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Abstract: This research introduces an algorithm that automatically detects five primary emotions in
individuals with Down syndrome: happiness, anger, sadness, surprise, and neutrality. The study
was conducted in a specialized institution dedicated to caring for individuals with Down syndrome,
which allowed for collecting samples in uncontrolled environments and capturing spontaneous
emotions. Collecting samples through facial images strictly followed a protocol approved by certified
Ethics Committees in Ecuador and Colombia. The proposed system consists of three convolutional
neural networks (CNNs). The first network analyzes facial microexpressions by assessing the intensity
of action units associated with each emotion. The second network utilizes transfer learning based on
the mini-Xception architecture, using the Dataset-DS, comprising images collected from individuals
with Down syndrome as the validation dataset. Finally, these two networks are combined in a CNN
network to enhance accuracy. The final CNN processes the information, resulting in an accuracy
of 85.30% in emotion recognition. In addition, the algorithm was optimized by tuning specific
hyperparameters of the network, leading to a 91.48% accuracy in emotion recognition accuracy,
specifically for people with Down syndrome.

Keywords: convolutional neural network; microexpressions; Down syndrome; transfer learning

1. Introduction

Human beings need to interact with the world around them through communication,
emotions being a crucial point when establishing and maintaining social relationships.
Recognizing someone’s emotions allows us to understand what has not been said, even
leading to adjustments in how we respond or behave. This allows us to support ourselves
to infer the next behaviors or actions of another person positively [1].

In the case of people with Down syndrome (DS), communication is a complex process
due to linguistic problems derived from cognitive, affective, and social elements [2]. The
emotions of this group of people are not controlled and inhibit their behavior, or they can
also manifest it effusively due to problems in mental control and self-regulation [3,4].

Advances in artificial intelligence have allowed these techniques to be applied to
people with Down syndrome, especially focused on the detection of the syndrome, based
on studies carried out on mothers since pregnancy [5]. Where their studies focus on the face
of this group of people [6] based on images that allow calculating measurements between
specific facial points [5,7,8], in some cases these processes use neural networks [9]. In other
cases, authors such as Zhao use a combination of textures and geometric points to identify
Down syndrome [10].

Within the field of facial expression recognition (FER), with human–computer interaction
and health care [11] where people with Down syndrome are involved, this study is more
relevant if it is carried out in real time. FER recognition for emotions focuses on basic
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expressions such as anger, disgust, fear, happiness, neutrality, sadness, and surprise [12,13],
where one of the main methods used is deep learning (DL). Within this, we have convolution
neural networks that currently play a fundamental role in image classification applications [13].

Several investigations were conducted using CNN for emotion recognition with
different approaches, such as G. Yang et al. [14] introducing a deep neural network (DNN)
model that inputs vectorized facial features. This model demonstrates an accuracy of
84.33% in predicting various emotions. Similarly, Liu et al. [15] employed a two-layer
fer2013 and CNN dataset to classify facial emotions. They compared their model with four
existing models and achieved a test accuracy of 49.8%. Pranav [16] proposed a two-layer
convolutional network model for facial emotion recognition. This model utilizes an Adam
optimizer to minimize the loss function and achieves an accuracy of 78.04% when tested.

On the topic of facial analysis, microexpressions have received significant attention.
Bishay [17] conducted a study investigating the utilization of various convolutional neural
networks to detect action units (AUs). The study compared ten CNNs, including ResNet,
VGG, and DenseNet. The findings indicated that the choice of CNN depends on the specific
AU under consideration. The research explores the detection of microexpressions while
considering the appropriate CNN for each scenario. In a different vein, Hammal [18] focused
on action units in infants, which present unique challenges due to reduced facial texture and
frequent rapid facial movements. The study employed a multi-label convolutional neural
network and tested it on 86 babies during tasks designed to elicit pleasure and frustration.
More than 230,000 frames were manually coded using a Baby FACS extension to establish
ground reality. The CNN achieved results comparable to the manual coding performed by
the FACS validation Kappa system, with Kappa scores ranging from 0.69 to 0.93.

