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Abstract: Asymmetry in the upper and lower tails is an important feature in modeling bivariate
distributions. This article focuses on the log ratio between the tail probabilities at upper and lower
corners as a measure of tail asymmetry. Asymptotic behavior of this measure at extremely large and
small thresholds is explored with particular emphasis on the skew-normal copula. Our numerical
studies reveal that, when the correlation or skewness parameters are around at the boundary values,
some asymptotic tail approximations of the skew-normal copulas proposed in the literature are not
suitable to compute the measure of tail asymmetry with practically extremal thresholds.

Keywords: measure of asymmetry; skew-normal copula; tail dependence; tail order

1. Introduction

Skewness in data is an important feature in various applications. As a typical exam-
ple, dependence among stock returns is known to be asymmetric in bearish and bullish
markets [1]. To capture such asymmetry, skewed multivariate distributions have been
extensively studied in the literature. A popular family of skewed distributions is the skew-
elliptical distribution [2], which includes, for example, the skew-normal distribution [3] and the
skew-t distribution [4]. These models capture different features of asymmetry especially
in their tails. To find an appropriate model for given data, it is important to quantify the
degrees of tail asymmetry in the data and models. A mismatch of such a feature may
lead to erroneous results in the statistical analysis. Therefore, evaluating the degree of tail
asymmetry is an essential task to carry out decent statistical analysis. In this regard, various
measures of asymmetry have been proposed to quantify certain asymmetric features of
an underlying distribution. See, for example, refs. [5–9] for such measures for bivariate
distributions.

In this paper, we focus on the skew-normal distribution, which is known to be bene-
ficial for flexibly modeling an asymmetric feature of data especially between the degrees
of upper and lower tail dependence. A d-dimensional random vector Y = (Y1, . . . , Yn) is
said to follow the skew-normal distribution, denoted by Y ∼ SNd(δ, Ψ), if it admits the
stochastic representation

Yj = δj|Z0|+
√

1− δ2
j Zj, δj ∈ (−1, 1), Ψ ∈ Pd, (1)

where Z0 ∼ N(0, 1), Z = (Z1, . . . , Zd) ∼ Nd(0, Ψ) is independent of Z0 and Pd is a set
of all d-dimensional correlation matrices. The parameter δ = (δ1, . . . , δd) ∈ (−1, 1)d is
called the skewness parameter and Ψ ∈ Pd is called the correlation matrix. The skew-normal
copula, denoted by CSN(·; δ, Ψ), is defined as the copula of Y ∼ SNd(δ, Ψ). The reader is
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referred to [10] for statistical applications of the skew-normal distribution and [2,11,12] for
recent overview of skew-normal and related distributions. An important feature of the
skew-normal copula is that the tail orders introduced in [13] are allowed to be different in
the upper and lower tails; see, for example, [14].

The difference of tail orders between upper and lower tails is not properly captured
by some measures of tail asymmetry proposed in the literature. One of the most prevalent
measures of tail dependence is the tail dependence coefficient (TDC) [15,16]. Let H be a bivariate
cumulative distribution function (cdf) of X = (X1, X2) with continuous marginal distributions
F1 and F2, respectively. The lower and upper TDCs for H are defined, respectively, by

λL(H) = lim
u↓0

λL(u) and λU(H) = lim
u↓0

λU(u),

where λL and λU are the lower and upper tail dependence functions defined by

λL(u) = P(X1 ≤ F−1
1 (u) | X2 ≤ F−1

2 (u)) and

λU(u) = P(X1 ≥ F−1
1 (1− u) | X2 ≥ F−1

2 (1− u)),

respectively. Note that λL(u) = C(u, u)/u and λU(u) = C(1− u, 1− u)/u where C is the cdf
of (U1, U2) = (F1(X1), F2(X2)) called the copula of X, and C(u1, u2) = P(U1 ≥ u1, U2 ≥ u2),
(u1, u2) ∈ [0, 1]2. The TDCs have been studied for various skew bivariate distribution, such
as the skew-normal distribution [14,17,18], the skew-t or skew-slash distribution [19–23], and
the skew-Laplace and skew-Cauchy distribution [24]. Due to the popularity of the TDCs, it
is tempting to quantify the measure of tail asymmetry by the difference between the upper
and lower TDCs. In fact, many existing measures are based on differences between certain
measures of upper and lower tails (see, e.g., [5–8]). Such difference-based measures are
typically appropriate when the tail orders are equal between upper and lower tails, which
is the case for the skew-t, skew-slash, and skew-Cauchy distributions. On the other hand,
such difference-based measures are sometimes inappropriate to quantify tail asymmetry
of the skew-normal copula since values of these measures tend to be small even for large
values of ||δ||. For example, the upper and lower TDCs of the skew-normal copula are
typically zero, and thus their difference is zero even in the presence of strong skewness.

