
Citation: Shen, Q.; Zhang, D.; Xie, M.;

He, Q. Multi-Strategy Enhanced

Dung Beetle Optimizer and Its

Application in Three-Dimensional

UAV Path Planning. Symmetry 2023,

15, 1432. https://doi.org/10.3390/

sym15071432

Academic Editors: Peng-Yeng Yin,

Ray-I Chang and Jen-Chun Lee

Received: 2 June 2023

Revised: 4 July 2023

Accepted: 13 July 2023

Published: 17 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Multi-Strategy Enhanced Dung Beetle Optimizer and Its
Application in Three-Dimensional UAV Path Planning
Qianwen Shen, Damin Zhang *, Mingshan Xie and Qing He

School of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
gs.qwshen22@gzu.edu.cn (Q.S.); msxie@gzu.edu.cn (M.X.); qhe@gzu.edu.cn (Q.H.)
* Correspondence: dmzhang@gzu.edu.cn; Tel.: +86-13-98-5413242

Abstract: Path planning is a challenging, computationally complex optimization task in high-
dimensional scenarios. The metaheuristic algorithm provides an excellent solution to this problem.
The dung beetle optimizer (DBO) is a recently developed metaheuristic algorithm inspired by the
biological behavior of dung beetles. However, it still has the drawbacks of poor global search ability
and being prone to falling into local optima. This paper presents a multi-strategy enhanced dung
beetle optimizer (MDBO) for the three-dimensional path planning of an unmanned aerial vehicle
(UAV). First, we used the Beta distribution to dynamically generate reflection solutions to explore
more search space and allow particles to jump out of the local optima. Second, the Levy distribution
was introduced to handle out-of-bounds particles. Third, two different cross operators were used
to improve the updating stage of thief beetles. This strategy accelerates convergence and balances
exploration and development capabilities. Furthermore, the MDBO was proven to be effective by
comparing seven state-of-the-art algorithms on 12 benchmark functions, the Wilcoxon rank sum test,
and the CEC 2021 test suite. In addition, the time complexity of the algorithm was also analyzed.
Finally, the performance of the MDBO in path planning was verified in the three-dimensional path
planning of UAVs in oil and gas plants. In the most challenging task scenario, the MDBO successfully
searched for feasible paths with the mean and standard deviation of the objective function as low as
97.3 and 32.8, which were reduced by 39.7 and 14, respectively, compared to the original DBO. The
results demonstrate that the proposed MDBO had improved optimization accuracy and stability and
could better find a safe and optimal path in most scenarios than the other metaheuristics.

Keywords: metaheuristic; dung beetle optimizer (DBO); dynamic reflective learning strategy; Beta
distribution; Levy distribution; crisscross optimizer; UAV path planning; constrained optimization

1. Introduction

Artificial intelligence is one of the most promising technologies for solving problems
in various fields. UAV is a powerful auxiliary tool in artificial intelligence technology
with high flexibility, low cost, and high efficiency [1]. It is also considered as a candidate
technology for future 6G networks and has wide applications in various scenarios [2].
For example, in hazardous areas such as oil and gas plants, UAVs can replace humans
to perform specific tasks and improve work efficiency. However, ensuring the safety of
autonomous flight UAVs in complex environments is a significant challenge. Path search
has essential research significance as a supporting technology for UAV flight. Path planning
allows the UAV to find the optimal safe path from a start point to an endpoint according
to specific optimization criteria such as the minimal path length or the lowest energy
consumption [3]. The UAV path searching problem is based on the case of task points and
prior maps. Therefore, the mission, the surrounding environment, and the UAV’s physical
constraints should be clarified first. On this basis, the task requirements, environmental
states, and constraints related to UAVs are expressed through a mathematical model and
applied to the path-planning problem. It has been proven that finding the optimal path is

Symmetry 2023, 15, 1432. https://doi.org/10.3390/sym15071432 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15071432
https://doi.org/10.3390/sym15071432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15071432
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071432?type=check_update&version=1

Symmetry 2023, 15, 1432 2 of 26

an NP-hard problem [4], and the complexity of the problem increases rapidly with the size
of the problem.

Many researchers have been trying to develop solutions to path-planning problems,
for example, conventional methods such as the artificial potential algorithm [5] and the
Voronoi diagram search method [6]; cell-based methods such as Dijkstra [7] and the A-Star
algorithm [8]; model-based methods such as rapidly exploring random tree (RRT) [9];
learning-based methods such as neural networks [10] and the evolutionary computation
technique [11]. However, the limitations of the traditional and cell-based methods lie in
poor flexibility and fault tolerance. The model-based methods typically have complex
modeling and cannot work in real-time path planning. Neural networks have low com-
plexity, flexibility, and fault tolerance advantages. Nevertheless, most neural networks
require a learning process, which is time-consuming. Due to the limitations of traditional
methods to successfully solve optimal paths, researchers have proposed metaheuristic
algorithms for solving path-planning problems inspired by natural phenomena or laws, for
example, genetic algorithm (GA) [12], particle swarm optimization (PSO) [13], ant colony
optimization (ACO) [14], differential evolution (DE) [15], fruit fly optimization algorithm
(FOA) [16], and the grey wolf optimization (GWO) algorithm [17]. The dung beetle opti-
mization algorithm [18] is a recently developed metaheuristic algorithm that imitates the
biological behavior of dung beetles. However, a determined metaheuristic cannot perform
well in all categories of optimization problems, a hypothesis already proven by the “No
Free Lunch” theorem [19]. This paper aimed to develop an efficient optimization algorithm
for solving three-dimensional path-planning problems in oil and gas plants.

Nowadays, researchers have proposed many improved metaheuristic algorithms for
solving various engineering application problems including path-planning problems. Yu
X. et al. [15] modeled UAV path planning as a constraint satisfaction problem, in which
the fitness function included the travel distance and risk of the UAV. Three constraints
considered in the problem were UAV height, angle, and limited UAV slope. Jain et al. [20]
proposed the multiverse optimizer (MVO) algorithm to deal with the coordination of
UAVs in a three-dimensional environment. The results showed that the MVO algorithm
performed better in most testing scenarios with the minimum average execution time. Li K.
et al. [21] focused on multi-UAV collaborative task assignment problems with changing
tasks. They proposed an improved fruit fly optimization algorithm (ORPFOA) to solve the
real-time path-planning problem. Pehlivanoglu et al. [12] considered the path-planning
problem of autonomous UAVs in target coverage problems and proposed initial population
enhancement methods in GA for efficient path planning. These techniques aim to reduce
the chances of collisions between UAVs.

Zhang X. et al. [22] proposed an improved FOA (MCFOA) by introducing two new
strategies, Gaussian mutation and chaotic local search. Then, the MCFOA was applied to
the feature selection problem to verify its optimization performance. Song S. et al. [23] used
two different Gaussian variant strategies and dimension decision strategies to design an
enhanced HHO (GCHHO) algorithm. The GCHHO algorithm has successfully optimized
engineering design problems (such as tensile/compression springs and welded beam
design problems). Gupta S. et al. [24] presented an improved random walk grey wolf
algorithm and applied it to the parameter estimation of the frequency modulation (FM)
unconstrained optimization problem, the optimal capacity of production facilities, and the
design of pressure vessels. Pichai [25] introduced asymmetric chaotic sequences into the
competitive swarm optimization (CSO) algorithm and applied it to the feature selection
of high-dimensional data. The results showed that the algorithm reduced the number of
features and improved the accuracy. Mikhalev [26] proposed a cyclic spider algorithm
to optimize the weights of recurrent neural networks, and the results showed that the
algorithm reduced the prediction errors. Almotairi [27] proposed a hybrid algorithm
based on the reptile search algorithm and the remora algorithm, improving the original
algorithm’s search capability. Then, the hybrid algorithm was applied to the cluster analysis
problem.

Symmetry 2023, 15, 1432 3 of 26

Previous work has deeply studied the defects of intelligent algorithms and improved
the convergence ability of algorithms. In this paper, we improved the optimization ability
of the DBO and the solving efficiency of the UAV path-planning problem. The following
work was conducted to improve the search performance of the DBO:

• Adding a reflective learning strategy and using Beta distribution function mapping to
generate reflective solutions, improving the algorithm’s search ability;

• For particles that exceeded the search space range, Levy distribution mapping was
used to handle particle boundaries, enhancing the probability of global search reaching
the optimal position;

• Individual crossover mechanism and dimension crossover mechanism were used to
update the position of individual thief beetles, increasing the population diversity and
avoiding falling into local optima;

• Applying the improved MDBO to solve the three-dimensional UAV path-planning
problem, and design sets of scene experiments to verify the efficiency of the MDBO.

The rest of this paper is organized as follows. Section 2 illustrates the basic DBO. In
Section 3, the proposed MDBO is described in detail. In Section 4, the experimental results
of the proposed MDBO are analyzed. Section 5 describes the UAV path-planning model.
Section 6 conducts the UAV planning simulation experiments and discusses the comparison
results between the MDBO and other metaheuristic algorithms. Finally, Section 7 provides
a summary of the paper.

2. Dung Beetle Optimizer (DBO)

The basic DBO is based on population, mainly inspired by the ball-rolling, dancing,
foraging, stealing, and reproduction behaviors of dung beetles. The DBO divides the
population into four search agents: ball-rolling dung beetle, brood ball, small dung beetle,
and thief. Specifically, each search agent has its own unique updating rules. Note that
specific details will be described as follows.

(1) Ball-rolling dung beetle

During the rolling process, dung beetles must navigate through celestial cues to keep
the dung ball rolling in a straight line. Thus, the position of the ball-rolling dung beetle is
updated and can be expressed as:

xi(t + 1) = xi(t) + α× k× xi(t− 1) + b× ∆x (1)

∆x = |xi(t)− Xw| (2)

where t represents the current number of iterations; xi(t) represents the position infor-
mation of the ith dung beetle during the tth iteration; k ∈ (0, 0.2] is a constant value
representing the deflection coefficient; b is a constant value belonging to (0,1); α is a natural
coefficient assigned to 1 or −1; Xw is the global worst position; ∆x simulates changes in
light intensity.

When a dung beetle encounters obstacles that prevent it from progressing, it will
redirect itself through dancing to obtain a new route. A tangent function simulates the
dancing behavior to obtain a new rolling direction. Therefore, the location of the ball-rolling
dung beetle is updated as follows:

xi(t + 1) = xi(t) + tan(θ)|xi(t)− xi(t− 1)| (3)

where θ ∈ [0, π] is the deflection angle.

(2) Brood ball

Symmetry 2023, 15, 1432 4 of 26

Choosing a suitable spawning site is crucial for dung beetles to provide a safe envi-
ronment for their offspring. Hence, in DBO, a boundary selection strategy is proposed to
simulate the spawning area of female dung beetles, which is defined as follows:

Lb∗ = max(X∗ × (1− R), Lb)
Ub∗ = min(X∗ × (1− R), Ub)

(4)

where X∗ represents the current local optimal position; Lb∗ and Ub∗ represent the lower
and upper bounds of the spawning area; R = 1− t/Tmax; Tmax denotes the maximum
number of iterations; Lb and Ub are the lower and upper bounds of the search space,
respectively.

It is assumed that each female dung beetle will only lay one egg in each iteration. The
boundary range of the spawning area changes dynamically with values, so the position of
the egg ball also changes dynamically during the iteration process expressed as follows:

Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)−Ub∗) (5)

where Bi(t) is the position of the ith sphere at the tth iteration; b1 and b2 are two independent
random vectors with a size of 1× D; D is the dimension.

(3) Small dung beetle

Some adult dung beetles will burrow out of the ground in search of food, and this
type of dung beetle is called the small dung beetle. The boundaries of the optimal foraging
area for small dung beetles are defined as follows:

Lbb = max(Xb × (1− R), Lb)
Ubb = min(Xb × (1− R), Ub)

(6)

where Xb represents the global optimal position; Lbb and Ubb are the lower and upper
bounds of the optimal foraging area, respectively. Therefore, the location of the small dung
beetle is updated as follows:

xi(t + 1) = xi(t) + C1 × (xi(t)− Lbb) + C2 × (xi(t)−Ubb) (7)

where xi(t) represents the position of the ith dung beetle at the tth iteration; C1 is the
random number subject to normal distribution; C2 is the random vector within the range of
(0,1).

(4) Thief

Some dung beetles, known as thieves, steal dung balls from other beetles. From
Equation (5), it can be observed that Xb is the optimal food source. Assume that the area
around Xb is the optimal location for competing food. During the iteration process, the
location information of the thief is updated as follows:

xi(t + 1) = Xb + S× g× (|xi(t)− X∗|+
∣∣∣xi(t)− Xb

∣∣∣) (8)

where xi(t) represents the location information of the ith thief at the tth iteration; g is a
random vector subject to normal distribution with the size of 1× D; S is a constant value.

3. The Proposed Method

The MDBO proposed in this section mainly includes three strategies: generating
reflective solutions, handling position boundary violations, and improving thief dung
beetle position updates.

Symmetry 2023, 15, 1432 5 of 26

3.1. Dynamic Reflective Learning Strategy Based on Beta Distribution

The dynamic region selection strategy proposed by DBO strictly limits the search
scope to this region, which is not conducive to searching other regions. The search scope
can be expanded by dynamically calculating the solution in the opposite direction, helping
the original algorithm break away from the local optimal region. The traditional method
of randomly generating initial positions according to uniform distribution is simple and
feasible. It is adverse to forming an “encircling” to the optimal solution. This paper
proposes generating reflective solutions using Beta distribution to effectively surround the
optimal solution with the initial position.