Considering these works previously reviewed, it is observed that the use of convolu-
tional neural networks used for emotion recognition has been widely used for some years.
But, one of the challenges of deep learning techniques is the large amount of data [19]
necessary to achieve good results in facial recognition, which is one of the main drawbacks
in the case of vulnerable groups such as people with Down syndrome. In addition, it is
a limitation to being able to analyze the FER of people with DS applying DL techniques.
The number of samples is challenging for people from vulnerable groups and people of
typical development. In the case of this last group, “learning by transfer” has been used to
compensate for this inconvenience [19] caused by the number of samples required to use
DL techniques.

According to Yen, transfer learning means that through a previously trained model on
a new task, knowledge from the trained model is “transferred” to the pre-trained model,
reducing hardware requirements and costs and increasing the accuracy of the system [19,20].

The emotion recognition algorithm in people with Down syndrome presented in this
proposal is part of an investigation that works with people with DS who attend special
education institutions to support their daily activities in this institution. Emotions being
the pillar of this study and constituting the basis for defining the achievements of people
with DS within their daily activities, an algorithm proposal designed for people with
DS is presented, based on the hand on analysis of facial characteristics of this group of
people, which is based on microexpressions through action units (AU) [21,22] through
a CNN architecture. On the other hand, “transfer learning” is carried out based on an
architecture previously analyzed in a study [22] In this study, people showed their emotions
in real time; as our study presented, the emotions shown by subjects with Down syndrome
are spontaneous in their daily activities. Finally, these two architectures converge in a
final CNN that makes it possible to obtain the prediction of the emotions of people with
Down syndrome.

This work makes several significant contributions. First, it presents an algorithm for
emotion recognition explicitly designed for people with Down syndrome, using facial
features unique to this population. The algorithm is an integral component of a broader
tool designed for implementation in therapeutic processes involving people with Down
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syndrome. Its primary goal is to accurately identify the emotions experienced by children
participating in these therapy sessions.

To achieve this objective, collaboration with a reputable institution specializing in
children with disabilities was established. Faiyaz Doctor [23] asserts that incorporating
emotions into therapeutic practices enhances outcomes and boosts the immune system.
Consequently, this algorithm equips therapists with valuable insights into the emotional
states of children with DS, enabling them to develop effective strategies to facilitate the
completion of assigned activities.

In summary, the key contributions of this work include the development of an emotion
recognition algorithm tailored to individuals with Down syndrome and its integration into a
therapeutic tool used during sessions with children. By leveraging this algorithm, therapists
can better understand the emotions of their patients, leading to improved therapeutic
outcomes and the formulation of targeted strategies.

In this work, Section 1 shows a compilation of research on the importance of emotions in
the daily life of people with typical development, and in people with DS, papers are presented
where machine learning and deep learning techniques have been used for DS detection.
Section 2 shows the methodology applied in this research. Section 3 presents the results
obtained, and a sample taken at the institution participating in the research with the proposed
algorithm working is presented. Finally, Section 4 presents the conclusions and discussion.

2. Materials and Methods

People with Down syndrome exhibit distinctive facial features. This article introduces
an algorithm designed to accurately recognize five primary emotions (anger, happiness,
sadness, surprise, and neutrality) in individuals with Down syndrome. The proposed
algorithm employs a composition of three convolutional neural networks. The first two
networks were previously evaluated in a study conducted by the authors and published
in Paredes’ research [22]. These networks analyze facial microexpressions, focusing on
the intensity of action units. The second network utilizes transfer learning based on the
mini-Xception architecture. As part of the ongoing research, the authors propose combining
these two networks into a single CNN to enhance emotion recognition accuracy.

2.1. Dataset

The research utilized a dataset compiled from 8- to 12-year-old Down syndrome
students at a special education institution. The acquisition of data adhered to protocols
approved by the Ethics Committees in Ecuador and Colombia. The dataset includes
1200 images of children displaying spontaneous emotions with their therapist or tutor
during daily activities.

Figure 1 presented the dataset that was categorized according to various emotions:
250 were angry, 300 were happy, 200 were sad, 150 were surprised, and 300 were neutral.
Horizontal flipping and rotation (ranging from −60 to 60 degrees) were used for data
augmentation purposes in order to balance the dataset. This augmented dataset, designated
Dataset-DS and depicted in Figure 2, will be utilized in the proposed method described in
Sections 2.2 and 2.3.
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Figure 2. Balanced Dataset-DS.

