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Abstract: The main result of this paper is constructing a surfaces family with the similarity of Bertrand
curves in Euclidean 3–space E3. Then, by utilizing the Serret–Frenet frame, we conclude the sufficient
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curves. Consequently, the expansion to the ruled surfaces family is also depicted. As implementations
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1. Introduction

In the context of surface theory, an asymptotic curve is one of the important curves
on a surface and has been a prolonged standing study focus in differential geometry.
An asymptotic curve on a surface is a curve that connects the points with vanishing (or
negative) Gaussian curvature. On each point with negative Gaussian curvature, there will
be two asymptotic directions; these directions are bisected via the principal directions. In
fact, the sufficient and necessary conditions for a curve on a surface to be asymptotic is that
the osculating plane of the curve and the surface tangent are identical [1,2].

Asymptotic curves are performed in astrophysics, architectural CAD and astronomy.
For example, Contopoulos [3] studied the asymptotic orbits of fundamentally unstable
orbits, via a specific assurance on the Lyapunov orbits, and established a family of escaping
orbits via initial events on asymptotic curves. Efthymiopoulos et al. [4] proved that the
diffusion of any messy orbit interior of the contours follows basically the same path defined
by the unstable asymptotic curves that emerge from unstable periodic orbits interior of
the contours. Flory and Pottmann [5] offered confrontations in the realization of free-form
architecture and complicated shapes in aggregate with the practical characteristics of ruled
surfaces. They defined a geometry-processing area to approximate a specific shape by one
or more strips of ruled surfaces. In that work, they applied asymptotic curves gained by
accurate realization and organized a first ruled surface by conforming the generators with
asymptotic curves; they also studied how the shape of this initial approximation can be
modified to optimally fit a given target shape.

In recent years, many scholars have pointed to designing surfaces families via a
characteristic curve; for example, Wang et al. [6] prepared a surface family with a mutual
geodesic. Their work is adverse engineering trouble to define a spatial curve to describe
the surface, and the work includes situations for a curve to be a geodesic on this surface.
Additionally, their work could be visualized as a model of industrial mathematics. Kasap
et al. [7] extended this work by the hypothesis of additional comprehensive marching-scale
functions. In Li et al. [8], the approximation of a minimal surface together with geodesics
is considered by employing the Dirichlet principal, and they minimized the area of the
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surface by employing the Dirichlet approach. This method can be utilized for gaining the
least cost of an item while constructing surfaces. A surface family with characteristic curves
has been considered by considerable researchers [9–13].

In the context of space curves, the symmetrical connection among the curves is an
interesting issue. A Bertrand curve is one of the classical private curves. Two curves
are named a Bertrand pair if there exists a linear relationship between their principal
normals at the corresponding points [1,2]. The Bertrand curve can be considered as the
popularization of the helix. The helix, as a specific type of curve, has attracted the attention
of mathematicians as well as scientists because of its different implementations; for instance,
the Bertrand curves perform special models of offset curves which are applied in computer-
aided manufacturing (CAM) and computer-aided design (CAD) (see [14–16]).

The major advantage of this work is to give the parametric representation of two
surfaces with two unit speed Bertrand curves. By employing the Serret–Frenet frames, we
produce the necessary and sufficient coefficients of vectors of the frames so that both the
asymptotic and isoparametric requirements are met. Then, we construct the surfaces family
with common asymptotic Bertrand curves. Further, the expansion to ruled a surfaces family
is also deduced. As an execution of our results, this work is demonstrated through several
examples.

2. Preliminaries

In this section, we give a brief outline of the theory of curves and surfaces [1,2]. A curve
is smooth if it admits a tangent vector at all points of the curve. In the next considerations,
all curves are supposed to be smooth. Consider a curve α = α(s), which is represented
by arc-length parameter s. We set α′ × α′′ 6= 0 for all s ∈ [0, L], since this would give us a
straight line. In this paper, α′(s) indicates the derivatives of α with respect to the arc-length
parameter. For each point of α(s), the set {υ1(s), υ2(s), υ3(s)} is named the Serret–Frenet
frame on α(s), where υ1(s) = α

′
(s), υ2(s) = α′′(s)/‖α′′(s)‖, and υ3(s) = υ1(s) × υ2(s)

are the unit tangent, principal normal, and binormal vectors of the curve at the point
α(s), respectively. The arc-length derivative of the Serret–Frenet frame is ruled by the
relations [1,2]:  υ

′
1(s)

υ
′
2(s)

υ
′
3(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

 υ1(s)
υ2(s)
υ3(s)

, (1)

where the curvature is κ(s) and the torsion is τ(s) of the curve α(s).