The Beta distribution function is defined as:

f (x) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ [0, 1] (9)

where B(α, β) is the Beta function, defined as:

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt (10)

Figure 1 shows the probability density function of the Beta distribution. From the
figure, it can be seen that when α = β = 0.5, the shape of the density function is symmetric
in a U-shape. The candidate solution generated is most likely located near the boundary of
the search space, so the global optimal solution is better “surrounded” within the initial
particle swarm.

Symmetry 2023, 15, x FOR PEER REVIEW 5 of 27

3.1. Dynamic Reflective Learning Strategy Based on Beta Distribution
The dynamic region selection strategy proposed by DBO strictly limits the search

scope to this region, which is not conducive to searching other regions. The search scope
can be expanded by dynamically calculating the solution in the opposite direction, help-
ing the original algorithm break away from the local optimal region. The traditional
method of randomly generating initial positions according to uniform distribution is sim-
ple and feasible. It is adverse to forming an “encircling” to the optimal solution. This paper
proposes generating reflective solutions using Beta distribution to effectively surround
the optimal solution with the initial position.

The Beta distribution function is defined as:

1 11() (1) , [0,1]
(,)

f x x x x
B

α β

α β
− −= − ∈ (9)

where (,)B α β is the Beta function, defined as:

1 1 1

0
(,) (1)B t t dtα βα β − −= − (10)

Figure 1 shows the probability density function of the Beta distribution. From the
figure, it can be seen that when = =0.5α β , the shape of the density function is symmetric
in a U-shape. The candidate solution generated is most likely located near the boundary
of the search space, so the global optimal solution is better “surrounded” within the initial
particle swarm.

Figure 1. Probability density function image of Beta distribution.

Assume that the number of particles is N, the dimension is D, the maximum number
of iterations is T, the upper and lower bounds of the jth dimension are [jLb , jUb], and
the reverse solution is u , generated according to the following formulas:

, ,
,

, ,

(1) ((1))
(1) , [1,], [1,], [1,]

(1) ((1))
i j i j j

i j
i j i j j

r t if x t s
u t i N j D t T

p t if x t s
+ + ≥+ = ∈ ∈ ∈ + + <

(11)

,
,

,

,

(1)
((1),) (< (0,1))

(1)

(, (1))

i j jj j
i j j j j

i j

j j j
i j

x t s
Ub Lb x t s if

Ub Lbr t

Lb Ub Lb x t otherwise

 + −
Φ + − + Φ −+ = 


Φ + − +

(12)

,
,

,

,

(1)
(, (1)) (< (0,1))

(1)

((1),)

i j jj j
j i j j j

i j

j j j
i j

x t s
s Ub Lb x t if

Ub Lbp t

Ub Lb x t Ub otherwise

 + −
Φ + − + Φ −+ = 


Φ + − +

(13)

Figure 1. Probability density function image of Beta distribution.

Assume that the number of particles is N, the dimension is D, the maximum number
of iterations is T, the upper and lower bounds of the jth dimension are [Lbj,Ubj], and the
reverse solution is u, generated according to the following formulas:

ui,j(t + 1) =
{

ri,j(t + 1) i f (xi,j(t + 1) ≥ sj)
pi,j(t + 1) i f (xi,j(t + 1) < sj)

, i ∈ [1, N], j ∈ [1, D], t ∈ [1, T] (11)

ri,j(t + 1) =

 Φ(Ubj + Lbj − xi,j(t + 1), sj) i f (|xi,j(t+1)−sj|
|Ubj−Lbj| < Φ(0, 1))

Φ(Lbj, Ubj + Lbj − xi,j(t + 1)) otherwise
(12)

pi,j(t + 1) =

 Φ(sj, Ubj + Lbj − xi,j(t + 1)) i f (|xi,j(t+1)−sj|
|Ubj−Lbj| < Φ(0, 1))

Φ(Ubj + Lbj − xi,j(t + 1), Ubj) otherwise
(13)

sj =
1
2
(Ubj + Lbj) (14)

Φ(a, b) = a + (b− a)× betarnd(α, β) (15)

Symmetry 2023, 15, 1432 6 of 26

where xi,j(t + 1) is the jth value of the ith solution at the t + 1th iteration; ui,j(t + 1) is the
jth value of the ith reflective solution at the t + 1th iteration; sj is the domain center of the
upper and lower boundaries; Φ(a, b) generated a random number within (a, b) that follows
the Beta distribution; betarnd is a function to randomly generate a number that obeys the
Beta distribution. In this article, α = β = 0.5.

3.2. Cross Boundary Limits Method Based on Levy Distribution

The simple method of “if the particle exceeds the boundary, it is equal to the boundary”
is used to deal with the individual position. The advantage of this method is that it is
simple to implement. However, because the boundary point is not the global optimal
solution, this method is unfavorable to the optimization process. In this paper, a new
boundary processing method based on Levy distribution mapping was adopted. The
specific operations are as follows:

x′ij =
{

min(Ubj ⊗ Levy(λ), Ubj), xij > Ubj

max(Lbj, Lbj ⊗ Levy(λ)), xij < Lbj (16)

where x′ij is the particle position after boundary processing; λ is a constant number; Levy
is a random search path, and its random step size is a Levy distribution. The notation ⊗
is entry-wise multiplications. Figure 2 visually shows the method for handling particle
boundaries. When the particle xij jumps out of the upper and lower boundaries, it re-enters
the search region using Levy steps with random jumps.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 27

1 ()
2

j j
js Ub Lb= + (14)

(,) () betarnd(,)a b a b a α βΦ = + − × (15)

where , (1)i jx t + is the jth value of the ith solution at the t + 1th iteration; , (1)i ju t + is the
jth value of the ith reflective solution at the t + 1th iteration; js is the domain center of
the upper and lower boundaries; (,)a bΦ generated a random number within (,)a b
that follows the Beta distribution; betarnd is a function to randomly generate a number
that obeys the Beta distribution. In this article, α = β = 0.5.

3.2. Cross Boundary Limits Method Based on Levy Distribution
The simple method of “if the particle exceeds the boundary, it is equal to the bound-

ary” is used to deal with the individual position. The advantage of this method is that it
is simple to implement. However, because the boundary point is not the global optimal
solution, this method is unfavorable to the optimization process. In this paper, a new
boundary processing method based on Levy distribution mapping was adopted. The spe-
cific operations are as follows:

'
min((),),

max(, ()),

j j j
ij

ij j j j
ij

Ub Levy Ub x Ub
x

Lb Lb Levy x Lb

λ

λ

 ⊗ >= 
⊗ <

(16)

where '
ijx is the particle position after boundary processing; λ is a constant number;

Levy is a random search path, and its random step size is a Levy distribution. The notation
⊗ is entry-wise multiplications. Figure 2 visually shows the method for handling particle
boundaries. When the particle ijx jumps out of the upper and lower boundaries, it re-
enters the search region using Levy steps with random jumps.

Figure 2. Cross boundary method based on Levy distribution.

3.3. Cross Operators for Updating The Location of Thieves
As can be seen from Equation (8), the thief’s position is affected by the global optimal

solution. This mechanism enables the optimal solution to be generated by the thieves.
However, once the optimal individual falls into the local optimal solution, the solving
efficiency of the algorithm will be greatly reduced. Inspired by the crisscross optimizer
[28], this paper introduced horizontal and vertical crossover operators to perform cross-
talk operations on thieves to improve the convergence ability of the algorithm. Note that
specific details are described as follows.
(1) Horizontal crossover search (HCS)

HCS is similar to the crossover operation in genetic algorithms, which involves per-
forming crossover operated on all dimensions between two individuals. Assuming that
the dth dimension of the parent individual ix and jx are used to perform HCS, their
kids can be reproduced as:

, 1 , 1 , 1 , ,(1) ()i d i d j d i d j dMS x x c x xε ε= × + − × + × − (17)

Figure 2. Cross boundary method based on Levy distribution.

3.3. Cross Operators for Updating the Location of Thieves

As can be seen from Equation (8), the thief’s position is affected by the global optimal
solution. This mechanism enables the optimal solution to be generated by the thieves.
However, once the optimal individual falls into the local optimal solution, the solving
efficiency of the algorithm will be greatly reduced. Inspired by the crisscross optimizer [28],
this paper introduced horizontal and vertical crossover operators to perform crosstalk
operations on thieves to improve the convergence ability of the algorithm. Note that
specific details are described as follows.

(1) Horizontal crossover search (HCS)

HCS is similar to the crossover operation in genetic algorithms, which involves per-
forming crossover operated on all dimensions between two individuals. Assuming that the
dth dimension of the parent individual xi and xj are used to perform HCS, their kids can be
reproduced as:

MSi,d = ε1 × xi,d + (1− ε1)× xj,d + c1 × (xi,d − xj,d) (17)

MSj,d = ε2 × xj,d + (1− ε2)× xi,d + c2 × (xj,d − xi,d) (18)

where ε1 and ε2 are random numbers uniformly distributed in the range of (0,1); c1 and c2
are random numbers uniformly distributed in the range of (−1,1). MSi,d and MSj,d are the
kids generated by xi,d and xj,d, respectively.

(2) Vertical crossover search (VCS)

VCS is a crossover operation performed between two dimensions of the corresponding
individuals, which has a lower probability of occurrence than HCS. Assume that the d1th

Symmetry 2023, 15, 1432 7 of 26

and d2th dimensions of the individual i are used to perform VCS, which is calculated as
follows:

MSi,d1 = ε× xi,d1 + (1− ε)× xi,d2 (19)

where ε is random number uniformly distributed in the range of (0,1), and MSi,d1 is the
offspring of xi,d1 and xi,d2 .

3.4. The Detailed Process of the MDBO

By introducing the above three strategies into the MDBO, the convergence speed and
convergence accuracy of the algorithm can be effectively improved to balance the global
exploration and local exploitation while enhancing the performance of the original DBO.

Figure 3 shows the process of MDBO implementation.

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 27

, 2 , 2 , 2 , ,(1) ()j d j d i d j d i dMS x x c x xε ε= × + − × + × − (18)

where 1ε and 2ε are random numbers uniformly distributed in the range of (0,1); 1c

and 2c are random numbers uniformly distributed in the range of (−1,1). ,i dMS and
,j dMS are the kids generated by ,i dx and ,j dx , respectively.

(2) Vertical crossover search (VCS)
VCS is a crossover operation performed between two dimensions of the correspond-

ing individuals, which has a lower probability of occurrence than HCS. Assume that the
d1th and d2th dimensions of the individual i are used to perform VCS, which is calculated
as follows:

1 1 2, , ,(1)i d i d i dMS x xε ε= × + − × (19)

where ε is random number uniformly distributed in the range of (0,1), and
1,i dMS is

the offspring of
1,i dx and

2,i dx .

3.4. The Detailed Process of the MDBO
By introducing the above three strategies into the MDBO, the convergence speed and

convergence accuracy of the algorithm can be effectively improved to balance the global
exploration and local exploitation while enhancing the performance of the original DBO.

Figure 3 shows the process of MDBO implementation.

Figure 3. Flowchart of the MDBO.

Start

Initialize the
position of dung

beetles

Calculate fitness of
all population

Select the optimal
position and its

fitness

Explore the search
area by reflective
learning operator

Return the best
position and its

fitness value

Stopping
condition
satisfied?

End

Yes

Check if i<=N

Update the position
of dung beetles by

DBO algorithm

i=i+1

No

Yes

Amend the dung
beetles based on the

cross boundary
limits method

Calculate the new
fitness

No

Update the thieves
position by HCS

and VCS

Check if
i==thief

Yes

No

Figure 3. Flowchart of the MDBO.

The pseudo-code of MDBO is shown in Algorithm 1.

3.5. Computational Complexity Analysis

The pseudo-code of the proposed algorithm is shown in Algorithm 1. The complexity
of the optimizer is one of the key indicators that can reflect the algorithm’s efficiency.
According to the pseudo-code in Algorithm 1, it can be seen that the complexity of MDBO
mainly includes these several processes: initialization; calculating the reflective solutions by
Beta distribution; HCS and VCS; updating the dung beetles’ position with new boundary
handling method. For convenience, it was assumed that N solutions and T iterations are
involved in the optimization process of a D-variable problem. First, the complexity in
the initialization phase is O(N). Then, the complexity level of calculating N reflective
solutions is O(T ∗ N). The complexity level of HCS and VCS is O(T ∗ N ∗ D + T ∗ N ∗ N).

Symmetry 2023, 15, 1432 8 of 26

In MDBO, the total number of evaluations in updating the particles’ position is 4 ∗ T ∗ N
because N group solutions are evaluated per cycle. Thus, the time complexity of the
dung beetles to look for the best position is about O(4 ∗ T ∗ N), which can be abbreviated
as O(T ∗ N). Based on the above discussions, the overall time complexity of MDBO is
O(MDBO) = O(N + T ∗ N ∗ (1 + D + N)). Compared to DBO, although it increases the
time overhead, the performance is optimized.