2.2. Analysis of Techniques for Recognizing Emotions in People with DS

This section summarizes the key findings from the authors’ previous research [22].
This work is primarily focused on analyzing the action units (AUs) observed in the facial
expressions of individuals with Down syndrome. The intensity levels of AUs in the upper
and lower parts of the face were examined using OpenFace (CNN). To detect these intensity
levels, the research aimed to identify the most representative AUs for people with Down
syndrome across five emotions. Table 1 displays these results, highlighting the significant
AUs associated with happiness, sadness, anger, surprise, and neutrality in individuals with
Down syndrome.

Table 1. Relevant action units present in the emotions of people with Down syndrome [22].

Expression AUs

Anger 4, 9, 15, 17

Happiness 6, 7, 10, 12, 14, 20

Sadness 1, 4, 6, 7, 9, 12, 15, 17, 20

Surprise 1, 2, 5, 25, 26

Neutral 2, 5
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Multiple machine learning techniques were assessed to identify emotions in indi-
viduals with Down syndrome, with the best performance achieved using support vector
machines (SVM) with an accuracy of 66.20%. Transfer learning was explored utilizing
the mini-Xception architecture (a convolutional neural network) to further improve the
outcomes attained through machine learning techniques. In this work, the Dataset-DS was
utilized as described in Section 2.1. This dataset was incorporated into the pre-trained
mini-Xception architecture as a test data block. The system then determined the recognized
emotion by selecting the prediction with the highest value. Consequently, the architecture
achieved a 74.8% accuracy in emotion recognition.

Figure 3 shows the diagram of the transfer learning architecture used in [22], using a
CNN network (mini-Xception). This trained system effectively transfers the knowledge
acquired to recognize emotions, specifically in people with Down syndrome. In other words,
the figure shows that both the mini-Xception trained model and the transfer learning system
enter an image showing the emotion of happiness, obtaining at the end of the model the
emotion “happiness

√
”.
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2.3. Improving the Recognition of Emotions for People with DS

In this phase, we present an algorithm proposed for recognizing facial expressions in
people with Down syndrome. This section presents an architecture of three convolutional
neural networks based on the first part of the analysis made in Section 2.2 of this document.

Our approach involves utilizing a convolutional neural network called OpenFace. This
CNN enables us to extract the action units associated with different emotions. With this
information, we evaluate the significance of each AU within the specific emotion being analyzed.
Our objective is to identify the most pertinent AUs strongly linked to emotions in individuals
with Down syndrome. This analysis aims to gain insights into the specific AUs that play a crucial
role in expressing emotions among people with DS. According to Baltrušaitis [24], OpenFace is
an open source facial recognition system. The architecture of OpenFace combines deep learning
and computer vision techniques and is structured as follows:

• Feature Extraction: OpenFace employs a convolutional neural network to extract facial
features from an image. This CNN is trained explicitly for facial recognition and can
accurately detect and locate key facial landmarks such as the eyes, nose, and mouth;
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• Feature Embedding: Once the facial features are extracted, OpenFace stores them
in a high-dimensional vector space. Each face is represented as a numeric vector,
commonly called an “inlay,” which captures the unique facial characteristics;

• Feature Comparison: To perform facial recognition, OpenFace compares the feature
vectors of an individual’s face with the vectors stored in a database. It utilizes similarity
measures, such as Euclidean distance or dot product, to determine the degree of
similarity between the vectors and whether the faces belong to the same person.

Amos [25] points out that OpenFace, the facial recognition system he developed,
operates in real time, providing high accuracy and fast training times. The training and
inference processes of neural networks in OpenFace are implemented using Torch, Lua,
and LuaJIT. In addition, the Python library is used, with numpy for matrix operations and
linear algebra, OpenCV for computer vision primitives, and scikit-learn for classification
tasks. OpenFace’s architecture is based on FaceNet, a popular facial recognition model.
A dataset of 500,000 images is used to train the system, allowing OpenFace to learn and
generalize from a large amount of visual data.