Definition 1. Let α(s) and α̂(s) be two curves in E3, and υ2(s) and υ̂2(s) are the principal normal
vectors of them, respectively; the couple {α(s), α̂(s)} is named Bertrand curves if υ2(s) and υ̂2(s)
are linearly dependent at the matching points, and α(s) is named the Bertrand mate of α̂(s),

α̂(s) = α(s) + f υ2(s), (2)

where f is a stationary [1,2].

We signalize a surface M in E3 by

M : y(s, t) = (y1(s, t), y2(s, t), y3(s, t)), (s, t) ∈ D ⊆ R2. (3)

If yj(s, t) = ∂y
∂j , the surface normal is

ζ(s, t) = ys × yt, (4)

which is orthogonal to each of the vectors ys and yt.
We utilize basic notation on the asymptotic curve from [1,2]: if the curve α(s) lies on M,

then to be asymptotic, its binormal must be constantly parallel to the normal to the surface.



Symmetry 2023, 15, 1440 3 of 9

Equivalently, the osculating plane, stretched by {υ1(s), υ2(s)}, matches with the tangent
plane to the surface. Furthermore, a curve α(s) on a surface y(s, t) is an isoparametric
curve if it has a constant s or t-parameter value. In other words, there exists a parameter
t0 such that α(s) = y(s, t0) or α(t) = y(s0, t). Given a parametric curve α(s), we call it
an isoasymptotic of the surface y(s, t) if it is both an asymptotic and a parameter curve
on y(s, t).

3. Main Results

This section offers a technique for creating a surfaces family interpolating common
asymptotic Bertrand curves in E3. For this aim, let us take a unit speed curve α(s) with∥∥∥α
′
(s)
∥∥∥ 6= 0, α̂(s) as the Bertrand mate of α(s), and {κ̂(s), τ̂(s), υ̂1(s), υ̂2(s), υ̂3(s)} as the

Frenet–Serret apparatus of α̂(s) as in Equation (1). Then, the surfaces family M interpolating
α(s) as a common asymptotic curve can be appointed by

M : y(s, t) = α(s) + x(s, t)υ1(s)+ y(s, t)υ2(s); 0 ≤ t ≤ T, 0 ≤ s ≤ L. (5)

Similarly, the surface family M̂ interpolating α̂(s) as a common asymptotic curve is

M̂ : ŷ(s, t) = α̂(s) + x(s, t)υ̂1(s)+ y(s, t)υ̂2(ŝ); 0 ≤ t ≤ T, 0 ≤ s ≤ L. (6)

x(s, t), y(s, t) ∈ C1 are named marching-scale functions, with the constraint y(s, t0) 6= 0.
In order to acquire the M̂ interpolating α̂(s) as a common asymptotic curve via

Equations (5) and (6), we study what the marching-scale functions should fulfill. Therefore,
we have

ŷs(s, t) = (1 + xs − yκ̂)υ̂1 + (xκ̂ + ys)υ̂2 + yτ̂υ̂3,
ŷt(s, t) = xtυ̂1 + ytυ̂2,

}
(7)

and
ζ̂(s, t) = −τ̂yytυ̂1 + τ̂yxtυ̂2 +[ (1 + xs − yκ̂)yt − (xκ̂ + ys)xt]υ̂3. (8)

Since α̂(s) is an isoparametric on M̂, there exists a value t = t0 ∈ [0, T] such that
ŷ(s, t0) = α̂(s); that is,

x(s, t0) = y(s, t0) = 0, xs(s, t0) = ys(s, t0) = 0. (9)

Thus, when t = t0, i.e., over α̂(s), we have

ζ̂(s, t0) = yt(s, t0)υ̂3(s). (10)

Equation (10) shows that the osculating plane of α̂(s) coincides with the tangent plane
to the surface M̂. The significant point to note here is the manner we used (compared
with [11]). We indicate {M̂, M} to denote the surfaces family.