Algorithm 1: The pseudo code of MDBO

Initialize the particle’s population N; the maximum iterations T; the dimensions D.
Initialize the positions of the dung beetles
While t ≤ T do

Calculate the current best position and its fitness
Obtain N reflective solutions by Equations (11)–(15)
Update the positions of N individuals
For i = 1:N do

if i == ball-rolling dung beetle then
Generate a random number p ∈ (0, 1)

if p < 0.9 then
Update search position by Equation (1)
Else
Update search position by Equation (3)

end if
if i == brood ball then

Update search position by Equation (5)
end if
if i == small dung beetle then

Update search position by Equation (7)
end if

if i == thief then
Update search position by Equation (8)
while t ≤ T/4 do

Perform HCS using Equations (17)–(18)
Perform VCS using Equation (19)

end while
end if

end for
Update the best position and its fitness
t = t + 1

end while
Return the optimal solution Xb and its fitness fb.

4. Analysis of Simulation Experiments
4.1. Experimental Design

In this section, a series of numerical experiments on MDBO were conducted to validate
the effectiveness of MDBO. The statistical analysis and convergence analysis were per-
formed on 12 basic benchmark functions [29–31] and CEC2021 competition functions [32].
Four well-established optimization techniques (the POA [33], SCSO [34], HBA [35], and
DBO [18]), and three improved metaheuristics in recent years (the ISSA [36], MCFOA [22],
GCHHO [23]) were compared with our proposed MDBO. Table 1 shows the parameter
settings of all algorithms. For fairness, the population size N = 30 for all algorithms, and
the maximum iterations T = 500. Mean (Mean) and standard deviation (Std) are used as
statistical indicators to assess the optimization performance. All experiments were achieved
on MatlabR2019a version.

Symmetry 2023, 15, 1432 9 of 26

Table 1. Parameter settings of all algorithms.

Algorithm Parameters

MDBO k = 0.1, b = 0.3, α = β = 0.5
POA I = 1 or 2, R = 0.2
SCSO S = 2
HBA β = 6, C = 2
DBO k = 0.1, b = 0.3
ISSA w = 0.7

MCFOA M = 4, c1∈(0,1)
GCHHO E0∈[−1,1], θ = 0

4.2. Sensitivity Analysis of MDBO’s Parameters

This section analyzes the sensitivity of the control parameters (k, b, α, β) employed in
the MDBO. The parameters k and b are consistent with the values taken in the DBO. Xue [18]
has demonstrated that the algorithm performance is the most robust when k = 0.1, b = 0.3.
In this subsection, we focused on analyzing the effect of the added parameters α and β on
the search performance of the algorithm. Four CEC test functions (including the unimodal
function CEC-1, the basic function CEC-3, the hybrid function CEC-7, and the composition
function CEC-10) were used to test the design of these control parameters. Five parameter
combinations, {α = 0.5, β = 0.5}, {α = 5, β = 1}, {α = 1, β = 3}, {α = 2, β = 2}, and
{α = 2, β = 5}, were set according to different distributions.

The sensitivity analysis is shown in Figure 4, where the horizontal coordinates indicate
the five parameter combinations, and the vertical coordinates indicate the mean values.
It can be seen from Figure 4a,c that the algorithm performed optimally when α = 0.5 and
β = 0.5. For CEC1, α and β showed a high sensitivity to different inputs. Noting that a = 0.5
and b = 0.5 had the best performance. Moreover, we could see that α = 0.5 and β = 0.5 could
obtain the best search performance in CEC7. It is observable in Figure 4b,d that α = 0.5 and
β = 0.5 demonstrated the robust behavior of different inputs. For CEC3, from the values
displayed in the vertical coordinates, the optimized objective function values obtained
for various combinations of a and b were relatively close. Note that α = 0.5 and β = 0.5
obtained second place after α = 2 and β = 2. In CEC10, the performance of α = 2 and β = 5
was better than that of α = 2 and β = 2. However, α = 0.5 and β = 0.5 still achieved second
place, showing their robust performance. Therefore, α = 0.5 and β = 0.5 were selected as the
recommended parameter values for MDBO.

4.3. Comparison of Performance on 12 Benchmark Functions

The 12 basic benchmark functions included seven unimodal functions and six mul-
timodal functions (details in Appendix A, Table A1). It is worth noting that F1–F7 are
typical unimodal test functions since they have one and only one global optimal value.
The multimodal functions F8–F12 have features with multiple local optimums. Therefore,
F1–F7 are widely used to estimate the convergence accuracy and speed, and F8–F12 are
more suitable for testing the global exploration ability. Moreover, to fairly compare the
comprehensive search ability of each metaheuristic, all algorithms were independently run
30 times in each experiment. We also tested the scalability and compared the performance
of MDBO on dimensions of 30, 50, and 100. Two indicators were used to measure their
optimization performance: the mean value (Mean) and the standard deviation (Std).

Table 2 shows the mean and standard deviation data of all algorithms on the 12 bench-
mark test functions tested, and the table also provides the comparison results of the algo-
rithms when the test functions were taken in 30, 50, and 100 dimensions, respectively. As
can be seen from Table 2, MDBO achieved the best results in all of the test functions. From
the perspective of vertical comparison, MDBO ranked first in the test of other functions,
except for some algorithms that showed a comparable performance to MDBO in the F9, F10,
and F11 functions. For functions F1–F6, MDBO converged to the theoretical optimal value
of 0. For F7 and F8, although MDBO could not have the best value, it showed significant

Symmetry 2023, 15, 1432 10 of 26

advantages compared with other algorithms. Next, from the results of the dimension
comparison, the results of 100 dimensions, 30 dimensions, and 50 dimensions were similar,
with little change in the order of optimal value. Based on the above analysis, it can be
seen that MDBO has more significant competitive advantages in solving unimodal and
multimodal functions. The results reflect the ability to jump out of the local optima by the
reflective learning operator and crisscross optimizer.

Symmetry 2023, 15, x FOR PEER REVIEW 10 of 27

(a) (b)

(c) (d)

Figure 4. Sensitivity analysis of the MDBO’s parameters. (a) CEC-1; (b) CEC-3; (c) CEC-7; (d) CEC-
10.

4.3. Comparison of Performance on 12 Benchmark Functions
The 12 basic benchmark functions included seven unimodal functions and six multi-

modal functions (details in Appendix A, Table A1). It is worth noting that F1–F7 are typical
unimodal test functions since they have one and only one global optimal value. The mul-
timodal functions F8–F12 have features with multiple local optimums. Therefore, F1–F7
are widely used to estimate the convergence accuracy and speed, and F8–F12 are more
suitable for testing the global exploration ability. Moreover, to fairly compare the compre-
hensive search ability of each metaheuristic, all algorithms were independently run 30
times in each experiment. We also tested the scalability and compared the performance of
MDBO on dimensions of 30, 50, and 100. Two indicators were used to measure their opti-
mization performance: the mean value (Mean) and the standard deviation (Std).

Table 2 shows the mean and standard deviation data of all algorithms on the 12
benchmark test functions tested, and the table also provides the comparison results of the
algorithms when the test functions were taken in 30, 50, and 100 dimensions, respectively.
As can be seen from Table 2, MDBO achieved the best results in all of the test functions.
From the perspective of vertical comparison, MDBO ranked first in the test of other func-
tions, except for some algorithms that showed a comparable performance to MDBO in the
F9, F10, and F11 functions. For functions F1–F6, MDBO converged to the theoretical opti-
mal value of 0. For F7 and F8, although MDBO could not have the best value, it showed
significant advantages compared with other algorithms. Next, from the results of the di-
mension comparison, the results of 100 dimensions, 30 dimensions, and 50 dimensions
were similar, with little change in the order of optimal value. Based on the above analysis,
it can be seen that MDBO has more significant competitive advantages in solving uni-
modal and multimodal functions. The results reflect the ability to jump out of the local
optima by the reflective learning operator and crisscross optimizer.

300

400

500

600

700

800

900

1000
CEC1

a=0.5
b=0.5

a=5
b=1

a=1
b=3

a=2
b=2

a=2
b=5

752

754

756

758

760

762

764
CEC3

a=0.5
b=0.5

a=2
b=5

a=2
b=2

a=5
b=1

a=1
b=3

1.7

1.8

1.9

2

2.1

2.2

2.3 105 CEC7

a=0.5
b=0.5

a=2
b=5

a=2
b=2

a=5
b=1

a=1
b=3

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982
CEC10

a=0.5
b=0.5

a=5
b=1

a=1
b=3

a=2
b=2

a=2
b=5

Figure 4. Sensitivity analysis of the MDBO’s parameters. (a) CEC-1; (b) CEC-3; (c) CEC-7; (d) CEC-10.

Table 2. Twelve benchmark test function results in different dimensions.

Fun No. Name
30 dim 50 dim 100 dim

Mean Std Mean Std Mean Std

F1

DBO 7.74 × 10−114 3.88 × 10−113 3.93 × 10−97 2.15 × 10−96 1.07 × 10−111 5.84 × 10−111

POA 8.32 × 10−103 4.44 × 10−102 1.64 × 10−99 8.31 × 10−99 9.87 × 10−100 5.39 × 10−99

HBA 2.58 × 10−134 1.39 × 10−133 1.56 × 10−128 6.28 × 10−128 7.48 × 10−122 2.34 × 10−121

SCSO 9.44 × 10−111 4.99 × 10−110 2.70 × 10−109 1.22 × 10−108 1.44 × 10−103 5.79 × 10−103

GCHHO 2.28 × 10−91 8.84 × 10−91 3.95 × 10−92 2.16 × 10−91 2.28 × 10−94 1.15 × 10−93

ISSA 4.45 × 10−14 1.08 × 10−14 7.07 × 10−14 1.46 × 10−14 1.40 × 10−13 1.77 × 10−14

MCFOA 6.53 × 10−11 1.14 × 10−10 1.90 × 10−10 3.69 × 10−10 7.94 × 10−10 1.22 × 10−9

MDBO 0 0 0 0 0 0

F2

DBO 9.65 × 10−57 5.28 × 10−56 3.97 × 10−57 2.18 × 10−56 5.75 × 10−59 2.40 × 10−58

POA 1.11 × 10−49 6.05 × 10−49 1.92 × 10−51 8.90 × 10−51 4.73 × 10−51 1.71 × 10−50

HBA 7.02 × 10−72 3.11 × 10−71 2.61 × 10−69 5.42 × 10−69 8.24 × 10−65 2.58 × 10−64

SCSO 3.31 × 10−60 1.13 × 10−59 6.72 × 10−59 1.24 × 10−58 5.81 × 10−55 2.40 × 10−54

GCHHO 2.03 × 10−47 1.11 × 10−46 3.83 × 10−49 1.65 × 10−48 6.52 × 10−48 2.78 × 10−47

ISSA 8.83 × 10−8 1.34 × 10−8 1.46 × 10−7 1.64 × 10−8 2.97 × 10−7 2.15 × 10−8

MCFOA 3.16 × 10−4 2.91 × 10−4 5.40 × 10−4 4.63 × 10−4 1.22 × 10−3 1.19 × 10−3

MDBO 0 0 0 0 0 0

Symmetry 2023, 15, 1432 11 of 26

Table 2. Cont.

