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This Special Issue of the journal Symmetry is dedicated to recent progress in the field of
nonlinear differential problems. It therefore collects papers on existence and non-existence
criteria, multiplicity, and regularity results of solutions, as well as applications to real-life
problems. Special emphasis is put on capacity and variational methods and on regulariza-
tion and approximation procedures. These are attractive topics that have been developed
on consolidated theories for continuous and discrete systems, especially in recent decades.
More precisely, the main problems are investigated by imposing different boundary con-
ditions and appropriate initial conditions on the data. A number of contributions in this
Special Issue focus on nonlinear operators as tools to describe the dynamic aspects of
systems, where symmetries and asymmetries play key roles. The volume gathers eighteen
research works authored by leading experts in the field, as well as by young and promising
researchers. In this editorial, we briefly summarize these contributions to highlight the
salient points of this volume.

Tudorache and Luca [1] establish the existence of positive solutions to a Riemann–Liouville
fractional-type differential equation with sequential derivatives, a positive parameter, and
a sign-changing singular nonlinearity. The strategy is based on the Guo–Krasnosel’skii
fixed-point theorem.

Kanguzhin and Auzerkhan [2] develop a one-dimensional mathematical model of
the vibrations of structures consisting of elastic and weakly curved rods. Hence, they use
differential equations to model the longitudinal and transverse vibrations of these elastic
rods. Suitable conjugation conditions ensure the all-around decidability and symmetry of
the problems on a star graph.

Sunday et al. [3] deal with step-size methods for integrating stiff differential systems.
Hence, they present a method that can vary the step size within a defined integration
interval using a Lagrange interpolation polynomial as a basis function via its integration at
selected limits.

Folly-Gbetoul [4] performs a Lie analysis of (2k + 2)th-order difference equations
and obtains k + 1 non-trivial symmetries. Using these symmetries, the author establishes
suitable exact solutions and provides the conditions needed to obtain the convergence of
the solutions.

Zuo et al. [5] pose a boundary value problem for biharmonic operators on the Heisen-
berg group. Hence, they establish the existence of weak solutions to the main problem. The
strategy is based on a version of the mountain pass theorem and classical variational tools.

Elsayed et al. [6] develop a qualitative analysis of certain properties of higher-order
nonlinear difference equations. Hence, they discuss local and global stability, as well as the
boundedness of solutions.

Tudorache and Luca [7] continue the study of positive solutions to fractional-type
differential equations (see [1]). This time, they deal with sequential derivatives, a positive
parameter, and a non-negative singular nonlinearity, supplemented with integral and
multipoint boundary conditions. The strategy is based on the Krein–Rutman theorem,
together with suitable fixed-point index theorems.

Symmetry 2023, 15, 1425. https://doi.org/10.3390/sym15071425 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15071425
https://doi.org/10.3390/sym15071425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15071425
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071425?type=check_update&version=1


Symmetry 2023, 15, 1425 2 of 3

Kazakov [8] studies a class of nonlinear second-order evolutionary parabolic partial
differential equations. Hence, the author establishes the existence of piecewise analytical
solutions and obtains exact solutions. The strategy is based on the Cauchy–Kovalevskaya
theorem (for the majorant method) and on the Clarkson–Kruskal direct method.

Piotrowska and Sajewski [9] study the problem of describing voltage dynamics in
electric circuits, involving appropriate fractional-order elements in the analysis. The authors
design a linear system of state equations by using the two-parameter operator conformable
derivative in the Caputo sense.

Léandre [10] studies a new approximation, with respect of the parametrix method,
of the solution to a parabolic equation whose generator is of a large order and of the
Hoermander form. Hence, the author generalizes the approximation of Stratonovitch
diffusion processes to a higher-order generator.

Ku et al. [11] investigate some numerical methods for solving partial differential
equations. Hence, they design a collocation scheme involving multiquadric radial basis
functions, including multiquadric and inverse multiquadric functions, without the shape
parameter. The authors separate the center points from the interior points; hence, the center
points are regarded as fictitious sources collocated outside the domain.

Jleli et al. [12] study the large time behavior of the inhomogeneous damped wave
equation with nonlinear memory in the right-hand side. Under sufficient conditions on
the nonhomogeneous term, they establish nonexistence results by using the test func-
tion method.

Jleli et al. [13] investigate the nonexistence of global solutions to some classes of
fractional in time nonlinear Schrödinger equations under suitable initial data and involving
the combined effects of absorption and dispersion terms. Hence, they establish nonexistence
results by using specific test and cut-off functions.

Cherniha [14] present a discussion of a Lie symmetry analysis of a certain Burgers–
Fitzhugh–Nagumo-type equation. Hence, the author analyzes the problem of finding exact
solutions for the main equation.

Yusuf et al. [15] consider the problem of describing quantum systems interacting with
the environment. Hence, they obtain the existence of fixed points to certain quantum
operations by using an appropriate order-preserving map. The strategy is based on fixed-
point arguments for contractive maps in generalized metric spaces.

Alqahtani et al. [16] consider the large time behavior of solutions to certain exterior
problems with a Schrödinger operator in the principal part. Hence, they establish nonexis-
tence results in the case of a nonhomogeneous Neumann boundary condition. The strategy
is based on the test function method.

Hussain et al. [17] study a spatially two-dimensional Burgers–Huxley equation that
depicts the interaction between convective phenomena, nerve proliferation in neurophysics,
as well as motion in liquid crystals. Using the Lie symmetry method, the authors establish
the group invariant solutions for the main equation. Hence, they calculate some power
series solutions, adopting the power series method.

Jabeen et al. [18] obtain sufficient conditions for the existence of mild solutions to
certain impulsive evolution differential equations with causal operators in separable Banach
spaces. The strategy is based on strongly continuous semigroups theory, together with a
concept of measure of noncompactness and the Schauder fixed-point theorem.
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