxv

s . (A2)

Using the Itô isometry, the covariance can be computed as follows:

Cov[xuit, xvjt] = E[xuitxvjt]− E[xuit]E[xvjt]

= σxu σxv

∫ tij
0 exp

(
(τu+τv)s

2

)
ρuvds

= ρuvσxu σxv

[
exp

(
(τu+τv)tij

2

)
− 1
]
,

(A3)

where dWxu
s dWxv

s = ρuvds, and ρ ∈ [0, 1]. Given a phylogenetic tree, with the corresponding
C matrix, the covariance between the ith trait of the uth species and the jth trait of the vth
species is represented as follows:

Cov[Xui , Xvj ] = R⊗ Στ [xiu , xjv ] = σxu σxv [exp((τu + τv)cij/2)− 1] (A4)

We assume the two Wiener processes are identical processes (i.e., ρ = 1 throughout
the analysis of this work).

Appendix A.2.2. Simplification of Covariance Matrix in PMM Model

Below are several useful matrix properties [50].

(i) Some useful operations for the tensor product of two matrices (A⊗ B)−1 = A−1 ⊗
B−1, (A⊗ B)t = At ⊗ Bt and (A⊗ B)(C⊗ D) = (AC)⊗ (BD).

(ii) Given G ∈ Mm×p and H ∈ Mn×q with m > p, n > q. If K = I + GGt ⊗ HHt

and Pt(GGt)P = ΛGGt and Qt(HHt)Q = ΛHHt , where ΛA is a diagonal matrix of
eigenvalues of a square matrix A, then K−1 = (P⊗Q)t(I + ΛGGt ⊗ΛHHt)−1(P⊗Q).
In particular, if Pt(GGt)P = I and Qt(HHt)Q = I, then K−1 = (P⊗Q)t(I + I ⊗
I)−1(P⊗Q) = 1

2 (P⊗Q)t(P⊗Q).

https://tonyjhwueng.info/phymvrates/adequacy.html
https://tonyjhwueng.info/phymvrates/empsalamv3.R
https://tonyjhwueng.info/phymvrates/ComparingBM.html
https://tonyjhwueng.info/phymvrates/ComparingBM.html
https://tonyjhwueng.info/phymvrates/ComparingOU.html
https://tonyjhwueng.info/phymvrates/ComparingOU.html
https://tonyjhwueng.info/phymvrates/ComparingEB.html
https://tonyjhwueng.info/phymvrates/ComparingEB.html
https://tonyjhwueng.info/phymvrates/ComparingPMM.html
https://tonyjhwueng.info/phymvrates/ComparingPMM.html
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(iii) Woodbury matrix identity gives (A+UBV)−1 = A−1−A−1U(B−1 +VA−1U)−1VA−1

where A ∈ Mn×n, U ∈ Mn×k, C ∈ Mk×k and V ∈ Mk×n. Set U = V = I,
(A + B)−1 = A−1[I − (AB−1 + I)−1.

Proof of Lemma 1.

Claim 1:

[R⊗ Σh]
−1 =

1
2

h−2R−1 ⊗ C−1[I − 1− h2

h2 I ⊗ D−1
c ]. (A5)

Proof: Let A = h2R ⊗ C, B = (1− h2)R ⊗ I, by (iii) (h2R ⊗ C + (1− h2)R ⊗ I)−1 =

(h2R⊗C)−1[I− (h2R⊗C[(1− h2)R⊗ I]−1 + I)−1 = h−2R−1⊗C−1[I− [(h2R⊗
C 1

1−h2 R−1 ⊗ I) + I−1] = h−2R−1 ⊗ C−1[I − ( h2

1−h2 (R ⊗ C)(R−1 ⊗ I) + I)−1] =

h−2R−1 ⊗ C−1[I − ( h2

1−h2 (RR−1)⊗ (CI) + I)−1] = h−2R−1 ⊗ C−1[I − ( h2

1−h2 I ⊗
C + I)−1].

Next, consider reducing the computation complexity of (I − h2

1−h2 I ⊗ C)−1 as follows.

Claim 2:

(I − h2

1− h2 I ⊗ C)−1 = (
1− h2

h2 )I ⊗ D−1
C , (A6)

where DC is a diagonal matrix composed of the eigenvalues of C.