Fun No. Name
30 dim 50 dim 100 dim

Mean Std Mean Std Mean Std

F3

DBO 2.70 × 10−29 1.48 × 10−28 1.93 × 10−39 1.06 × 10−38 4.75 × 10−11 2.60 × 10−10

POA 6.02 × 10−99 3.30 × 10−98 3.62 × 10−100 1.81 × 10−99 6.01 × 10−98 2.24 × 10−97

HBA 7.39 × 10−96 3.12 × 10−95 4.41 × 10−87 2.36 × 10−86 4.22 × 10−74 2.29 × 10−73

SCSO 8.22 × 10−99 2.38 × 10−98 2.65 × 10−94 7.68 × 10−94 5.04 × 10−89 2.20 × 10−88

GCHHO 6.90 × 10−58 3.35 × 10−57 6.52 × 10−49 3.55 × 10−48 7.71 × 10−38 4.22 × 10−37

ISSA 4.81 × 10−13 5.24 × 10−13 1.16 × 10−12 1.47 × 10−12 4.20 × 10−12 3.91 × 10−12

MCFOA 1.62 × 10−8 2.07 × 10−8 9.54 × 10−8 1.32 × 10−7 5.32 × 10−7 8.46 × 10−7

MDBO 0 0 0 0 0 0

F4

DBO 7.33 × 10−58 3.94 × 10−57 2.15 × 10−50 1.18 × 10−49 6.11 × 10−50 1.86 × 10−49

POA 5.98 × 10−52 2.82 × 10−51 1.61 × 10−51 7.11 × 10−51 6.17 × 10−50 2.84 × 10−49

HBA 1.53 × 10−56 7.64 × 10−56 7.69 × 10−50 1.86 × 10−49 4.23 × 10−39 1.71 × 10−38

SCSO 3.79 × 10−51 1.45 × 10−50 4.92 × 10−49 1.58 × 10−48 1.24 × 10−47 5.76 × 10−47

GCHHO 1.60 × 10−46 7.28 × 10−46 8.34 × 10−45 3.60 × 10−44 6.73 × 10−45 2.56 × 10−44

ISSA 8.34 × 10−8 1.33 × 10−8 9.09 × 10−8 1.47 × 10−8 1.02 × 10−7 9.84 × 10−9

MCFOA 3.17 × 10−6 3.01 × 10−6 6.04 × 10−6 7.66 × 10−6 8.58 × 10−6 6.83 × 10−6

MDBO 0 0 0 0 0 0

F5

DBO 3.13 × 10−23 1.70 × 10−22 8.97 × 10−2 4.91 × 10−1 4.91 × 101 1.74 × 102

POA 6.38 × 10−103 3.49 × 10−102 2.68 × 10−103 1.44 × 10−102 3.59 × 10−97 1.97 × 10−96

HBA 8.52 × 10−61 3.29 × 10−60 1.33 × 10−24 7.27 × 10−24 3.42 × 10−4 1.52 × 10−3

SCSO 1.67 × 10−92 6.08 × 10−92 1.05 × 10−86 5.00 × 10−86 1.09 × 10−72 5.90 × 10−72

GCHHO 1.26 × 10−33 6.88 × 10−33 5.00 × 10−29 2.69 × 10−28 1.92 × 10−5 1.05 × 10−4

ISSA 5.35 × 10−15 1.64 × 10−14 1.32 × 10−14 3.03 × 10−14 4.18 × 10−14 1.10 × 10−13

MCFOA 9.13 × 10−6 1.01 × 10−5 8.72 × 10−5 9.45 × 10−5 1.09 × 10−3 1.71 × 10−3

MDBO 0 0 0 0 0 0

F6

DBO 9.15 × 10−3 4.53 × 10−2 2.97 × 10−1 2.69 × 10−1 4.68 × 100 7.99 × 10−1

POA 2.78 × 100 5.92 × 10−1 5.59 × 100 8.21 × 10−1 1.46 × 101 1.08 × 100

HBA 8.62 × 10−3 4.56 × 10−2 8.89 × 10−1 3.71 × 10−1 8.27 × 100 9.39 × 10−1

SCSO 2.06 × 100 5.98 × 10−1 4.93 × 100 7.74 × 10−1 1.43 × 101 1.34 × 100

GCHHO 7.08 × 10−7 6.46 × 10−7 1.65 × 10−5 1.12 × 10−5 2.50 × 10−4 1.61 × 10−4

ISSA 3.03 × 100 4.35 × 10−1 7.19 × 100 6.75 × 10−1 1.87 × 101 8.98 × 10−1

MCFOA 6.75 × 100 9.29 × 10−2 1.12 × 101 1.66 × 10−1 2.26 × 101 2.59 × 10−1

MDBO 0 0 0 0 0 0

F7

DBO 1.04 × 10−3 6.94 × 10−4 1.21 × 10−3 1.01 × 10−3 1.59 × 10−3 1.02 × 10−3

POA 2.26 × 10−4 1.62 × 10−4 1.97 × 10−4 1.42 × 10−4 1.56 × 10−4 8.67 × 10−5

HBA 3.02 × 10−4 1.99 × 10−4 3.91 × 10−4 3.25 × 10−4 5.31 × 10−4 4.21 × 10−4

SCSO 8.98 × 10−5 8.64 × 10−5 1.79 × 10−4 3.71 × 10−4 2.29 × 10−4 2.99 × 10−4

GCHHO 2.90 × 10−4 2.73 × 10−4 2.49 × 10−4 2.28 × 10−4 4.19 × 10−4 3.78 × 10−4

ISSA 9.43 × 10−5 7.38 × 10−5 1.08 × 10−4 9.09 × 10−5 1.04 × 10−4 1.46 × 10−4

MCFOA 2.15 × 10−3 1.54 × 10−3 2.61 × 10−3 2.80 × 10−3 3.73 × 10−3 3.52 × 10−3

MDBO 2.81 × 10−5 2.13 × 10−5 3.04 × 10−5 2.18 × 10−5 3.50 × 10−5 2.40 × 10−5

F8

DBO 2.85 × 101 1.02 × 102 3.44 × 103 3.74 × 103 8.97 × 104 2.61 × 104

POA 8.65 × 102 4.93 × 102 6.20 × 103 1.63 × 103 8.63 × 104 1.57 × 104

HBA 2.84 × 102 3.21 × 102 5.67 × 103 2.29 × 103 1.16 × 105 2.35 × 104

SCSO 2.17 × 103 1.05 × 103 1.19 × 104 3.20 × 103 1.41 × 105 3.39 × 104

GCHHO 1.74 × 100 4.61 × 100 2.61 × 101 2.57 × 101 1.87 × 103 5.35 × 102

ISSA 3.18 × 103 4.46 × 102 1.80 × 104 1.19 × 103 1.73 × 105 1.05 × 104

MCFOA 9.36 × 103 1.59 × 102 4.27 × 104 2.68 × 102 3.37 × 105 1.79 × 103

MDBO 2.29 × 10−7 1.99 × 10−7 1.29 × 10−5 1.07 × 10−5 3.07 × 10−3 4.26 × 10−3

Symmetry 2023, 15, 1432 12 of 26

Table 2. Cont.

Fun No. Name
30 dim 50 dim 100 dim

Mean Std Mean Std Mean Std

F9

DBO 9.96 × 10−2 5.45 × 10−1 0 0 2.32 × 100 1.27 × 101

POA 0 0 0 0 0 0
HBA 0 0 0 0 0 0
SCSO 0 0 0 0 0 0

GCHHO 0 0 0 0 0 0
ISSA 0 0 0 0 0 0

MCFOA 4.68 × 10−6 8.78 × 10−6 8.24 × 10−6 1.61 × 10−5 2.47 × 10−5 3.87 × 10−5

MDBO 0 0 0 0 0 0

F10

DBO 1.01 × 10−15 6.49 × 10−16 8.88 × 10−16 0 1.01 × 10−15 6.49 × 10−16

POA 3.61 × 10−15 1.53 × 10−15 3.97 × 10−15 1.23 × 10−15 3.85 × 10−15 1.35 × 10−15

HBA 6.64 × 10−1 3.64 × 100 2.66 × 100 6.89 × 100 3.32 × 100 7.55 × 100

SCSO 8.88 × 10−16 0 8.88 × 10−16 0 8.88 × 10−16 0
GCHHO 8.88 × 10−16 0 8.88 × 10−16 0 8.88 × 10−16 0

ISSA 4.84 × 10−8 4.18 × 10−9 4.69 × 10−8 3.79 × 10−9 4.75 × 10−8 2.78 × 10−9

MCFOA 1.74 × 10−5 1.45 × 10−5 1.74 × 10−5 1.88 × 10−5 1.50 × 10−5 1.58 × 10−5

MDBO 8.88 × 10−16 0 8.88 × 10−16 0 8.88 × 10−16 0

F11

DBO 1.80 × 10−3 9.87 × 10−3 0 0 0 0
POA 0 0 0 0 0 0
HBA 0 0 0 0 0 0
SCSO 0 0 0 0 0 0

GCHHO 0 0 0 0 0 0
ISSA 9.89 × 10−14 4.25 × 10−14 1.01 × 10−13 4.09 × 10−14 1.24 × 10−13 3.34 × 10−14

MCFOA 1.74 × 10−13 3.89 × 10−13 1.74 × 10−13 3.92 × 10−13 2.69 × 10−13 4.75 × 10−13

MDBO 0 0 0 0 0 0

F12

DBO 5.13 × 10−4 1.64 × 10−3 4.77 × 10−3 6.03 × 10−3 6.45 × 10−2 2.34 × 10−2

POA 1.61 × 10−1 8.04 × 10−2 2.81 × 10−1 8.59 × 10−2 4.74 × 10−1 8.76 × 10−2

HBA 4.44 × 10−4 1.64 × 10−3 1.88 × 10−2 8.56 × 10−3 1.43 × 10−1 5.33 × 10−2

SCSO 9.95 × 10−2 4.05 × 10−2 2.06 × 10−1 5.90 × 10−2 3.77 × 10−1 7.31 × 10−2

GCHHO 1.34 × 10−7 1.49 × 10−7 5.88 × 10−7 6.09 × 10−7 1.66 × 10−6 1.10 × 10−6

ISSA 2.35 × 10−1 4.33 × 10−2 4.13 × 10−1 6.52 × 10−2 6.38 × 10−1 6.17 × 10−2

MCFOA 1.33 × 100 1.81 × 10−1 1.23 × 100 7.90 × 10−2 1.13 × 100 2.51 × 10−2

MDBO 1.57 × 10−32 5.57 × 10−48 9.42 × 10−33 2.78 × 10−48 4.71 × 10−33 1.39 × 10−48

4.4. Convergence Curve Analysis

Convergence analysis plays a vital role in evaluating the ability of the local exploitation
and global exploration of the algorithm. Figure 5 shows the convergence curves of DBO,
POA, HBA, SCSO, ISSA, GCHHO, MCFOA, and MDBO on functions F1–F12. As shown in
Figure 5, MDBO’s optimization ability was the best in 11 (F1–F6, F8–F12) out of 12 functions.
For functions F1–F6, the MDBO’s curves dropped rapidly in early iterations and kept a
fast convergence rate to the optimal solution. Notably, F1–F5 are continuous unimodal
test functions, and MDBO can quickly search for the optimal theoretical value of 0. Since
the vertical coordinates of the convergence curve were generated by the logarithmic scale,
the accuracy of the displayed magnitude was 10−300. For F4, the function curve of MDBO
showed an inflection point because crossover operators can help MDBO re-exploit the
optimization precision. For function F7, although the progress of convergence to 500 gener-
ations was not as good as that of ISSA, the average number of iterations of function curve
convergence to the optimal value was the least and converged to the optimal value in about
100 generations. In F9 and F11, MDBO obtained the optimal global value of 0. The curve
broke during iterations because the figure showed an average best value in logarithmic.
For functions F8, F10, and F12, MDBO exhibited a more competitive performance than the
other comparison algorithms. In summary, convergence analysis proved that MDBO had a
higher success ratio than the other optimization algorithms.

Symmetry 2023, 15, 1432 13 of 26

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 27

MDBO 1.57 × 10−32 5.57 × 10−48 9.42 × 10−33 2.78 × 10−48 4.71 × 10−33 1.39 × 10−48

4.4. Convergence Curve Analysis
Convergence analysis plays a vital role in evaluating the ability of the local exploita-

tion and global exploration of the algorithm. Figure 5 shows the convergence curves of
DBO, POA, HBA, SCSO, ISSA, GCHHO, MCFOA, and MDBO on functions F1–F12. As
shown in Figure 5, MDBO’s optimization ability was the best in 11 (F1–F6, F8–F12) out of
12 functions. For functions F1–F6, the MDBO’s curves dropped rapidly in early iterations
and kept a fast convergence rate to the optimal solution. Notably, F1–F5 are continuous
unimodal test functions, and MDBO can quickly search for the optimal theoretical value
of 0. Since the vertical coordinates of the convergence curve were generated by the loga-
rithmic scale, the accuracy of the displayed magnitude was 10−300. For F4, the function
curve of MDBO showed an inflection point because crossover operators can help MDBO
re-exploit the optimization precision. For function F7, although the progress of conver-
gence to 500 generations was not as good as that of ISSA, the average number of iterations
of function curve convergence to the optimal value was the least and converged to the
optimal value in about 100 generations. In F9 and F11, MDBO obtained the optimal global
value of 0. The curve broke during iterations because the figure showed an average best
value in logarithmic. For functions F8, F10, and F12, MDBO exhibited a more competitive
performance than the other comparison algorithms. In summary, convergence analysis
proved that MDBO had a higher success ratio than the other optimization algorithms.

F1

Iteration

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

F2

Iteration

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

F5

Iteration

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Iteration

F6

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Iteration

F7

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Iteration

F8

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Iteration

F9

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 27

Figure 5. The convergence curves by MDBO on 12 benchmark test functions.

4.5. Wilcoxon Rank-Sum Test
To further test the effectiveness of the MDBO, the Wilcoxon rank sum test [37] was

used to determine whether there was a statistical difference. Each algorithm was run 30
times independently, and the data volume met the requirement of statistical analysis. Ta-
ble 3 shows the p-values of the Wilcoxon rank sum test at the α = 5% significance level. If
p < 0.05, the original hypothesis is rejected, and the alternative hypothesis is accepted. In
Table 3, “+/−/=” indicates the number of MDBO with better/worse/comparable perfor-
mance compared with other algorithms, respectively, where the ‘’NaN’’ markers had
comparable performance. In general, most of the p-values of the rank sum test were less
than 0.05. This indicates that the performance of MDBO was significantly different from
other algorithms. Therefore, it was considered that the proposed MDBO had excellent
convergence performance.

Table 3. Wilcoxon rank sum test results.

Fun No.
DBO POA HBA SCSO GCHHO ISSA MCFOA

p Value R p Value R p Value R p Value R p Value R p Value R p Value R
F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F5 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F6 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F7 3.02 × 10−11 4.08 × 10−11 5.07 × 10−10 8.88 × 10−6 2.83 × 10−8 6.55 × 10−4 3.34 × 10−11
F8 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11
F9 8.15 × 10−2 NaN NaN NaN NaN NaN 1.21 × 10−12
F10 NaN 8.99 × 10−11 1.61 × 10−1 NaN NaN 1.21 × 10−12 1.21 × 10−12
F11 NaN NaN NaN NaN NaN 1.21 × 10−12 1.66 × 10−11
F12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

+/−/= 9/1/2 10/0/2 10/0/2 9/0/3 9/0/3 11/0/1 12/0/0

4.6. MDBO’s Performance on CEC2021 Suite
To further verify the performance of the MDBO, the challenging CEC 2021 test suite

(details in Appendix A, Table A2) was used to test against the seven metaheuristics above-
mentioned. Similarly, for CEC2021, the population size was set to 30, along with 500 max-
imum iterations, and the dimension was set to 20. Each metaheuristic was run inde-
pendently 30 times to keep fairness and objectivity. The Wilcoxon signed-rank test
(signed-rank test) [37] was also carried out. The symbol “gm” is the score representing the
difference between the number of symbols “+” and “−”.