OpenFace employs a modified version of FaceNet’s nn4 network, which effectively
reduces the number of parameters, leading to a more efficient and data-friendly model. For
a complete overview of the neural network model in OpenFace, see Table 2. Each row in
the table corresponds to a specific layer within the neural network. Each of the inception
layers is detailed in Santoso [26].

Table 2. Network definition of OpenFace.

Type

conv1 (7 × 7 × 3, 2)

max pool + norm

inception (2)

norm + max pool

inception (3a)

inception (3b)

inception (3c)

inception (4a)

inception (4e)

inception (5a)

inception (5b)

avg pool

Linear

`2 normalization

OpenFace is a versatile software that can handle various input types, including real-time
video data from web cameras, recorded video files, image sequences, and single images. It
also offers the capability to save the processed data outputs, such as facial landmarks, shape
parameters, head pose, action units, and gaze vectors, into CSV files. These results are crucial
as they serve as inputs for neural networks in subsequent workflow stages.

In our case, we focus on five emotions and utilize the relevant action units identified
through analysis. However, specific AUs, namely, AU23, AU28, and AU45, were found to
be insignificant in representing the emotions of individuals with Down syndrome based
on the analysis conducted in [22], and thus are excluded from the subsequent neural
network processing.

The second neural network applies the transfer learning approach using the pre-
trained mini-Xception architecture initially trained on the FER2013 dataset. Some authors
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mention [27–29] that the mini-Xception architecture is specifically designed for tasks such
as image classification, and its structure is as follows:

• Input Blocks: The network begins with a convolutional layer that processes the input image
and extracts initial features. It utilizes a small filter size and a low number of channels;

• Parallel Convolution Blocks: The architecture employs a series of parallel convolution
blocks. These blocks consist of depth-separable convolution layers followed by normaliza-
tion and activation layers. This configuration enables more efficient feature representation
and reduces the number of parameters compared to standard convolutions;

• Reduce Blocks: Following the parallel convolution blocks, reduced blocks decrease the
spatial resolution of features and reduce their dimensionality. These blocks typically consist
of a convolutional layer followed by spatial subsampling, such as pooling operations;

• Global Pooling Layer: A global pooling layer is applied, further reducing the dimen-
sionality of the features;

• Fully Connected Layers: The architecture incorporates fully connected layers specific
to the task, such as classification. These layers usually combine convolutional and
activation layers, culminating in an output layer with some units corresponding to the
output classes or categories.

Mini-Xception architecture belongs to the renowned Xception family of architectures.
As described by Arriaga [30], mini-Xception reduces the number of parameters compared to
its counterpart, Xception, while effectively performing face detection, gender classification,
and emotion classification in a single step.

Figure 4 [29] represents the mini-Xception architecture, showcasing its distinctive
features. Notably, mini-Xception eliminates connection layers and incorporates depth-
separable convolutions and residual modules, enhancing the model’s efficiency and perfor-
mance. The ADAM optimizer is employed to optimize the training process.
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Introducing these advancements in mini-Xception allows for streamlined and simulta-
neous execution of multiple tasks, making it a valuable architecture for facial
analysis applications.

This methodology applies transfer learning to the Dataset-SD, which comprises images
of individuals with Down syndrome. By incorporating this dataset as a test data block
into the mini-Xception model, we achieved an accuracy of 74.8%. This strategy improves
emotion recognition, particularly sadness, and anger, by 11% and 14%, respectively, as
mentioned in the previous analysis.

The analysis presented in [22], carried out by the researchers, focused on evaluating the
behavior of people with Down syndrome and their emotional expressions. This evaluation
led to the creation of Table 1, which highlights this group’s most relevant and typical action
units. However, when these AUs were analyzed using machine learning techniques, the
accuracy of emotion recognition among people with Down syndrome peaked at 66.20%.
In particular, the accuracy for identifying sadness and anger was relatively low, at 30.80%
and 42.30%, respectively.

To improve emotion identification in people with Down syndrome, transfer learn-
ing using the mini-Xception architecture was employed. This architecture was selected
based on a study by Paredes [22]. Transfer learning used validation data obtained from
samples of people with Down syndrome. This study significantly improved recognition
of critical emotions such as sadness and anger, reaching accuracy rates ranging from
41% to 66.7%, respectively.