Hence, we have the following theorem:

Theorem 1. {M, M̂} interpolates {α(s), α̂(s)} as common asymptotic Bertrand curves if and
only if

x(s, t0) = y(s, t0) = 0,
yt(s, t0) 6= 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L,

}
(11)

For the intents of facilitation and inspection, we also address the situation when a(s, t)
and b(s, t) can be offered in two factors [6]:

x(s, t) = l(s)X(t),
y(s, t) = m(s)Y(t).

(12)

Here, l(s), m(s), X(t), and Y(t) are C1 functions that do not identically vanish. Then, from
Theorem 1, we gain
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Corollary 1. {M, M̂} interpolates {α(s), α̂(s)} as common asymptotic Bertrand curves if and
only if

X(t0) = Y(t0) = 0, l(s) = const. 6= 0, m(s) = const. 6= 0,
dY(t0)

dt = const. 6= 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

}
(13)

To achieve {M, M̂} interpolating {α(s), α̂(s)}, we can first layout the marching-scale
functions in Equation (13) and then employ them to Equations (5) and (6) to derive the
parameterization. For suitability in application, the x(s, t) and y(s, t) can be moreover
forced to be in extra limited forms and still influence sufficient degrees of freedom to specify
{M, M̂} interpolating {α(s), α̂(s)} as common asymptotic Bertrand curves. Therefore, let us
assume that x(s, t) and y(s, t) can be displayed in two different forms:

(1) If we choose 
x(s, t) =

p
Σ

k=1
a1kl(s)kX(t)k,

y(s, t) =
p
Σ

k=1
b1km(s)kY(t)k,

(14)

we can naturally indicate that the sufficient condition for {α(s), α̂(s)} is asymptotic
curves on the surfaces family {M, M̂} as{

X(t0) = Y(t0) = 0,
b11 6= 0, m(s) 6= 0, and dY(t0)

dt = const. 6= 0,
(15)

where l(s), m(s), A(t), B(t) ∈ C1, aij, Bij ∈ R (i = 1, 2; j = 1, 2, . . . , p), and l(s) and
m(s) are not identically zero.

(2) If we choose 
x(s, t) = f (

p
Σ

k=1
a1klk(s)Xk(t)),

y(s, t) = g(
p
Σ

k=1
b1kmk(s)Bk(t)),

(16)

then {
X(t0) = B(t0) = f (0) = g(0) = 0,

b11 6= 0, dB(t0)
dt = const 6= 0, m(s) 6= 0, g

′
(0) 6= 0,

(17)

where l(s), m(s), X(t), Y(t) ∈ C1, aij, bij ∈ R (i = 1, 2; j = 1, 2, . . . , p), and l(s) and
m(s) are not identically zero. Since there are no constraints joined to the specified curve
in Equations (13), (15) or (17), the set {M̂, M} interpolating {α̂(s), α(s)} as common
asymptotic Bertrand curves can permanently be offered by choosing appropriate
marching-scale functions.

Example 1. Let α(s) be a helix defined by

α(s) = (
1√
2

cos s,
1√
2

sin s,
s√
2
), 0 ≤ s ≤ 2π.

Then,
υ1(s) = 1√

2
(− sin s, cos s, 1),

υ2(s) = (− cos s,− sin s, 0),
υ3(s) = 1√

2
(sin s,− cos s, 1).