Table 4 shows the experimental results of the MDBO and other optimizers. In Table
4, the proposed MDBO ranked first in CEC-1, CEC-3, CEC-4, and CEC-6. For CEC-2 and

Iteration

F10

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Iteration

F11

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Iteration

F12

DBO
POA
HBA
SCSO

GCHHO
ISSA
MCFOA
MDBO

Figure 5. The convergence curves by MDBO on 12 benchmark test functions.

4.5. Wilcoxon Rank-Sum Test

To further test the effectiveness of the MDBO, the Wilcoxon rank sum test [37] was
used to determine whether there was a statistical difference. Each algorithm was run
30 times independently, and the data volume met the requirement of statistical analysis.
Table 3 shows the p-values of the Wilcoxon rank sum test at the α = 5% significance level.
If p < 0.05, the original hypothesis is rejected, and the alternative hypothesis is accepted.
In Table 3, “+/−/=” indicates the number of MDBO with better/worse/comparable
performance compared with other algorithms, respectively, where the ‘’NaN” markers had
comparable performance. In general, most of the p-values of the rank sum test were less
than 0.05. This indicates that the performance of MDBO was significantly different from
other algorithms. Therefore, it was considered that the proposed MDBO had excellent
convergence performance.

Symmetry 2023, 15, 1432 14 of 26

Table 3. Wilcoxon rank sum test results.

Fun No.
DBO POA HBA SCSO GCHHO ISSA MCFOA

p Value R p Value R p Value R p Value R p Value R p Value R p Value R

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F5 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F6 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F7 3.02 × 10−11 4.08 × 10−11 5.07 × 10−10 8.88 × 10−6 2.83 × 10−8 6.55 × 10−4 3.34 × 10−11

F8 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F9 8.15 × 10−2 NaN NaN NaN NaN NaN 1.21 × 10−12

F10 NaN 8.99 × 10−11 1.61 × 10−1 NaN NaN 1.21 × 10−12 1.21 × 10−12

F11 NaN NaN NaN NaN NaN 1.21 × 10−12 1.66 × 10−11

F12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

+/−/= 9/1/2 10/0/2 10/0/2 9/0/3 9/0/3 11/0/1 12/0/0

4.6. MDBO’s Performance on CEC2021 Suite

To further verify the performance of the MDBO, the challenging CEC 2021 test suite
(details in Appendix A, Table A2) was used to test against the seven metaheuristics above-
mentioned. Similarly, for CEC2021, the population size was set to 30, along with 500 max-
imum iterations, and the dimension was set to 20. Each metaheuristic was run indepen-
dently 30 times to keep fairness and objectivity. The Wilcoxon signed-rank test (signed-rank
test) [37] was also carried out. The symbol “gm” is the score representing the difference
between the number of symbols “+” and “−”.

Table 4 shows the experimental results of the MDBO and other optimizers. In Table 4,
the proposed MDBO ranked first in CEC-1, CEC-3, CEC-4, and CEC-6. For CEC-2 and
CEC-9, MDBO achieved the best mean results compared with other algorithms. For CEC-10,
the mean value of MDBO was second only to HBA, but the standard deviation was smaller
and more stable than HBA. The “gm” score showed that the MDBO differed significantly
from other algorithms in the vast majority of cases. Overall, the results of the CEC2021 test
functions show that the MDBO is effective and suitable for some engineering problems.

Table 4. CEC 2021 test function results.

Fun No. DBO POA HBA SCSO GCHHO ISSA MCFOA MDBO

CEC-1

Mean 3.62 × 107 6.57 × 109 5.71 × 103 2.49 × 109 4.20 × 103 1.04 × 1010 5.05 × 1010 8.99 × 102

Std. 3.47 × 107 3.63 × 109 4.24 × 103 2.08 × 109 3.42 × 103 2.34 × 109 6.21 × 108 1.54 × 103

p-value 3.02 × 10−11 3.02 × 10−11 3.08 × 108 3.02 × 10−11 1.47 × 10−7 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + + + + + +

CEC-2

Mean 3.50 × 103 3.12 × 103 2.86 × 103 3.67 × 103 3.02 × 103 5.79 × 103 9.27 × 103 1.78 × 103

Std. 5.78 × 102 4.21 × 102 7.74 × 102 4.92 × 102 5.90 × 102 2.99 × 102 1.86 × 102 2.59 × 102

p-value 3.02 × 10−11 3.69 × 10−11 3.96 × 10−8 3.02 × 10−11 5.07 × 10−10 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + + + + + +

CEC-3

Mean 8.40 × 102 9.39 × 102 8.00 × 102 9.06 × 102 8.72 × 102 9.72 × 102 1.18 × 103 7.58 × 102

Std. 4.23 × 101 2.99 × 101 2.89 × 101 3.52 × 101 3.53 × 101 3.14 × 101 5.25 × 100 1.34 × 101

p-value 6.70 × 10−11 3.02 × 10−11 1.10 × 10−8 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + + + + + +

CEC-4

Mean 1.94 × 103 3.51 × 103 1.91 × 103 3.47 × 103 1.91 × 103 2.15 × 104 3.86 × 107 1.91 × 103

Std. 6.81 × 101 1.78 × 103 4.80 × 100 3.37 × 103 5.67 × 100 1.48 × 104 2.19 × 106 4.73 × 100

p-value 9.83 × 10−8 3.02 × 10−11 6.20 × 10−1 3.02 × 10−11 1.24 × 10−3 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + − + + + +

CEC-5

Mean 1.22 × 106 1.35 × 105 1.64 × 105 7.79 × 105 4.75 × 105 2.04 × 106 4.81 × 107 3.21 × 105

Std. 9.62 × 105 9.98 × 104 1.21 × 105 5.78 × 105 2.66 × 105 6.98 × 105 5.83 × 106 1.72 × 105

p-value 3.26 × 10−7 5.27 × 10−5 4.98 × 10−4 3.18 × 10−4 1.99 × 10−2 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + + + + + +

Symmetry 2023, 15, 1432 15 of 26

Table 4. Cont.

Fun No. DBO POA HBA SCSO GCHHO ISSA MCFOA MDBO

CEC-6

Mean 2.24 × 103 2.24 × 103 2.10 × 103 2.18 × 103 2.00 × 103 2.92 × 103 7.66 × 103 1.67 × 103

Std. 2.53 × 102 1.88 × 102 3.42 × 102 2.22 × 102 2.01 × 102 2.43 × 102 1.54 × 102 6.62 × 101

p-value 4.08 × 10−11 3.34 × 10−11 1.96 × 10−10 3.34 × 10−11 4.50 × 10−11 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + + + + + +

CEC-7

Mean 6.19 × 105 2.60 × 104 9.52 × 104 2.56 × 105 1.37 × 105 1.18 × 106 7.69 × 108 2.03 × 105

Std. 7.71 × 105 3.27 × 104 8.49 × 104 3.08 × 105 9.82 × 104 5.94 × 105 2.63 × 107 1.32 × 105

p-value 1.33 × 10−2 5.97 × 10−9 6.20 × 10−4 6.73 × 10−1 5.37 × 10−2 9.92 × 10−11 3.02 × 10−11 N/A
Signed-rank test + + + − − + +

CEC-8

Mean 2.38 × 103 3.12 × 103 2.84 × 103 2.93 × 103 2.41 × 103 3.60 × 103 9.53 × 103 2.51 × 103

Std. 3.15 × 102 8.44 × 102 1.48 × 103 9.68 × 102 5.57 × 102 6.70 × 102 1.26 × 102 6.20 × 102

p-value 1.25 × 10−4 5.09 × 10−8 9.03 × 10−4 6.01 × 10−8 2.32 × 10−2 8.35 × 10−8 3.02 × 10−11 N/A
Signed-rank test + + + + + + +

CEC-9

Mean 3.00 × 103 3.01 × 103 2.96 × 103 2.94 × 103 2.94 × 103 3.04 × 103 4.55 × 103 2.92 × 103

Std. 8.21 × 101 5.69 × 101 1.29 × 102 4.64 × 101 4.87 × 101 2.59 × 101 1.86 × 101 9.77 × 101

p-value 1.11 × 10−3 1.09 × 10−5 6.52 × 10−1 5.30 × 10−1 5.49 × 10−1 2.92 × 10−9 3.02 × 10−11 N/A
Signed-rank test + + − − − + +

CEC-10

Mean 2.98 × 103 3.12 × 103 2.96 × 103 3.07 × 103 2.98 × 103 3.56 × 103 1.12 × 104 2.99 × 103

Std. 4.91 × 101 1.24 × 102 4.07 × 101 7.76 × 101 3.62 × 101 1.32 × 102 1.95 × 102 2.24 × 101

p-value 9.93 × 10−2 1.85 × 10−8 6.91 × 10−4 2.15 × 10−6 2.23 × 10−1 3.02 × 10−11 3.02 × 10−11 N/A
Signed-rank test − + + + − = +

+/−/=/gm 62/8/0/54

5. UAV Path-Planning Model
5.1. Environment Model

In the route planning of an UAV inspection in oil and gas plants, it is vital to create
an appropriate environment model as it will improve the efficiency of the optimization
algorithm. Considering some objects as obstacles in oil and gas plants such as complex
pipelines, oil wells, signal towers, and so on, this paper adopted the geometric description
method to establish the three-dimensional environment model. In this model, the obstacles
are described by cuboids of different sizes. The transformation process of the model is
shown in Figure 6. In addition, compared with the military UAV, the inspection UAV does
not need to consider threats such as missiles, radar, and anti-aircraft guns. After ensuring
the limitations of the UAV, the final optimal path is generated according to the surrounding
environment and the task requirements to complete the inspection task. In order to prevent
the UAV from colliding with obstacles during the flight, the safety threshold Rsa f e is added
to the length, width, and height of different cuboids.

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 27

Signed-rank test − + + + − = +
+/−/=/gm 62/8/0/54

5. UAV Path-Planning Model
5.1. Environment Model

In the route planning of an UAV inspection in oil and gas plants, it is vital to create
an appropriate environment model as it will improve the efficiency of the optimization
algorithm. Considering some objects as obstacles in oil and gas plants such as complex
pipelines, oil wells, signal towers, and so on, this paper adopted the geometric description
method to establish the three-dimensional environment model. In this model, the obsta-
cles are described by cuboids of different sizes. The transformation process of the model
is shown in Figure 6. In addition, compared with the military UAV, the inspection UAV
does not need to consider threats such as missiles, radar, and anti-aircraft guns. After en-
suring the limitations of the UAV, the final optimal path is generated according to the
surrounding environment and the task requirements to complete the inspection task. In
order to prevent the UAV from colliding with obstacles during the flight, the safety thresh-
old safeR is added to the length, width, and height of different cuboids.

Figure 6. The environment model of oil and gas plants.

5.2. Path Representation
In this paper, it was assumed that the planning path had a start point S and an end

point E . During the inspection, the UAV needs to traverse some task points with no col-
lisions. Assume that the path can be represented as a series of discrete points such as

0 1 2 1(, , , , , ,)k np p p p p +  , where the first and last waypoints are the given start and target
point. The coordinates of kp are (, ,)k k kx y z . The generation of the initial path is intro-
duced as follows:

Step 1, confirm the direction of the next point to the starting point S . The direction
of the UAV in three-dimensional space can be generated as:

(, ,) , , [1,0, 1]x y z x y zDIR dir dir dir dir dir dir= ∈ −， (20)

where DIR represents the removable direction, and , ,x y zdir dir dir are the direction on
the x-axis, y-axis, and z-axis, respectively.

Then, the next movable waypoint is expressed as:

1

1

1

()
()
()

i i x

i i y

i i z

x x dir rand
y y dir rand
z z dir rand

+

+

+

 = + ⋅
 = + ⋅
 = + ⋅

(21)

Figure 6. The environment model of oil and gas plants.

5.2. Path Representation

In this paper, it was assumed that the planning path had a start point S and an end
point E. During the inspection, the UAV needs to traverse some task points with no
collisions. Assume that the path can be represented as a series of discrete points such as

Symmetry 2023, 15, 1432 16 of 26

(p0, p1, p2, · · · , pk, · · · , pn+1), where the first and last waypoints are the given start and
target point. The coordinates of pk are (xk, yk, zk). The generation of the initial path is
introduced as follows:

Step 1, confirm the direction of the next point to the starting point S. The direction of
the UAV in three-dimensional space can be generated as:

DIR = (dirx, diry, dirz), dirx, diry, dirz ∈ [1, 0,−1] (20)

where DIR represents the removable direction, and dirx, diry, dirz are the direction on the
x-axis, y-axis, and z-axis, respectively.

Then, the next movable waypoint is expressed as:
xi+1 = xi + dirx · rand()
yi+1 = yi + diry · rand()
zi+1 = zi + dirz · rand()

(21)

where (xi, yi, zi) is the position of the ith discrete point.
Step 2, make sure that the generated waypoints stay within the map and do not collide

with the obstacles. Therefore, it is necessary to penalize infeasible solutions. The penalty
function h1 is introduced as:

h1 = pInObstacles + pOutMap = 0 (22)

where pInObstacles is the point of collision with the obstacles, and pOutMap denotes the point
outside the map.

Step 3, find the optimal waypoint that satisfies the conditions and add it to the path,
which can be described as follows:

min h2 =
√
(D1 + D2) · pri (23)

D1 =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 (24)

D2 =

√
(xi − xn+1)

2 + (yi − yn+1)
2 + (zi − zn+1)

2 (25)

where i is the index of discrete points from 0 to n; pri is a constant value that depends
on the scale of the search space; D1 and D2 represent the Euclidean distance between the
current path point and the next path point and the end point, respectively.