Proof: First, let the eigen decomposition C = PCDCPt
C = (PCD

1
2
C)(D

1
2
C Pt

C) = GGt and

H =
√

h2

1−h2 I such that h2

1−h2 I = HHt. Let P = ( h2

1−h2 )
− 1

2 I such that PtHHtP = I.

Let Q = PcD−
1
2

c such that QtGGQ = I. Then by (ii) (I + h2

1−h2 I ⊗ C)−1 =

(( h2

1−h2 )
− 1

2 I ⊗ PcD−
1
2

C )t(I + I ⊗ I)−1(( h2

1−h2 )
− 1

2 I ⊗ PcD−
1
2

C ) = 1
2 ((

h2

1−h2 )
− 1

2 I)t ⊗

(PcD−
1
2

C )t I( h2

1−h2 )
− 1

2 I ⊗ PcD−
1
2

C = 1
2 ((

h2

1−h2 )
− 1

2 I( h2

1−h2 )
− 1

2 I) ⊗ D−
1
2

C Pt
c PcD−

1
2

C ) =
1
2 (

h2

1−h2 )
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By Claim 1 and Claim 2, one has

(R⊗ Σh)
−1 = (h2R⊗ C + (1− h2)R⊗ I)−1

= h−2R−1 ⊗ C−1[I − ( h2

1−h2 I ⊗ C + I)−1]

= 1
2 h−2R−1 ⊗ C−1[I − 1−h2

h2 I ⊗ D−1
c ].

(A7)

This lemma reduces the complexity of the calculation of the inverse of an n2 × n2

matrix into products of the inverse of three n× n matrices. We would like to bring to the
readers’ attention that these theoretical results benefit significantly from the properties of
matrices. However, in practical applications, we assign distinct values to the parameter h
when optimizing for maximum likelihood estimates (MLEs) using multiple traits.

Appendix A.3. Trait Dataset

Below, the Table A1 includes the scientific name, the common name, and their trait values.
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Table A1. Scientific and common names of salamanders. Further detail can also be accessed in
AmphibiaWeb [51].