The surface family M specified by Equation (5) is

M : y(s, t) = (
1√
2

cos s,
1√
2

sin s,
s√
2
) + (x(s, t), y(s, t), 0)

 −
1√
2

sin s 1√
2

cos s 1√
2

− cos s − sin s 0
1√
2

sin s − 1√
2

cos s 1√
2

,
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where −1 ≤ t ≤ 1, and 0 ≤ s ≤ 2π. If f =
√

2 in Equation (2), then

α̂(s) := α(s) +
√

2υ̂2(s) = (− 1√
2

cos s,− 1√
2

sin s,
s√
2
),

and
υ̂1(s) = 1√

2
(sin s,− cos s, 1),

υ̂2(s) = (cos s, sin s, 0),
υ̂3(s) = 1√

2
(− sin s, cos s, 1).


The surface family M̂ displayed by Equation (6) is

M̂ : ŷ(s, t) = (− 1√
2

cos s,− 1√
2

sin s,
s√
2
) + (x(s, t), y(s, t), 0)


sin s√

2
− cos s√

2
−1√

2
cos s sin s 0
− sin s√

2
cos s√

2
1√
2

.

(1) Choosing x(s, t) = βt, y(s, t) = γt, β, γ ∈ R, γ 6= 0, and t0 = 0, then Equation (13) is
satisfied, where −1 ≤ t ≤ 1, and 0 ≤ s ≤ 2π. For β = γ = 1 the {M, M̂} is displayed
in Figure 1. The blue curve represents α̂(s) on M̂, and the green curve is α(s) on M.

6

Then,
�1(s) =

1p
2
(� sin s; cos s; 1);

�2(s) = (� cos s;� sin s; 0);
�3(s) =

1p
2
(sin s;� cos s; 1):

9>=>;
The surface family M speci�ed by Eq. (3.1) is

M : y(s; t) = (
1p
2
cos s;

1p
2
sin s;

sp
2
) + (x(s; t); y(s; t); 0)

0B@ � 1p
2
sin s 1p

2
cos s 1p

2

� cos s � sin s 0
1p
2
sin s � 1p

2
cos s 1p

2

1CA ;
where �1 � t � 1, and 0 � s � 2�. If f =

p
2 in Eq. (2.2), then

b�(s) := �(s) +p2b�2(s) = (� 1p
2
cos s;� 1p

2
sin s;

sp
2
);

and b�1(s) = 1p
2
(sin s;� cos s; 1);b�2(s) = (cos s; sin s; 0);b�3(s) = 1p
2
(� sin s; cos s; 1):

9>=>;
The surface family cM displayed by Eq. (3.2) is

cM : by(s; t) = (� 1p
2
cos s;� 1p

2
sin s;

sp
2
) + (x(s; t); y(s; t); 0)

0B@
sin sp
2

� cos sp
2

�1p
2

cos s sin s 0
� sin sp

2
cos sp
2

1p
2

1CA :
1) Choosing x(s; t) = �t, y(s; t) = 
t, �; 
 2 R, 
 6= 0, and t0 = 0, then Eqs. (3.9) is

satis�ed; where �1 � t � 1, and 0 � s � 2�. For � = 
 = 1 the {M , cM} is displayed in
Figure 1. The blue curve represents b�(s) on cM , and the green curve is �(s) on M .

Fig. 1. M [ cM with � = 
 = 1.Figure 1. M ∪ M̂ with β = γ = 1.

(2) By choosing x(s, t) = 0, y(s, t) = 1− cos t Equation (15) is satisfied, where−π ≤ s, t ≤ π.
The corresponding {M, M̂} is displayed in Figure 2. The blue curve represents α̂(s) on M̂,
and the green curve is α(s) on M.

7

2) By choosing x(s; t) = 0; y(s; t) = 1 � cos t Eq. (3.11) is satis�ed; where �� � s; t � �.
The corresponding {M , cM} is displayed in Figure 2. The blue curve represents b�(s) oncM;and the green curve is �(s) on M .

Fig. 2. M [ cM with x(s; t) = 0; y(s; t) = 1� cos t.

3) By choosing

x(s; t) = sin(
4

�
k=1
akt

ksk);

y(s; t) =
4

�
k=1
bkt

ksk;

9>=>;
where �:5 � t � :5, and 0 � s � 2�, t0 = 0, ak, bk 2 R then Eqs. (3.13) are satis�ed.
For ak = bk = 0:001, the corresponding {M , cM} is displayed in Figure 3. The blue curve
represents b�(s) on cM; and the green curve is �(s) on M .