Step 4, repeat the above operation until the UAV flies to the first task point.
Step 5, finally, repeat the above steps until the UAV flies over all task points and

generates a complete initial path.

5.3. Cost Function and Performance Constraints

The objective function that evaluates a candidate route should take account of the cost
of the path and the performance, which is expressed as follows:

min f (x) =
3

∑
m=1

wm fm(x) (26)

Li ≤ xi ≤ Ui, i = 1, 2, · · · , D (27)

where f (x) represents the overall cost function; wm is the weight coefficient; f1(x) to f3(x)
are respectively the costs associated with the path length, flight height, and smoothness.
The decision variable is x = { x1, x2, · · · , xD} , and D is the dimension of the problem

Symmetry 2023, 15, 1432 17 of 26

space. Li and Ui are the lower and upper bounds of the search space. The cost function and
constraints of the UAV path are described as follows:

(1) Length cost

In the inspection of UAVs, the shorter the path, the less the time and energy consump-
tion. The cost function f1 is the length of the UAV path, which can be calculated by the
Euclidean operator as follows:

f1 =
N

∑
k=0

dk (28)

dk =

√
(xk+1 − xk)

2 + (yk+1 − yk)
2 + (zk+1 − zk)

2 (29)

where k is the index of discrete points from 0 to N.

(2) Flight altitude cost

During the flight, maintaining a steady altitude can reduce the power consumption.
In order to ensure the safety of the flight, the altitude of the UAV is usually limited between
two given extrema, the minimum height hmin and the maximum height hmax, respectively.
Therefore, the cost function f2 is computed as:

f2 =
N

∑
k=0

hk (30)

hk =

{ ∣∣∣zk −
(hmax+hmin)

2

∣∣∣, i f hmin ≤ zk ≤ hmax

∞, otherwise
(31)

where zk denotes the flight height with respect to the ground, and k is the index of way-
points. It should be mentioned that hk maintains the average height and penalizes the
values outside the range.

(3) Smooth cost

To ensure that the UAV can always maintain a good attitude during the working
flight, this paper adopted a smooth cost, consisting of the climb turning angle and climbing
rates. As shown in Figure 7, the turning angle φk is the angle between two adjacent
consecutive path segments. If

→
e3 is the unit vector in the z-axis direction, the projected

vector is calculated as:
−−−−→
p′k p′k+1 =

→
e3 × (

−−−−→pk pk+1 ×
→
e3) (32)

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 27

(2) Flight altitude cost
During the flight, maintaining a steady altitude can reduce the power consumption.

In order to ensure the safety of the flight, the altitude of the UAV is usually limited be-
tween two given extrema, the minimum height minh and the maximum height maxh , re-
spectively. Therefore, the cost function 2f is computed as:

2
0

N

k
k

f h
=

= 

(30)

max min
min max

() ,
2

,

k k
k

h h
z if h z h

h
otherwise

 +
− ≤ ≤= 

∞

(31)

where kz denotes the flight height with respect to the ground, and k is the index of
waypoints. It should be mentioned that kh maintains the average height and penalizes
the values outside the range.
(3) Smooth cost

To ensure that the UAV can always maintain a good attitude during the working
flight, this paper adopted a smooth cost, consisting of the climb turning angle and climb-
ing rates. As shown in Figure 7, the turning angle kφ is the angle between two adjacent
consecutive path segments. If 3e


 is the unit vector in the z-axis direction, the projected

vector is calculated as:

' '
1 3 1 3()k k k kp p e p p e+ += × ×

   
 (32)

Figure 7. Turning angle and climbing angle calculation.

The turning angle is calculated as:

' ' ' '
1 1 2

' ' ' '
1 1 2

arctan
k k k k

k

k k k k

p p p p

p p p p
φ

+ + +

+ + +

 × =  
 
 

 

 


 (33)

where the notation  is a dot product, and × is a cross product.
The climbing angle kψ is the angle between the ' '

1k kp p +


 and 1k kp p +


 onto the hori-

zontal plane, and the calculation formula is as follows:

1

' '
1

arctan k k
k

k k

z z

p p
ψ +

+

 
− =  

 
 



(34)

Figure 7. Turning angle and climbing angle calculation.

Symmetry 2023, 15, 1432 18 of 26

The turning angle is calculated as:

φk = arctan

‖−−−−→p′k p′k+1 ×
−−−−→
p′k+1 p′k+2‖

−−−−→
p′k p′k+1 ·

−−−−→
p′k+1 p′k+2

 (33)

where the notation · is a dot product, and × is a cross product.

The climbing angle ψk is the angle between the
→

p′k p′k+1 and
→

pk pk+1 onto the horizontal
plane, and the calculation formula is as follows:

ψk = arctan

 zk+1 − zk

‖
−−−−→
p′k p′k+1 ‖

 (34)

Then, the smooth cost function f3 is composed of the turning angle and the climbing
rate, which can be calculated as:

f3 = a1 ·
N−1

∑
k=1

φk + a2·
N−1

∑
k=1
|ψk − ψk−1| (35)

where a1 and a2 are the constants.

6. Simulation Experiments and Discussions on UAV Path Planning
6.1. Scenario Setup

The environment region was 1000 m long, 1000 m wide, and 12 m high, with sev-
eral known obstacles (the coordinates and length, width, and height data of the obsta-
cles are shown in Appendix A, Table A5). The start point and the destination point
were [1,950,12], [950,1,1]. Six representative state-of-the-art metaheuristics (the PSO [38],
GWO [39], DBO [18], FOA [40], GBO [41], and HPO [42]) were chosen to draw comparisons.
For fairness, the population number was set to 30 for all algorithms, and the maximum
iteration was set to 100. Each metaheuristic was independently run 20 times. The best
value (Best), mean (Mean), and standard deviation (Std) were used as statistical indicators
to assess the optimization performance.

6.2. Effect of the Cost Function Parameters

The objective function weights depend on the importance assigned to its different
parts. The purpose of the path cost is to ensure that it generates an effective drone flight
path. In many scenarios, the turning of drones during the flight is inevitable. Therefore,
the weight of the smooth cost is lower than the other costs. This section mainly verifies
the performance of MDBO in solving the cost function with different weight combinations.
The value of w3 is 0.1 or 0.2. When w3 is 0.1, the combination of w1 and w2 is {0.7,0.2} or
{0.2,0.7}, and when w3 is 0.2, the combination of w1 and w3 is {0.4,0.4} or {0.5,0.3} or {0.3,0.5}.
Thus, there are a total of five combinations of design.

The results are given in Table 5. It can be seen that MDBO achieved first place in 11
out of 15 indices in all index tests. For the Std index, MDBO ranked first among the two
test combinations. When w1 = 0.4, w2 = 0.4, w3 = 0.2, and w1 = 0.3, w2 = 0.5, w3 = 0.2, and
w1 = 0.5, w2 = 0.3, w3 = 0.2, the performance of MDBO was second only to DBO. Although
DBO had better standard deviations than MDBO under these three weight combinations,
its optimal convergence solution and mean value were not as good as MDBO. In the case
of the shortest path length, we believe that the performance of MDBO was still better
than DBO. It is worth noting that when w1 = 0.7, w2 = 0.2, and w3 = 0.1, MDBO ranked
second only to GBO in terms of the mean value. In particular, when w1 = 0.5, w2 = 0.3, and
w3 = 0.2, the performance of MDBO was optimal. Overall, MDBO had good searchability
and robustness in all testing scenarios.

Symmetry 2023, 15, 1432 19 of 26

Table 5. Comparison of the performance of the five algorithms under different weight combinations.

W GBO HPO GWO DBO FOA PSO MDBO

w1 = 0.7,
w2 = 0.2,
w3 = 0.1

Best 3.12 × 101 8.01 × 101 1.05 × 102 3.01 × 101 4.09 × 101 1.81 × 102 3.00 × 101

Mean 6.89× 101 1.78 × 102 2.56 × 102 3.56 × 101 5.95 × 101 2.68 × 102 3.37 × 101

Std 4.54 × 101 6.03 × 101 1.15 × 102 5.36 × 100 1.27 × 101 5.65 × 101 2.92 × 100

w1 = 0.2,
w2 = 0.7,
w3 = 0.1

Best 3.20 × 101 1.15 × 102 1.39 × 102 3.56 × 101 4.70 × 101 1.93 × 102 3.36 × 101

Mean 1.08 × 102 2.63 × 102 2.81 × 102 4.47 × 101 7.91 × 101 3.12 × 102 4.33 × 101

Std 7.53 × 101 8.33 × 101 1.24 × 102 5.74 × 100 1.38 × 101 6.32 × 101 5.51 × 100

w1 = 0.4,
w2 = 0.4,
w3 = 0.2

Best 3.09 × 101 1.85 × 102 8.88 × 101 2.97 × 101 4.71 × 101 2.87 × 102 2.80 × 101

Mean 1.11 × 102 3.60 × 102 4.50 × 102 3.59 × 101 7.96 × 101 4.86 × 102 3.40 × 101

Std 8.11 × 101 1.11 × 102 1.40 × 102 4.77 × 100 2.08 × 101 8.36 × 101 7.62 × 100

w1 = 0.3,
w2 = 0.5,
w3 = 0.2

Best 3.56 × 101 1.66 × 102 1.82 × 102 3.10 × 101 5.67 × 101 3.53 × 102 2.89 × 101

Mean 1.49 × 102 4.13 × 102 4.41 × 102 3.63 × 101 9.26 × 101 5.33 × 102 3.47 × 101

Std 8.66 × 101 1.30 × 102 1.64 × 102 3.45 × 100 2.37 × 101 1.02 × 102 4.39 × 100

w1 = 0.5,
w2 = 0.3,
w3 = 0.2

Best 2.99 × 101 1.41 × 102 1.83 × 102 2.85 × 101 5.86 × 101 3.30 × 102 2.61 × 101

Mean 1.13 × 102 3.14 × 102 4.35 × 102 3.37 × 101 8.72 × 101 4.81 × 102 3.32 × 101

Std 1.11 × 102 1.05 × 102 1.65 × 102 7.27 × 100 1.96 × 101 1.04 × 102 8.63 × 100

6.3. Impact of the Count and Position of Tasks

During the flight of the UAV, the task requirements need to be considered. In other
words, the UAV must pass through a series of task points from the starting point and fly to
the destination after completing the corresponding task. The number of task points and
complexity of the task will affect the execution efficiency of the algorithm. This section
mainly compares the search performance of each algorithm with different numbers of task
points and coordinates. The number of set targets and their coordinates in this experiment
are given in Table 6. Three groups of experiments were set up, and the number of task
points in each group was 2, 3, and 4. The constant values of the cost function were the
optimal weight combination according to the above experiment. The experimental results
are shown in Table 7.

Table 6. Details of the coordinates of the tasks.

Tasks’ Numbers Target Coordinates

2 [250,650,5], [500,450,10]
3 [250,650,5], [300,300,7], [700,300,10]
4 [250,650,5], [300,300,7], [600,800,12], [900,400,2]

Table 7. Comparison of the performance of the five algorithms with different tasks.

Task Numbers GBO HPO GWO DBO FOA PSO MDBO

2
Best 5.22 × 101 4.58 × 102 3.22 × 102 5.22 × 101 5.52 × 101 4.96 × 102 4.58 × 101

Mean 1.06 × 102 6.65 × 102 6.00 × 102 6.18 × 101 6.93 × 101 7.54 × 102 5.50 × 101

Std 7.78 × 101 1.25 × 102 2.10 × 102 7.76 × 100 7.78 × 100 1.17 × 102 5.02 × 100

3
Best 3.55 × 101 3.28 × 102 2.62 × 102 3.61 × 101 3.85 × 101 4.91 × 102 3.55 × 101

Mean 6.58 × 101 5.77 × 102 4.91 × 102 4.10 × 101 5.90 × 101 7.11 × 102 3.60 × 101

Std 4.60 × 101 1.63 × 102 2.49 × 102 6.34 × 100 1.24 × 101 1.82 × 102 7.38 × 10−1

4
Best 6.23 × 101 8.01 × 102 4.54 × 102 8.21 × 101 1.16 × 102 1.05 × 103 6.16 × 101

Mean 1.62 × 102 1.04 × 103 8.55 × 102 1.37 × 102 1.50 × 102 1.51 × 103 9.73 × 101

Std 8.28 × 101 2.08 × 102 2.18 × 102 4.68 × 101 2.16 × 101 2.77 × 102 3.28 × 101

From Table 7, it can be intuitively observed that MDBO achieved the best results in
all indices. The planned path length will also increase as the number of tasks increases.
Compared with the other algorithms, it still showed a superior performance. The results

Symmetry 2023, 15, 1432 20 of 26

indicate that MDBO can handle both simple and complex tasks. Figure 8 shows a top view
of the optimal path generated by all algorithms. From Figure 8, it can be seen that all of
the algorithms could successfully find secure paths. As the number of tasks increases and
the complexity increases, the path will undergo significant changes. This indicates the
complexity of multitasking. Meanwhile, it is evident from the comparison of paths that
MDBO had smoother paths and fewer corners at task points, which means that it had a
stronger optimization performance than the other algorithms.