No. Scientific Name Common Name

1 Plethodon Dorsalis (https://en.wikipedia.org/wiki/Plethodon_dorsalis (accessed on 10 July 2023)) Northern Zigzag Salamander
2 Plethodon Ventralis (https://en.wikipedia.org/wiki/Plethodon_ventralis (accessed on 10 July 2023)) Southern Zigzag Salamander
3 Plethodon Angusticlavius (https://en.wikipedia.org/wiki/Plethodon_angusticlavius (accessed on 10 July 2023)) Ozark Zigzag Salamander
4 Plethodon Welleri (https://en.wikipedia.org/wiki/Plethodon_welleri (accessed on 10 July 2023)) Weller’s Salamander
5 Plethodon Punctatus (https://en.wikipedia.org/wiki/Plethodon_punctatus (accessed on 10 July 2023)) Cow Knob Salamander
6 Plethodon Wehrlei (https://en.wikipedia.org/wiki/Plethodon_wehrlei (accessed on 10 July 2023)) Wehrle’s Salamander
7 Plethodon Websteri (https://en.wikipedia.org/wiki/Plethodon_websteri (accessed on 10 July 2023)) Webster’s Salamander
8 Plethodon Teyahalee (https://en.wikipedia.org/wiki/Plethodon_teyahalee (accessed on 10 July 2023)) Southern Appalachian Salamander
9 Plethodon Cylindraceus (https://en.wikipedia.org/wiki/Plethodon_cylindraceus (accessed on 10 July 2023)) White-spotted Slimy Salamander
10 Plethodon Variolatus (https://en.wikipedia.org/wiki/Plethodon_variolatus (accessed on 10 July 2023)) South Carolina Slimy Salamander
11 Plethodon Chlorobryonis (https://en.wikipedia.org/wiki/Plethodon_chlorobryonis (accessed on 10 July 2023)) Atlantic Coast Slimy Salamander
12 Plethodon Chattahoochee (https://en.wikipedia.org/wiki/Plethodon_chattahoochee (accessed on 10 July 2023)) Chattahoochee Slimy Salamander
13 Plethodon Cheoah (https://en.wikipedia.org/wiki/Plethodon_cheoah (accessed on 10 July 2023)) Cheoah Bald Salamander
14 Plethodon Shermani (https://en.wikipedia.org/wiki/Plethodon_shermani (accessed on 10 July 2023)) Red-legged Salamander
15 Plethodon Amplus (https://en.wikipedia.org/wiki/Plethodon_amplus (accessed on 10 July 2023)) Blue Ridge Gray-cheeked Salamander
16 Plethodon Meridianus (https://en.wikipedia.org/wiki/Plethodon_meridianus (accessed on 10 July 2023)) South Mountain Gray-cheeked Salamander
17 Plethodon Montanus (https://en.wikipedia.org/wiki/Plethodon_montanus (accessed on 10 July 2023)) Northern Gray-cheeked Salamander
18 Plethodon Albagula (https://en.wikipedia.org/wiki/Plethodon_albagula (accessed on 10 July 2023)) Western Slimy Salamander
19 Plethodon Sequoyah (https://en.wikipedia.org/wiki/Plethodon_sequoyah (accessed on 10 July 2023)) Sequoyah Slimy Salamander
20 Plethodon Ocmulgee (https://en.wikipedia.org/wiki/Plethodon_ocmulgee (accessed on 10 July 2023)) Ocmulgee Slimy Salamander
21 Plethodon Savannah (https://en.wikipedia.org/wiki/Plethodon_savannah (accessed on 10 July 2023)) Savannah Slimy Salamander
22 Plethodon Grobmani (https://en.wikipedia.org/wiki/Plethodon_grobmani (accessed on 10 July 2023)) Western Slimy Salamander
23 Plethodon Kisatchie (https://en.wikipedia.org/wiki/Plethodon_kisatchie (accessed on 10 July 2023)) Louisiana Slimy Salamander
24 Plethodon Mississippi (https://en.wikipedia.org/wiki/Plethodon_mississippi (accessed on 10 July 2023)) Mississippi Slimy Salamander
25 Plethodon Kiamichi (https://en.wikipedia.org/wiki/Plethodon_kiamichi (accessed on 10 July 2023)) Kiamichi Slimy Salamander
26 Plethodon Aureolus (https://en.wikipedia.org/wiki/Plethodon_aureolus (accessed on 10 July 2023)) Tellico Salamander
27 Plethodon Glutinosus (https://en.wikipedia.org/wiki/Plethodon_glutinosus (accessed on 10 July 2023)) Northern Slimy Salamander
28 Plethodon Jordani (https://en.wikipedia.org/wiki/Plethodon_jordani (accessed on 10 July 2023)) Red-cheeked Salamander
29 Plethodon Metcalfi (https://en.wikipedia.org/wiki/Plethodon_metcalfi (accessed on 10 July 2023)) Southern Gray-cheeked Salamander
30 Plethodon Ouachitae (https://en.wikipedia.org/wiki/Plethodon_ouachitae (accessed on 10 July 2023)) Rich Mountain Salamander
31 Plethodon Fourchensis (https://en.wikipedia.org/wiki/Plethodon_fourchensis (accessed on 10 July 2023)) Fourche Mountain Salamander
32 Plethodon Caddoensis (https://en.wikipedia.org/wiki/Plethodon_caddoensis (accessed on 10 July 2023)) Caddo Mountain Salamander
33 Plethodon Kentucki (https://en.wikipedia.org/wiki/Cumberland_Plateau_salamander (accessed on 10 July 2023)) Cumberland Plateau salamander
34 Plethodon Petraeus (https://en.wikipedia.org/wiki/Pigeon_Mountain_salamander (accessed on 10 July 2023)) Pigeon Mountain salamander
35 Plethodon Yonahlossee (https://en.wikipedia.org/wiki/Yonahlossee_salamander (accessed on 10 July 2023)) Yonahlossee salamander
36 Plethodon Hubrichti (https://en.wikipedia.org/wiki/Peaks_of_Otter_salamander (accessed on 10 July 2023)) Peaks of Otter salamander
37 Plethodon Nettingi (https://en.wikipedia.org/wiki/Cheat_Mountain_salamander (accessed on 10 July 2023)) Cheat Mountain salamander
38 Plethodon Richmondi (https://en.wikipedia.org/wiki/Ravine_salamander (accessed on 10 July 2023)) Ravine salamander
39 Plethodon Electromorphus (https://en.wikipedia.org/wiki/Northern_ravine_salamander (accessed on 10 July 2023)) Northern ravine salamander
40 Plethodon Cinereus (https://en.wikipedia.org/wiki/Red-backed_salamander (accessed on 10 July 2023)) Red-backed salamander
41 Plethodon Shenandoah (https://en.wikipedia.org/wiki/Shenandoah_salamander (accessed on 10 July 2023)) Shenandoah salamander
42 Plethodon Hoffmani (https://en.wikipedia.org/wiki/Valley_and_ridge_salamander (accessed on 10 July 2023)) Valley and ridge salamander
43 Plethodon Virginia (https://en.wikipedia.org/wiki/Shenandoah_Mountain_salamander (accessed on 10 July 2023)) Shenandoah Mountain salamander
44 Plethodon Serratus (https://en.wikipedia.org/wiki/Southern_red-backed_salamander (accessed on 10 July 2023)) Southern red-backed salamander
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