Considering the results of both analyses, it was decided to combine the intensities
obtained from each AU—from the relevant and specific action units of people with Down
syndrome with the results obtained through the transfer learning system—which are the
values given by the model to each emotion studied, with these values being the ones that
enter the final CNN. This approach aimed to improve emotion identification, particularly
for the two emotions with the lowest accuracy. A final CNN network was used to achieve
this, resulting in an improved accuracy rate of 83.53% for sadness and 87.41% for anger.
It is essential to emphasize the focus on these emotions because the existing literature
suggests that detecting negative emotions in people with Down syndrome is a highly
complex task [31].

A third convolutional neural network is implemented to enhance the accuracy of the
previous inference systems. The results obtained from the two CNNs mentioned above
are integrated into a final convolutional neural network, enabling a more precise analysis
of emotions within the Dataset-DS. This CNN consists of 4 residual blocks, as shown in
Figure 5. Each block contains two sets of causal convolution layers dilated with the same
dilation factor, followed by spatial normalization layers, ReLU activation, and dropout.
The network adds the input of each block to the output of the block (including a 1-by-1
convolution on the input when the number of channels between the input and output does
not match) and applies a final activation function. Our final CNN has four of these residual
blocks in series, each with twice the dilation factor of the previous layer, starting with a
dilation factor of 1. We specify 64 filters for the 1D convolutional layers for the residual
blocks, with a filter size of 5 and a dropout factor of 0.005 for the spatial dropout layers.

The proposed architecture scheme, depicted in Figure 6, illustrates the flow of Dataset-
DS databases in OpenFace CNN and transfer learning using the mini-Xception architecture.
The Dataset-DS is inputted into the latter architecture. The outputs of these two CNNs then
enter the final convolutional neural network to obtain the desired results.
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2.4. Analysis of Ablation in the Proposed Neural Network

In order to understand the individual contributions of each component to the perfor-
mance of the proposed model, an ablation study was conducted on the neural network
described in this research. The study systematically turned off specific system components
and evaluated their impact on the overall model performance.

Figure 7 presents the confusion matrix of the architecture when disconnecting the
CNN network in charge of identifying the action units (the blue background highlights
those results from the rest of the other values. And other background does not represent a
particular value). When this network was disconnected, the total accuracy of the model
was found to be 79.6%. The results indicated an improvement of 8.49% in recognizing
anger and 3.26% in recognizing neutral expressions. However, the accuracy in recognizing
happiness, sadness, and surprise decreased by 3.3%, 2%, and 26.31%, respectively.
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In addition, the study examined the effects of disconnecting the learning transfer
network, shown in Figure 8 (the blue background highlights those results from the rest
of the other values. And other background does not represent a particular value). This
resulted in a precision of 79.1% for the model. Disconnecting this network led to a notable
improvement of 12.34% in recognizing anger, but it also resulted in decreased precision for
happiness (4.28%), sadness (1.72%), and surprise (23.95%) recognition.
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The results of this ablation study confirm the substantial contributions of each com-
ponent to the overall performance of the total model. Turning off the CNN network
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reduced the model’s accuracy but positively impacted the recognition of anger and neutral
expressions. On the other hand, disconnecting the learning transfer network improved
anger recognition but adversely affected the recognition of happiness, sadness, and sur-
prise. Through this systematic analysis, the researchers gained valuable insights into the
importance of each component in achieving optimal performance in the proposed model.

3. Results

The architecture depicted in Figure 6 has enhanced the system’s performance based
on previous evaluations. This advancement is evident in the achieved system accuracy of
85.30%, as illustrated by the confusion matrix in Figure 9 (the blue background highlights
those results from the rest of the other values. And other background does not represent
a particular value). The algorithm proposed in this article demonstrates a substantial
improvement of 10.50% compared to the authors’ previous analysis, where they attained
an accuracy of 74.8%.
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Figure 9. Proposal to improve the recognition of emotions for people with DS.

Hyperparameter Tuning

According to Echeverri [33], hyperparameters are predefined values assigned to param-
eters by the algorithm designer, which define the configuration of the architecture used in
research. The selection of appropriate hyperparameters plays a crucial role in CNN’s ability
to recognize patterns and improve the accuracy and efficiency of the architecture [33,34].