Fig. 3. M [ cM .
Bear in mind that we could go on with this series of surfaces, by selecting yet one more

amalgamation of distinctive curve, or number of curves to interpolate.

Figure 2. M ∪ M̂ with x(s, t) = 0, y(s, t) = 1− cos t.

(3) By choosing

x(s, t) = sin(
4
Σ

k=1
aktksk),

y(s, t) =
4
Σ

k=1
bktksk,


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where −0.5 ≤ t ≤ 0.5ȧnd 0 ≤ s ≤ 2π, t0 = 0, ak, bk ∈ R, then Equation (17) is satisfied.
For ak = bk = 0.001, the corresponding {M, M̂} is displayed in Figure 3. The blue
curve represents α̂(s) on M̂, and the green curve is α(s) on M.

7

2) By choosing x(s; t) = 0; y(s; t) = 1 � cos t Eq. (3.11) is satis�ed; where �� � s; t � �.
The corresponding {M , cM} is displayed in Figure 2. The blue curve represents b�(s) oncM;and the green curve is �(s) on M .

Fig. 2. M [ cM with x(s; t) = 0; y(s; t) = 1� cos t.

3) By choosing

x(s; t) = sin(
4

�
k=1
akt

ksk);

y(s; t) =
4

�
k=1
bkt

ksk;

9>=>;
where �:5 � t � :5, and 0 � s � 2�, t0 = 0, ak, bk 2 R then Eqs. (3.13) are satis�ed.
For ak = bk = 0:001, the corresponding {M , cM} is displayed in Figure 3. The blue curve
represents b�(s) on cM; and the green curve is �(s) on M .

Fig. 3. M [ cM .
Bear in mind that we could go on with this series of surfaces, by selecting yet one more

amalgamation of distinctive curve, or number of curves to interpolate.

Figure 3. M ∪ M̂.

Bear in mind that we could go on with this series of surfaces by selecting yet one more
amalgamation of a distinctive curve or number of curves to interpolate.

Ruled Surfaces Family with Common Asymptotic Curves

A ruled surface is a special surface created by a continual movable of a line (ruling) on
a curve, which acts as the base curve. In this subsection, we address the establishment of
the ruled surfaces family with common asymptotic Bertrand curves. To relax the search, let
us consider that α̂(s) is a unit speed curve. Suppose that ŷ(s, t) is a ruled surface with the
base α̂(s), and α̂(s) is also an isoparametric curve of ŷ(s, t), then there exists t0 such that
ŷ(s, t0) = α̂(s). This shows that the surface can be appointed by

M̂ : ŷ(s, t)− ŷ(s, t0) = (t− t0)ĝ(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T],

where ĝ(s) is a unit vector specifying the orientation of the rulings. Via the Equation (6),
we have

(t− t0)ĝ(s) = x(s, t)υ̂1(s)+ y(s, t)υ̂2(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T], (18)

which is a system of two equations with two anonymous functions, x(s, t) and y(s, t). To
solve the functions x(s, t) and x(s, t), we have

x(s, t) = (t− t0) < ĝ, υ̂1 >= (t− t0)det(ĝ, υ̂2, υ̂3),
y(s, t) = (t− t0) < ĝ, υ̂2 >= (t− t0)det(ĝ, υ̂3, υ̂1).

(19)

Equation (19) is exactly the necessary and sufficient conditions for ŷ(s, t) to be a ruled surface.
In view of Theorem 1, if the curve α̂(s) is too much of an asymptotic curve on the surface
ŷ(s, t), then det(ĝ, υ̂3, υ̂1) 6= 0. Thus, at any point on the curve α̂(s), the ruling guidance
ĝ(s) ∈ Sp{υ̂1, υ̂2}. Furthermore, the vectors ĝ(s) and υ̂1(s) must not be parallel. This leads to