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 27

(a)

(b)

(c)

Figure 8. The UAV paths of all algorithms under a different number of targets. (a) The generated
paths when the number of tasks was 2. (b) The generated paths when the number of tasks was 3. (c)
The generated paths when the number of tasks was 4.

6.4. Influence of the Number and Arrangement of Obstacles
The number and arrangement of obstacles in the map will affect the algorithm’s effi-

ciency in finding the optimal solution. Moreover, the number of iterations required may
increase if there are many obstacles in the presence of a line of sight path between the start
and the destination of the UAV. Based on the previous experiments, this section assessed
the performance of seven algorithms in different scenarios. We mainly set up three groups

0

1200

1000

800

y（m）

600

1000400
900

800
700

x（m）

600
200 500

400
300

200
1000

0

10

20

Start
End
Target
GWO
DBO
FOA
PSO
MDBO
GBO
HPO

0

1200

1000

800

5

y（m）

600

400 1000
900

800
700

x（m）

600200

10

500
400

300
200

0 100
0

15

20

25

Start
End
Target
GWO
DBO
FOA
PSO
MDBO
GBO
HPO

0

1200

1000

800

y（m）

600

5

400

1000
900

800
700

x（m）

200 600
500

400
300

2000 100
0

10

15

20

Start
End
Target
GWO
DBO
FOA
PSO
MDBO
GBO
HPO

Figure 8. The UAV paths of all algorithms under a different number of targets. (a) The generated
paths when the number of tasks was 2. (b) The generated paths when the number of tasks was 3.
(c) The generated paths when the number of tasks was 4.

Symmetry 2023, 15, 1432 21 of 26

6.4. Influence of the Number and Arrangement of Obstacles

The number and arrangement of obstacles in the map will affect the algorithm’s
efficiency in finding the optimal solution. Moreover, the number of iterations required
may increase if there are many obstacles in the presence of a line of sight path between
the start and the destination of the UAV. Based on the previous experiments, this section
assessed the performance of seven algorithms in different scenarios. We mainly set up three
groups of map scenes. The number of obstacles distributed in each group of map scenes
was 6, 13, and 19, respectively. The specific information of obstacles in Maps 1–3 including
the coordinates and length, width, and height of obstacles are shown in Tables A3–A5 in
Appendix A.

The results of the average convergence curves for 100 iterations are plotted in Figures 9–11.
It can be seen that in all cases, MDBO always obtained the optimal solution compared to
the other algorithms. For Map 1, DBO, GBO, FOA, and MDBO converged rapidly in the
early stage and converged to the optimal value of around 50 iterations. The comparison
from the final results found that MDBO had the highest solution accuracy, followed by
the GBO. It was also found that MDBO converged to the optimal value very quickly at
the beginning of the iteration, and the performance improvement was obvious compared
to the original DBO. This proves that the proposed search strategies can accelerate the
convergence speed and improve the convergence accuracy. For Map 2, it can be seen from
Figure 10 that the GBO and FOA outperformed the DBO and MDBO at the beginning of
the iterations. However, as the iterations began, DBO and MDBO converged quickly to a
minimal value. At the same time, the GBO algorithm fell into a local optimum at a later
stage. For Map 3, with more obstacles, the FOA and the MDBO performed the best, with
the MDBO converging late to obtain the best accuracy.

Symmetry 2023, 15, x FOR PEER REVIEW 22 of 27

of map scenes. The number of obstacles distributed in each group of map scenes was 6,
13, and 19, respectively. The specific information of obstacles in Maps 1–3 including the
coordinates and length, width, and height of obstacles are shown in Tables A3–A5 in Ap-
pendix A.

The results of the average convergence curves for 100 iterations are plotted in Figures
9–11. It can be seen that in all cases, MDBO always obtained the optimal solution com-
pared to the other algorithms. For Map 1, DBO, GBO, FOA, and MDBO converged rapidly
in the early stage and converged to the optimal value of around 50 iterations. The com-
parison from the final results found that MDBO had the highest solution accuracy, fol-
lowed by the GBO. It was also found that MDBO converged to the optimal value very
quickly at the beginning of the iteration, and the performance improvement was obvious
compared to the original DBO. This proves that the proposed search strategies can accel-
erate the convergence speed and improve the convergence accuracy. For Map 2, it can be
seen from Figure 10 that the GBO and FOA outperformed the DBO and MDBO at the
beginning of the iterations. However, as the iterations began, DBO and MDBO converged
quickly to a minimal value. At the same time, the GBO algorithm fell into a local optimum
at a later stage. For Map 3, with more obstacles, the FOA and the MDBO performed the
best, with the MDBO converging late to obtain the best accuracy.

Figure 9. Avg. best cost vs. iteration for Map 1.

Figure 10. Avg. best cost vs. iteration for Map 2.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200
fitness curve

GWO
DBO
FOA
PSO

MDBO
GBO
HPO

90.5 91 91.5 92

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900
fitness curve

GWO
DBO
FOA
PSO

MDBO
GBO
HPO

91 91.5

26

28

30

32

Figure 9. Avg. best cost vs. iteration for Map 1.

Symmetry 2023, 15, x FOR PEER REVIEW 22 of 27

of map scenes. The number of obstacles distributed in each group of map scenes was 6,
13, and 19, respectively. The specific information of obstacles in Maps 1–3 including the
coordinates and length, width, and height of obstacles are shown in Tables A3–A5 in Ap-
pendix A.

The results of the average convergence curves for 100 iterations are plotted in Figures
9–11. It can be seen that in all cases, MDBO always obtained the optimal solution com-
pared to the other algorithms. For Map 1, DBO, GBO, FOA, and MDBO converged rapidly
in the early stage and converged to the optimal value of around 50 iterations. The com-
parison from the final results found that MDBO had the highest solution accuracy, fol-
lowed by the GBO. It was also found that MDBO converged to the optimal value very
quickly at the beginning of the iteration, and the performance improvement was obvious
compared to the original DBO. This proves that the proposed search strategies can accel-
erate the convergence speed and improve the convergence accuracy. For Map 2, it can be
seen from Figure 10 that the GBO and FOA outperformed the DBO and MDBO at the
beginning of the iterations. However, as the iterations began, DBO and MDBO converged
quickly to a minimal value. At the same time, the GBO algorithm fell into a local optimum
at a later stage. For Map 3, with more obstacles, the FOA and the MDBO performed the
best, with the MDBO converging late to obtain the best accuracy.

Figure 9. Avg. best cost vs. iteration for Map 1.

Figure 10. Avg. best cost vs. iteration for Map 2.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200
fitness curve

GWO
DBO
FOA
PSO

MDBO
GBO
HPO

90.5 91 91.5 92

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900
fitness curve

GWO
DBO
FOA
PSO

MDBO
GBO
HPO

91 91.5

26

28

30

32

Figure 10. Avg. best cost vs. iteration for Map 2.

Symmetry 2023, 15, 1432 22 of 26Symmetry 2023, 15, x FOR PEER REVIEW 23 of 27

Figure 11. Avg. best cost vs. iteration for Map 3.

On average, the number of iterations for MDBO to converge to the optimal value was
50. In general, MDBO still has a higher convergence accuracy and stronger robustness
than the state-of-the-art metaheuristic methods.

7. Conclusions
In this paper, a multi-strategy enhanced dung beetle optimizer (MDBO) was pro-

posed to improve the original algorithm’s performance using a reflective learning method,
Levy boundary mapping processing, and two different cross-search mechanisms. The
proposed MDBO was then used to successfully handle the three-dimensional route plan-
ning problem of oil and gas plants.

Tests for MDBO were conducted on 12 benchmark test functions, the Wilcoxon rank
sum test, and the CEC2021 suite. The results showed that the MDBO is capable of han-
dling a wide range of optimization problems and is competitive with some advanced me-
taheuristic algorithms. Second, based on the comparative experiments of UAV path-plan-
ning scenarios, the proposed method significantly outperformed other algorithms and
achieved satisfactory results in UAV path planning. Finally, the time complexity analysis
showed that the proposed MDBO increased in time complexity, so future research will
focus on reducing the complexity of the algorithm. In addition, when solving the UAV
path-planning problem, the UAVs are required to respond promptly when the mission
dynamics change, and the number of UAVs needs to be increased if necessary, which is a
limitation of this study.

Future work will focus on multi-UAV cooperation path planning in complex envi-
ronments. We will also work further on reducing the running time of MDBO and applying
it to more complicated optimization problems.

8. Discussion
This study provides a solution for path planning with an improved dung beetle op-

timizer (MDBO). It was found that the three proposed strategies effectively improved the
performance of the original DBO, enabling it to solve various optimization problems. Sim-
ulation experiments in the UAV path-planning scenario demonstrated the superiority of
the MDBO for path searching.

This paper examined the performance of metaheuristic algorithms such as the dung
beetle optimization algorithm in solving various types of optimization problems, with a fo-
cus on the MDBO’s performance in addressing path-planning problems. First, tests were
performed on 12 benchmark functions, the Wilcoxon rank sum test, and the CEC2021 suite.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200
fitness curve

GWO
DBO
FOA
PSO

MDBO
GBO
HPO

90 91 92
20

30

40

50

Figure 11. Avg. best cost vs. iteration for Map 3.

On average, the number of iterations for MDBO to converge to the optimal value was
50. In general, MDBO still has a higher convergence accuracy and stronger robustness than
the state-of-the-art metaheuristic methods.

7. Conclusions

In this paper, a multi-strategy enhanced dung beetle optimizer (MDBO) was proposed
to improve the original algorithm’s performance using a reflective learning method, Levy
boundary mapping processing, and two different cross-search mechanisms. The proposed
MDBO was then used to successfully handle the three-dimensional route planning problem
of oil and gas plants.

Tests for MDBO were conducted on 12 benchmark test functions, the Wilcoxon rank
sum test, and the CEC2021 suite. The results showed that the MDBO is capable of handling a
wide range of optimization problems and is competitive with some advanced metaheuristic
algorithms. Second, based on the comparative experiments of UAV path-planning scenarios,
the proposed method significantly outperformed other algorithms and achieved satisfactory
results in UAV path planning. Finally, the time complexity analysis showed that the
proposed MDBO increased in time complexity, so future research will focus on reducing the
complexity of the algorithm. In addition, when solving the UAV path-planning problem,
the UAVs are required to respond promptly when the mission dynamics change, and the
number of UAVs needs to be increased if necessary, which is a limitation of this study.

Future work will focus on multi-UAV cooperation path planning in complex environ-
ments. We will also work further on reducing the running time of MDBO and applying it
to more complicated optimization problems.

8. Discussion

This study provides a solution for path planning with an improved dung beetle
optimizer (MDBO). It was found that the three proposed strategies effectively improved
the performance of the original DBO, enabling it to solve various optimization problems.
Simulation experiments in the UAV path-planning scenario demonstrated the superiority
of the MDBO for path searching.

This paper examined the performance of metaheuristic algorithms such as the dung
beetle optimization algorithm in solving various types of optimization problems, with a
focus on the MDBO’s performance in addressing path-planning problems. First, tests were
performed on 12 benchmark functions, the Wilcoxon rank sum test, and the CEC2021 suite.
The results show that the three enhancement strategies can improve the original DBO’s
performance and expand the algorithm’s application capabilities. This helps to verify

Symmetry 2023, 15, 1432 23 of 26

that different improvement strategies can improve the performance of the original algo-
rithm [23,24] and help achieve satisfactory results for specific engineering issues [22,25,26].

Second, tests on trajectory planning scenarios indicate that the DBO and the MDBO
outperformed other advanced comparison algorithms. The results demonstrate the ef-
ficiency of the intelligence algorithms in solving path-planning problems [15,20,21]. In
contrast to previous research, we focused on the flaws of the intelligent algorithm and
aimed to develop a more reasonable search mechanism that is suitable for resolving path
optimization problems.

While the findings are not surprising, it is important to understand the question of
the performance gaps of the metaheuristic algorithm when applied to engineering prob-
lems. This study demonstrates the power of metaheuristic algorithms for a wide range
of optimization problems and successful route planning in oil and gas plants provides
theoretical support for practical navigation. However, considering the complex application
environment of the real world, there will be many dynamic obstacles and changing tasks,
which may require multiple UAVs to avoid dynamic obstacles. Therefore, further investiga-
tion will be considered with dynamic tasks. We will focus on designing a multi-objective
beetle optimization algorithm to optimize the three-dimensional spatial navigation of
several UAVs.

Author Contributions: Conceptualization, methodology, writing—original draft, software, writing—
review, Q.S.; writing–review, editing, supervision, investigation, M.X.; writing–review, editing,
investigation, D.Z.; writing–review, visualization, supervision, funding acquisition, Q.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
No.62062021, 61872034, 62166006; Natural Science Foundation of Guizhou Province, grant number
[2020]1Y254; Guizhou Provincial Science and Technology Projects, grant number Guizhou Science
Foundation-ZK [2021] General 335.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Twelve benchmark functions.

No. Function Name Search Space Dim f min

F1 Sphere [−100,100] 30/50/100 0
F2 Schwefel 2.22 [−10,10] 30/50/100 0
F3 Schwefel 1.2 [−100,100] 30/50/100 0
F4 Schwefel 2.21 [−100,100] 30/50/100 0
F5 Zakharov [−5,10] 30/50/100 0
F6 Step [−100,100] 30/50/100 0
F7 Quartic [−1.28,1.28] 30/50/100 0
F8 Qing [−500,500] 30/50/100 0
F9 Rastrigin [−5.12,5.12] 30/50/100 0
F10 Ackley 1 [−32,32] 30/50/100 0
F11 Griewank [−600,600] 30/50/100 0
F12 Penalized 1 [−50,50] 30/50/100 0

Symmetry 2023, 15, 1432 24 of 26

Table A2. Summary of the CEC2021 test suite [32].