The selection of appropriate hyperparameters is crucial for optimizing the performance
of a CNN, as it can enhance pattern recognition, accuracy, and efficiency. We adjusted the
hyperparameters, evaluating the model’s performance with all possible combinations. The
objective was to find the optimal configuration that maximizes the CNN’s performance.
In this study, we analyzed the following hyperparameters:

• Filter size: The filter size is an essential parameter in a one-dimensional convolutional
neural network. It determines the width of the filter used for convolutions and is
represented as a positive integer. The standard options for the filter size are two, three,
and five. In Figure 6, where the non-optimized proposal is shown, a value of five
was used for this hyperparameter, whereas in our optimized system, a filter of size
two was used. Choosing a filter size of two allows us to capture local features and
short patterns in the input data. This is advantageous as it allows the detection of
relevant patterns at a more localized level. By using smaller filters, we can extract
more precise information than larger ones, especially those with more than three. By
taking advantage of these smaller filters, our system benefits from greater sensitivity
to local variations and can capture finer details in the data. This granularity can be
crucial for tasks where the shortest patterns or specific local features are important for
accurate predictions or analysis. In general, using a filter size of two in our optimized
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system improves our ability to extract and interpret local features effectively, leading
to better performance in capturing relevant patterns in the input data [35].

• Number of filters: This hyperparameter, known as the number of filters, determines
the number of filters utilized in the convolutional layer. Each filter detects specific
patterns in the input data, generating an output pipeline through the convolution
operation. The available options for the number of filters typically include values
like 8, 16, 32, 64, or 128. In Figure 6, where the non-optimized proposal is shown,
a value of 64 was used for this hyperparameter, while in our optimized system, a
filter of size 128 was used. The network can capture more patterns and details within
the input data by selecting more filters. This increased capacity allows for improved
differentiation among different classes of emotions. Additionally, a more signifi-
cant number of filters facilitates the network’s adaptation to each specific dataset’s
unique characteristics [35].

• The number of input channels: In our approach, we employ the ‘automatic’ con-
figuration for the optimized model, which automatically determines the number of
filters based on the architecture and specific characteristics of the model or data. This
parameter provides the network with flexibility as it can seamlessly adapt to various
datasets without adjusting the number of input channels. Consequently, this approach
enhances the performance and efficiency of the network by automatically adapting to
different datasets [35].

• Dilation factor: This parameter controls the spacing between elements the filter con-
siders during the convolution operation. Expanding the filters and inserting zeros
between each filter element can detect patterns on a larger scale. We experimented
with one, two, four, and eight dilation factors. A factor of one indicates no spacing,
while factors of two, four, and eight skip one, three, and seven elements, enlarging the
filter’s receptive field [35].

• Optimizer: The optimizer refers to the algorithm that adjusts the weights during
training. Standard optimization algorithms include stochastic gradient descent (SGD),
Adam, RMSprop, and Adagrad. In our study, we employed the Adam optimizer due
to its efficiency in optimization, adaptability to learning rates, and less sensitivity to
the selection of hyperparameters. Adam simplifies the process of tuning the chosen hy-
perparameters [34]. By carefully selecting and tuning these hyperparameters, we aim
to enhance the performance of the CNN architecture in terms of pattern recognition,
accuracy, and efficiency.

As part of the analysis aimed at improving the accuracy of the emotion recognition algo-
rithm for individuals with Down syndrome, the hyperparameters of the CNN were analyzed.
This analysis resulted in an efficiency of 91.4%, enhancing the algorithm’s performance, as
demonstrated by the confusion matrix in Figure 10 (the blue background highlights those
results from the rest of the other values. And other background does not represent a particu-
lar value). The critical configuration parameters considered included filter size, number of
filters, expansion, buffer value, and optimizer. Table 3 presents an example of the optimal
hyperparameter values determined through the algorithm’s optimization process and the
corresponding mean precision values achieved for each interaction.