ĝ(s) = γ(s)υ̂1(s) + β(s)υ̂2(s), β(s) 6= 0, 0 ≤ s ≤ L, (20)

for the real function β(s) 6= 0, and γ(s). Applying it to the Equation (19), we obtain

γ(s)t = x(s, t), β(s)t = y(s, t), β(s) 6= 0, 0 ≤ s ≤ L. (21)

Then, the ruled surface family with the common asymptotic α̂(s) can be specified as

M̂ : ŷ(s, t) = α̂(s) + t(γ(s)υ̂1(s) + β(s)υ̂2(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T, (22)
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where γ(s), and β(s) 6= 0. However, the normal vector to M̂ along the curve α̂(s) is

ζ̂(s, t0) = β(s)υ̂3(s), (23)

which shows that α̂(s) is an isoasymptotic curve on M̂. Then, the upcoming theorem can
be stated.

Theorem 2. The ruled surfaces family {M, M̂} interpolates {α(s), α̂(s)} as common asymptotic
Bertrand curves if and only if there exists a parameter t0 ∈ [0, T] and the functions α(s), β(s) 6= 0,
so that M̂ and M, respectively, are parameterized by Equation (23) and

M : y(s, t) = α(s) + t(α(s)υ1(s) + β(s)υ2(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T. (24)

It must be pointed out in Equations (22) and (24) that there exist two asymptotic curves
crossing via all points on the curve α̂(s)(α(s)); one is α̂ itself, and the other is a line in the guidance
ĝ(s), as given in Equation (21). Every constituent of the isoparametric ruled surface family with
the common asymptotic α̂ is established by two set functions, α(s) and β(s) 6= 0.

Example 2. In view of Example 1, we have the following:

(1) If α(s) = 0, β(s) = 1, the ruled surfaces family {M, M̂} interpolates {α(s ), α̂(s)} as common
asymptotic Bertrand curves, as in (Figure 4):{

M : y(s, t) = ( 1√
2

cos s + t√
2

sin s, 1√
2

sin s− t√
2

cos s, s√
2
+ t√

2
),

M̂ : ŷ(s, t) = (−1√
2

cos s− t√
2

sin s, −1√
2

sin s + t√
2

cos s, s√
2
+ t√

2
),

where −0.5 ≤ t ≤ 0.5 and 0 ≤ s ≤ 2π. The blue curve clarifies α̂(s) on M̂, and the green
curve is α(s) on M.

Figure 4. M ∪ M̂.

(2) If α(s) = β(s) = 1, the ruled surfaces family {M, M̂} interpolates {α(s), α̂(s)} as common
asymptotic Bertrand curves, as in (Figure 5):{

M : y(s, t) = ( 1√
2

cos s, 1√
2

sin s, s√
2
+
√

2t),

M̂ : ŷ(s, t) = (−1√
2

cos s, −1√
2

sin s, s√
2
+
√

2t),

where −0.5 ≤ t ≤ 0.5, and 0 ≤ s ≤ 2π. The blue curve clarifies α̂(s) on M̂, and the green
curve is α(s) on M.
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Theorem 3.2. The ruled surfaces family {M , cM} interpolates {�(s), b�(s)} as com-
mon asymptotic Bertrand curves if and only if there exist a parameter t0 2 [0; T ] and the
functions �(s), �(s) 6= 0, so that cM and M , respectively, parametrized by Eq. (3.19) and

M : y(s; t) = �(s) + t(�(s)�1(s) + �(s)�2(s)); 0 � s � L; 0 � t � T: (3.20)

It must be pointed out in Eq. (3.18)((3.20)), there exist two asymptotic curves crossing

via all points on the curve b�(s)(�(s)) one is b� itself and the other is a line in the guidancebg(s) as given in Eq. (3.17). Every constituent of the isoparametric ruled surface family
with the common asymptotic b� is established by two set functions �(s); �(s) 6= 0.
Example 3.2. In view of Example 3.1, we have
1) If �(s) = 0; �(s) = 1, the ruled surfaces family {M , cM} interpolates {�(s ), b�(s)} as
common asymptotic Bertrand curves as in (Figure 4):(

M : y(s; t) = ( 1p
2
cos s+ tp

2
sin s; 1p

2
sin s� tp

2
cos s; sp

2
+ tp

2
);cM : by(s; t) = (�1p

2
cos s� tp

2
sin s; �1p

2
sin s+ tp

2
cos s; sp

2
+ tp

2
);

where �0:5 � t � 0:5 and 0 � s � 2�. The blue curve clari�es b�(s) on cM and the green

curve is �(s) on M .