No. Functions Fi
*

Unimodal Function CEC-1 Shifted and Rotated Bent Cigar
Function 100

Basic Functions
CEC-2 Shifted and Rotated Schwefel’s

Function 1100

CEC-3 Shifted and Rotated Lunacek
bi-Rastrigin Function 700

CEC-4 Expand Rosenbrock’s plus
Griewangk’s Function 1900

Hybrid Functions
CEC-5 Hybrid Function 1 (N = 3) 1700
CEC-6 Hybrid Function 2 (N = 4) 1600
CEC-7 Hybrid Function 3 (N = 5) 2100

Composition
Functions

CEC-8 Composition Function 1 (N = 3) 2200
CEC-9 Composition Function 2 (N = 4) 2400

CEC-10 Composition Function 3 (N = 5) 2500
Search range: [−100,100]D

Table A3. The data of obstacles on Map 1.

No. X Y Z L W H

1 550 100 0 50 100 10
2 0 400 0 50 200 10
3 300 320 0 50 380 15
4 800 150 0 50 100 15
5 500 350 0 50 100 10
6 50 800 0 50 100 10

Table A4. The data of obstacles on Map 2.

No. X Y Z L W H

1 40 100 0 100 150 5
2 450 350 0 50 100 10
3 850 100 0 100 100 20
4 0 400 0 50 200 10
5 100 400 0 50 200 10
6 260 430 0 100 180 15
7 600 320 0 50 380 15
8 800 500 0 50 100 15
9 430 650 0 50 100 10

10 20 900 0 50 100 10
11 500 800 0 50 100 10
12 450 200 0 50 100 10
13 750 200 0 50 100 10

Symmetry 2023, 15, 1432 25 of 26

Table A5. The data of obstacles on Map 3.

No. X Y Z L W H

1 40 100 0 100 150 5
2 400 150 0 50 100 10
3 550 100 0 50 100 10
4 850 100 0 100 100 20
5 0 400 0 50 200 10
6 100 400 0 50 200 10
7 260 430 0 100 180 15
8 500 320 0 50 100 10
9 600 320 0 50 380 15

10 700 300 0 100 100 10
11 800 500 0 50 100 15
12 300 700 0 50 100 10
13 430 650 0 50 100 10
14 20 900 0 50 100 10
15 100 800 0 50 100 10
16 200 800 0 50 100 10
17 500 800 0 50 100 10
18 750 750 0 50 100 10
19 900 900 0 50 100 10

References
1. Jordan, S.; Moore, J.; Hovet, S.; Box, J.; Perry, J.; Kirsche, K.; Lewis, D.; Tse, Z.T.H. State-of-the-art technologies for UAV inspections.

IET Radar Sonar Navig. 2018, 12, 151–164. [CrossRef]
2. Hu, H.; Xiong, K.; Qu, G.; Ni, Q.; Fan, P.; Ben Letaief, K. AoI-Minimal Trajectory Planning and Data Collection in UAV-Assisted

Wireless Powered IoT Networks. IEEE Internet Things J. 2021, 8, 1211–1223. [CrossRef]
3. Yu, X.; Li, C.; Yen, G.G. A knee-guided differential evolution algorithm for unmanned aerial vehicle path planning in disaster

management. Appl. Soft Comput. 2020, 98, 106857. [CrossRef]
4. Lin, L.; Goodrich, M.A. UAV intelligent path planning for Wilderness Search and Rescue. In Proceedings of the 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 709–714. [CrossRef]
5. Shin, Y.; Kim, E. Hybrid path planning using positioning risk and artificial potential fields. Aerosp. Sci. Technol. 2021, 112, 106640.

[CrossRef]
6. Huang, S.-K.; Wang, W.-J.; Sun, C.-H. A Path Planning Strategy for Multi-Robot Moving with Path-Priority Order Based on a

Generalized Voronoi Diagram. Appl. Sci. 2021, 11, 9650. [CrossRef]
7. Wang, J.; Li, Y.; Li, R.; Chen, H.; Chu, K. Trajectory planning for UAV navigation in dynamic environments with matrix alignment

Dijkstra. Soft Comput. 2022, 26, 12599–12610. [CrossRef]
8. Zhang, Z.; Wu, J.; Dai, J.; He, C. A Novel Real-Time Penetration Path Planning Algorithm for Stealth UAV in 3D Complex

Dynamic Environment. IEEE Access 2020, 8, 122757–122771. [CrossRef]
9. Lu, L.; Zong, C.; Lei, X.; Chen, B.; Zhao, P. Fixed-Wing UAV Path Planning in a Dynamic Environment via Dynamic RRT

Algorithm. Mech. Mach. Sci. 2017, 408, 271–282. [CrossRef]
10. Liu, Y.; Zheng, Z.; Qin, F.; Zhang, X.; Yao, H. A residual convolutional neural network based approach for real-time path planning.

Knowl.-Based Syst. 2022, 242, 108400. [CrossRef]
11. Chai, X.; Zheng, Z.; Xiao, J.; Yan, L.; Qu, B.; Wen, P.; Wang, H.; Zhou, Y.; Sun, H. Multi-strategy fusion differential evolution

algorithm for UAV path planning in complex environment. Aerosp. Sci. Technol. 2021, 121, 107287. [CrossRef]
12. Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage

problems. Appl. Soft Comput. 2021, 112, 107796. [CrossRef]
13. Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft

Comput. 2021, 107, 107376. [CrossRef]
14. Ali, Z.A.; Han, Z.; Hang, W.B. Cooperative Path Planning of Multiple UAVs by using Max–Min Ant Colony Optimization along

with Cauchy Mutant Operator. Fluct. Noise Lett. 2021, 20, 2150002. [CrossRef]
15. Yu, X.; Li, C.; Zhou, J. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowl.-

Based Syst. 2020, 204, 106209. [CrossRef]
16. Zhang, X.; Lu, X.; Jia, S.; Li, X. A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism

applied to UAV path planning. Appl. Soft Comput. 2018, 70, 371–388. [CrossRef]
17. Dewangan, R.K.; Shukla, A.; Godfrey, W.W. Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell.

2019, 49, 2201–2217. [CrossRef]

https://doi.org/10.1049/iet-rsn.2017.0251
https://doi.org/10.1109/JIOT.2020.3012835
https://doi.org/10.1016/j.asoc.2020.106857
https://doi.org/10.1109/iros.2009.5354455
https://doi.org/10.1016/j.ast.2021.106640
https://doi.org/10.3390/app11209650
https://doi.org/10.1007/s00500-022-07224-3
https://doi.org/10.1109/ACCESS.2020.3007496
https://doi.org/10.1007/978-981-10-2875-5_23
https://doi.org/10.1016/j.knosys.2022.108400
https://doi.org/10.1016/j.ast.2021.107287
https://doi.org/10.1016/j.asoc.2021.107796
https://doi.org/10.1016/j.asoc.2021.107376
https://doi.org/10.1142/S0219477521500024
https://doi.org/10.1016/j.knosys.2020.106209
https://doi.org/10.1016/j.asoc.2018.05.030
https://doi.org/10.1007/s10489-018-1384-y

Symmetry 2023, 15, 1432 26 of 26

18. Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79,
7305–7336. [CrossRef]

19. Peres, F.; Castelli, M. Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development.
Appl. Sci. 2021, 11, 6449. [CrossRef]

20. Jain, G.; Yadav, G.; Prakash, D.; Shukla, A.; Tiwari, R. MVO-based path planning scheme with coordination of UAVs in 3-D
environment. J. Comput. Sci. 2019, 37, 101016. [CrossRef]

21. Li, K.; Ge, F.; Han, Y.; Wang, Y.A.; Xu, W. Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm.
Eng. Appl. Artif. Intell. 2020, 94, 103807. [CrossRef]

22. Zhang, X.; Xu, Y.; Yu, C.; Heidari, A.A.; Li, S.; Chen, H.; Li, C. Gaussian mutational chaotic fruit fly-built optimization and feature
selection. Expert Syst. Appl. 2020, 141, 112976. [CrossRef]

23. Song, S.; Wang, P.; Heidari, A.A.; Wang, M.; Zhao, X.; Chen, H.; He, W.; Xu, S. Dimension decided Harris hawks optimization
with Gaussian mutation: Balance analysis and diversity patterns. Knowl.-Based Syst. 2021, 215, 106425. [CrossRef]

24. Gupta, S.; Deep, K. A novel Random Walk Grey Wolf Optimizer. Swarm Evol. Comput. 2019, 44, 101–112. [CrossRef]
25. Pichai, S.; Sunat, K.; Chiewchanwattana, S. An Asymmetric Chaotic Competitive Swarm Optimization Algorithm for Feature

Selection in High-Dimensional Data. Symmetry 2020, 12, 1782. [CrossRef]
26. Mikhalev, A.S.; Tynchenko, V.S.; Nelyub, V.A.; Lugovaya, N.M.; Baranov, V.A.; Kukartsev, V.V.; Sergienko, R.B.; Kurashkin, S.O.

The Orb-Weaving Spider Algorithm for Training of Recurrent Neural Networks. Symmetry 2022, 14, 2036. [CrossRef]
27. Almotairi, K.H.; Abualigah, L. Hybrid Reptile Search Algorithm and Remora Optimization Algorithm for Optimization Tasks

and Data Clustering. Symmetry 2022, 14, 458. [CrossRef]
28. Meng, A.-B.; Chen, Y.-C.; Yin, H.; Chen, S.-Z. Crisscross optimization algorithm and its application. Knowl.-Based Syst. 2014, 67,

218–229. [CrossRef]
29. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [CrossRef]
30. Cai, L.; Qu, S.; Cheng, G. Two-archive method for aggregation-based many-objective optimization. Inf. Sci. 2018, 422, 305–317.

[CrossRef]
31. Mohammadi-Balani, A.; Nayeri, M.D.; Azar, A.; Taghizadeh-Yazdi, M. Golden eagle optimizer: A nature-inspired metaheuristic

algorithm. Comput. Ind. Eng. 2021, 152, 107050. [CrossRef]
32. Mohamed, A.W.; Sallam, K.M.; Agrawal, P.; Hadi, A.A.; Mohamed, A.K. Evaluating the performance of meta-heuristic algorithms

on CEC 2021 benchmark problems. Neural Comput. Appl. 2023, 35, 1493–1517. [CrossRef]
33. Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications.

Sensors 2022, 22, 855. [CrossRef] [PubMed]
34. Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems.

Eng. Comput. 2022, 1–25. [CrossRef]
35. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic

algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [CrossRef]
36. Hegazy, A.E.; Makhlouf, M.A.; El-Tawel, G.S. Improved salp swarm algorithm for feature selection. J. King Saud Univ.—Comput.

Inf. Sci. 2020, 32, 335–344. [CrossRef]
37. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
38. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
39. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
40. Pan, W.-T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowl. Based Syst. 2012,

26, 69–74. [CrossRef]
41. Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci.

2020, 540, 131–159. [CrossRef]
42. Naruei, I.; Keynia, F.; Molahosseini, A.S. Hunter–prey optimization: Algorithm and applications. Soft Comput. 2022, 26, 1279–1314.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11227-022-04959-6
https://doi.org/10.3390/app11146449
https://doi.org/10.1016/j.jocs.2019.07.003
https://doi.org/10.1016/j.engappai.2020.103807
https://doi.org/10.1016/j.eswa.2019.112976
https://doi.org/10.1016/j.knosys.2020.106425
https://doi.org/10.1016/j.swevo.2018.01.001
https://doi.org/10.3390/sym12111782
https://doi.org/10.3390/sym14102036
https://doi.org/10.3390/sym14030458
https://doi.org/10.1016/j.knosys.2014.05.004
https://doi.org/10.1109/4235.771163
https://doi.org/10.1016/j.ins.2017.08.078
https://doi.org/10.1016/j.cie.2020.107050
https://doi.org/10.1007/s00521-022-07788-z
https://doi.org/10.3390/s22030855
https://www.ncbi.nlm.nih.gov/pubmed/35161600
https://doi.org/10.1007/s00366-022-01604-x
https://doi.org/10.1016/j.matcom.2021.08.013
https://doi.org/10.1016/j.jksuci.2018.06.003
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1016/j.ins.2020.06.037
https://doi.org/10.1007/s00500-021-06401-0

	Introduction
	Dung Beetle Optimizer (DBO)
	The Proposed Method
	Dynamic Reflective Learning Strategy Based on Beta Distribution
	Cross Boundary Limits Method Based on Levy Distribution
	Cross Operators for Updating the Location of Thieves
	The Detailed Process of the MDBO
	Computational Complexity Analysis

	Analysis of Simulation Experiments
	Experimental Design
	Sensitivity Analysis of MDBO’s Parameters
	Comparison of Performance on 12 Benchmark Functions
	Convergence Curve Analysis
	Wilcoxon Rank-Sum Test
	MDBO’s Performance on CEC2021 Suite

	UAV Path-Planning Model
	Environment Model
	Path Representation
	Cost Function and Performance Constraints

	Simulation Experiments and Discussions on UAV Path Planning
	Scenario Setup
	Effect of the Cost Function Parameters
	Impact of the Count and Position of Tasks
	Influence of the Number and Arrangement of Obstacles

	Conclusions
	Discussion
	Appendix A
	References