This analysis involved evaluating all hyperparameters to determine the optimal sys-
tem precision. Each hyperparameter modification was tested through 100 iterations. An
example of the analysis conducted with modified hyperparameter values for the CNN
proposed in this section is presented in Table 3. The rows represent the specific hyperpa-
rameter values or parsed parameters, while the columns represent the top hyperparameters.
The last column indicates the average precision achieved with each set of hyperparam-
eters parsed for each row. The following hyperparameter values were optimizing the
proposed system: filter size = “2”; number of filters = “128”; expansion = “1, 2, 4, 8”; and
optimizer = “ADAM”.

Finally, the results obtained through the proposed architecture and the hyperpa-
rameter analysis, which enabled system optimization, are depicted in Figure 10 using a
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confusion matrix. The optimized system achieved a precision of 91.4%, representing a 6.1%
improvement compared to the non-optimized system.
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Table 3. Sampling of the values of hyperparameters and accuracy.

Hyperparameters
Mean

AccuracyFilter Size Num
Channels Num Filters Dilation

Factor Optimizer
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tv
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s

3 auto 64 1, 2, 4, 8 ADAM 0.89
3 auto 16 1, 2, 4, 8 ADAM 0.77
3 auto 8 1, 2, 4, 8 ADAM 0.61
3 auto 64 1 ADAM 0.87
3 auto 128 2 ADAM 0.88
2 auto 128 1, 2, 4, 8 ADAM 0.91
3 auto 128 1, 2, 4, 8 RMSPROP 0.89
2 auto 128 1, 2, 4, 8 RMSPROP 0.90
2 auto 128 1, 2, 4, 8 SGDM 0.37

Based on the information obtained from previous analyses conducted by the au-
thors, as mentioned in Section 2.2, specific facial characteristics of individuals with Down
syndrome were defined by examining their microexpressions in various emotions. The
activation and intensity of these specific microexpressions were considered relevant for
this particular population group. The analysis focused on observing the intensity be-
havior of the action units. To perform this analysis, the authors utilized the Dataset-DS,
which consists of samples collected from individuals with Down syndrome engaging in
daily activities within an institution. These samples contained spontaneous emotions that
were subsequently analyzed using a transfer learning system based on the mini-Xception
architecture. The Dataset-DS served as the validation dataset for this architecture.

These analyses have led to the proposal of an algorithm to improve emotion recogni-
tion accuracy in individuals with Down syndrome. This proposal involves incorporating
the values obtained from the abovementioned analyses into a convolutional neural network,
resulting in improved precision values, particularly for the emotions of sadness, surprise,
and anger. Despite achieving better results through transfer learning, these emotions still
exhibited a true positive rate (TPR) of less than 67% [17].

The proposed architecture, depicted in Figure 6, demonstrated enhanced accuracy in
recognizing the emotions of anger, sadness, and surprise, with increases of 87.41%, 83.53%,
and 78.37%, respectively, as observed in the confusion matrix depicted in Figure 9. These
improvements represent significant advancements of 21%, 42%, and 16%, respectively,
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compared to the transfer analysis mentioned in Section 2.2. It is worth noting that although
the accuracy of happiness and neutrality in Figure 9 decreased by 8% and 4% in the
proposed algorithm, the accuracy rates for these emotions remained high at 91.87% and
84.01%, respectively. Overall, the system’s accuracy improved to 85.30%, representing a
notable increase of 10.1%.

Finally, the results obtained from the proposed architecture and the hyperparameter
analysis aimed at optimizing the algorithm are presented in Figure 10 through the confusion
matrix. This analysis showcases improvements in the precision of four emotions analyzed
in this research: anger, happiness, neutrality, sadness, and surprise, with accuracy rates of
99.50%, 93.50%, 93.45%, 90.48%, and 85.19%, respectively. These improvements represent
significant gains of 12.09%, 1.63%, 9.44%, 6.95%, and 6.82% compared to the non-optimized
analysis. Overall, the optimized system achieved an enhanced accuracy of 6.18% compared
to the system described in Section 2.3. This analysis yields excellent results for analyzing
emotions in individuals with Down syndrome during daily activities.

The sensitivity analysis aimed to evaluate the impact of variations in filter size, number
of filters, dilation factor, number of channels, and hyperparameters on the architecture’s per-
formance. Specifically, the analysis focused on the newer 1D convolutional layer structure,
which plays a crucial role in connecting the action unit values of the OpenFace structure
with the prediction values generated by the mini-Xception structure.