2) If �(s) = �(s) = 1, the ruled surfaces family {M , cM} interpolates {�(s), b�(s)} as
common asymptotic Bertrand curves as in (Figure 5):(

M : y(s; t) = ( 1p
2
cos s; 1p

2
sin s; sp

2
+
p
2t);cM : by(s; t) = (�1p

2
cos s; �1p

2
sin s; sp

2
+
p
2t);

where �0:5 � t � 0:5, and 0 � s � 2�. The blue curve clari�es b�(s) on cM and the green

curve is �(s) on M .

Fig. 5. M [ cM .Figure 5. M ∪ M̂.

(3) If α(s) = −1, β(s) = 2, the ruled surfaces family {M, M̂} interpolates {α(s), α̂(s)} as
common asymptotic Bertrand curves, as in (Figure 6):{

M : y(s, t) = ( 1√
2

cos s + 3t√
2

sin s, 1√
2

sin s− 3t√
2

cos s, s√
2
+ t√

2
),

M̂ : ŷ(s, t) = (− 1√
2

cos s− 3t√
2

sin s, 1√
2
− sin s + 3t√

2
cos s, s√

2
+ t√

2
),

where −0.5 ≤ t ≤ 0.5, and 0 ≤ s ≤ 2π. The blue curve clarifies α̂(s) on M̂, and the green
curve is α(s) on M.

10

3) If �(s) = �1, �(s) = 2, the ruled surfaces family {M , cM} interpolates {�(s), b�(s)} as
common asymptotic Bertrand curves as in (Figure 6):(

M : y(s; t) = ( 1p
2
cos s+ 3tp

2
sin s; 1p

2
sin s� 3tp

2
cos s; sp

2
+ tp

2
);cM : by(s; t) = (� 1p

2
cos s� 3tp

2
sin s; 1p

2
� sin s+ 3tp

2
cos s; sp

2
+ tp

2
);

where �0:5 � t � 0:5, and 0 � s � 2�. The blue curve clari�es b�(s) on cM;and the green
curve is �(s) on M .

Fig. 6. M [ cM .
4. Conclusion

In this paper, we introduced the notions of surfaces family with common asymptotic

curves in Euclidean 3-space E3. Subsequently, the outcome for the ruled surfaces family
with common asymptotic curves is also deduced. As applications of our main results, some

examples are given to construct the surfaces family and ruled surfaces family with common

Bertrand asymptotic curves. Hopefully, these results will be advantageous to the work

in computer-aided manufacture and those exploring the manufacturing. There are many

opportunities for further work. The authors plans to register the study in di¤erent spaces

and examining the classi�cation of singularities as reported in [17-19].

4.1. Con�ict of Interest

The authors declare that they have no con�ict.

Bibliography

[1] M.P. Do Carmo. Di¤erential Geometry of Curves and Surfaces, Prentice-Hall, Engle-

wood Cli¤s, New Jersey 1976.

[2] M.A. Spivak. Comprehensive Introduction to Di¤erential Geometry, 2nd Ed., Publish

or Perish, Houston, 1979.

Figure 6. M ∪ M̂.

4. Conclusions

In this paper, we introduced the notions of surfaces family with common asymptotic
curves in Euclidean 3space E3. Subsequently, the outcome for the ruled surfaces family
with common asymptotic curves is also deduced. As applications of our main results,
some examples are given to construct the surfaces family and ruled surfaces family with
common Bertrand asymptotic curves. Hopefully, these results will be advantageous to the
work in computer-aided manufacture and those exploring manufacturing. There are many
opportunities for further work. The authors plans to register the study in different spaces
and examine the classification of the singularities reported in [17–19].
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