To perform the analysis, different combinations of hyperparameter values were tested,
including defining filter size = “2”, a number of filters = “128”, expansion = “1, 2, 4, 8”, and
optimizer = “ADAM”, as specified in Table 3. The goal was to understand how changes in
these parameters affected the architecture’s ability to classify emotions accurately.

The evaluation metric used to assess performance was classification accuracy. Follow-
ing the methodology described in Section 2.3, the accuracy of the architecture in emotion
recognition was measured. The precision reported in Table 3 represents the average perfor-
mance over 100 iterations of the testing process.

Furthermore, Table 4 provides a comparative overview of the analyzed systems in
this section, showcasing the techniques studied, starting from machine learning, moving
on to transfer learning analysis, and concluding with the proposed approach. The pro-
posed approach achieves the highest precision in emotion recognition for individuals with
Down syndrome.

Table 4. Summary of results for emotion classification of people with DS.

Techniques Applied
True Positive Rates (%)

Anger Happiness Neutral Sadness Surprise Accuracy

Machine Learning
[36,37]

KNN 53.8 91.3 76.1 13.8 60.3 64.9
Ensemble Subspace

Discriminant 46.2 89.4 71.6 26.2 60.3 64.7

SVM 42.3 82.7 78.9 30.8 64.1 66.2
Transfer Learning Mini-Xception 66.7 99 88.4 41 62.2 74.8

Proposed CNN (OpenFace) CNN
(Tranfer Learning) CNN 99.5 93.5 93.5 90.5 85.2 91.4

4. Conclusions

This work presents a novel algorithm for recognizing the emotions of people with
Down syndrome based on facial features. The algorithm builds upon the authors’ previous
research, which involved analyzing the facial characteristics of individuals with Down
syndrome using OpenFace to capture their microexpressions. This analysis identified
the primary action units associated with each emotion within this specific population,
considering the intensity of their microexpressions.

Various artificial intelligence techniques were explored to enhance recognition accuracy,
and transfer learning with the mini-Xception architecture proved remarkably effective. The
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algorithm’s performance was evaluated using Dataset-SD as the test data set. Additionally,
the features extracted from these convolutional neural networks were incorporated into a final
convolutional network, further improving the accuracy of the results obtained thus far.

The research presents an optimized algorithm that leverages the distinctive facial
features of individuals with DS and deep learning techniques to achieve accurate recog-
nition of people with Down syndrome. The proposed model demonstrates robustness
and efficient resource utilization by combining microexpression analysis, transfer learning,
and the final CNN. The hyperparameter analysis conducted in this research has led to an
optimized system with an impressive accuracy rate of 91.4% in recognizing the emotions of
individuals with DS. These results highlight the algorithm’s effectiveness, positioning it as
a promising solution for Down syndrome recognition based on facial features.

Among the emotions analyzed, happiness consistently exhibited the highest accuracy,
with values consistently surpassing 82% for individuals with Down syndrome. However,
anger and sadness posed challenges, with precision values ranging from 42% to 30%. This
research has achieved highly accurate results, with recognition rates of up to 99% for anger
and 90% for sadness. It is important to note that this algorithm was primarily developed to
support therapeutic processes for individuals with DS.

This research used an independent test data set comprising samples from people with
Down syndrome. Since no architectures designed explicitly for spontaneous emotion recog-
nition in people with Down syndrome existed, this computational model is a pioneering
effort in this field. The objective is to recognize emotions during the daily activities carried
out by people with Down syndrome, thus serving as a starting point for future studies in
this area, which will allow the proposal made to be improved and will contribute to contin-
uous improvement, not only in terms of computer vision and computational performance
but also from a specific psychological perspective for this group of individuals.

These findings put us at the forefront of discussions about the importance of conduct-
ing research that focuses on the unique needs of this specific population. Given people with
Down syndrome’s distinctive physical and cognitive characteristics, developing support
tools is crucial to improve their daily activities. The proposed approach can be further
refined by exploring alternative deep learning techniques and using new architectures. It
is essential to make concerted efforts to translate scientific advances into tangible benefits
for vulnerable groups, thus bridging the gap between scientific progress and real-world
application in their daily lives.
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