To quantify the degree of difference of tail orders between upper and lower tails,
we focus on a log-difference-based measure of tail asymmetry proposed by [9]. For a
more formal description, let X = (X1, X2) be an R2-valued random vector on a fixed
atomless probability space. Denote by H the cumulative distribution function (cdf) of
X with marginal distributions F1 and F2, respectively. For a fixed threshold u ∈ (0, 1/2],
Ref. [9] proposed the measure of tail asymmetry (in lower and upper tails) defined by

αH(u) = log

(
P(X1 ≥ F−1

1 (1− u), X2 ≥ F−1
2 (1− u))

P(X1 ≤ F−1
1 (u), X2 ≤ F−1

2 (u))

)
. (2)

We are also interested in the asymptotic behavior of αH(u) as u ↓ 0. Throughout the
paper, we assume that F1 and F2 are continuous so that (X1, X2) has the unique copula C.
Then, αH is a function of the copula given by

αH(u) = log
(
P(U1 ≥ 1− u, U2 ≥ 1− u)

P(U1 ≤ u, U2 ≤ u)

)
= log

(
C(1− u, 1− u)

C(u, u)

)
=: αC(u). (3)

The measure (2) returns reasonable values because this measure is based on the ratio
between upper and lower tail probabilities. To the best of our knowledge, the measure (2) is
the only ratio-based measure of upper and lower tail probabilities, which seems appropriate
to measure the tail asymmetry of the skew-normal copula. Note that the measure αC(u)
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in (3) is also represented by the lower and upper tail dependence functions as αC(u) =
λU(u)/λL(u). When the upper and lower TDCs are well-defined as positive values, we
have that limu↓0 αC(u) = λU/λL, and thus the results in [19–24] are applicable to compute
the limit of αC(u).

The contribution of this paper is twofold. First, we derive an asymptotic formula of
the measure of tail asymmetry (2) in terms of the upper and lower tail orders [13]. This
formula enables us to describe the asymptotic behavior of this measure for the skew-normal
copula. Various approaches are also introduced to evaluate the measure (2) for a finite
threshold u ∈ (0, 1/2]. Our second contribution is to numerically demonstrate that, when
the correlation or skewness parameters are around at the boundary values, some asymptotic
formulas of the skew-normal copula proposed in the literature are not suitable to compute
the measure of tail asymmetry with practically extremal thresholds, such as u = 0.01. This
finding supports the use of an exact evaluation of the measure (2) even for an extremely
small threshold u ∈ (0, 1/2] instead of some asymptotic tail approximations proposed in
the literature.

The organization of this paper is as follows. In Section 2, we review the concept of
tail order and skew-normal copulas. In Section 3, we derive a formula of the measure of
tail asymmetry in terms of the upper and lower tail orders. We also explore the measure
and its asymptotic behavior for the skew-normal copula. Numerical experiments are
provided in Section 4, where we reveal some situations when some asymptotic formulas of
the skew-normal copula proposed in the literature are not appropriate to use. Section 5
concludes this paper. Detailed calculations and all proofs are deferred to Appendices A
and B, respectively.

2. Preliminaries

We begin with introducing some concepts and notations. Two functions f , g : R→ R
are called asymptotically equivalent at a ∈ R = R∪ {±∞}, denoted by f (x) ∼ g(x), x → a,
if limx→a f (x)/g(x) = 1. A function f : R → R is called slowly varying at a ∈ [0, ∞] if
limx→a f (tx)/ f (x) = 1 for any t ∈ (0, ∞). The set of all slowly varying functions at a is
denoted by SVa. Throughout the paper, all vectors in the form (x1, . . . , xn), n ∈ N, are
understood as column vectors.

2.1. Tail Order and Tail Order Parameter

According to [13], a d-dimensional copula C is said to have the lower tail order κL(C) ≥ 1 if

C(u, . . . , u) ∼ uκL(C)`L(u), u ↓ 0, (4)

where `L ∈ SV0. If, in addition, the limit limu↓0 `L(u) = `∗L(C) exists, then C is said to have
the lower tail order parameter `∗L(C) ∈ [0, ∞]. The copula C is called (lower) tail dependent
when κL(C) = 1. In this case, `∗L(C) is known as the (lower) tail dependence coefficient (TDC).
The case κL(C) = d is referred to as the tail independence. When 1 < κL(C) < d, C is said to
have intermediate tail dependence. As such the model (4) can capture weaker tail dependence
that the TDC cannot. Similarly to the lower case, C is said to have the upper tail order
κU(C) ≥ 1 and the upper tail order parameter `∗U(C) ∈ [0, ∞] if

C(1− u, . . . , 1− u) ∼ uκU(C)`U(u), u ↓ 0, (5)

where `U ∈ SV0 is such that limu↓0 `U(u) = `∗U(C).

2.2. The Skew-Normal Copula

Let Y ∼ SNd(δ, Ψ) follow a d-dimensional skew-normal distribution defined via the
stochastic representation (1). According to [3], the joint probability density functions (pdf)
of Y is given by
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fSN(y; α̃, Ω) = 2φd(y; Ω)Φ(α̃>y), y ∈ Rd,

where φd(·; Ω) is the pdf of Nd(0, Ω) and the parameters Ω ∈ Pd and α̃ ∈ Rd are specified via

Ω = ∆(Ψ + ζζ>)∆, (6)

α̃ =
Ω−1δ√

1− δ>Ω−1δ
=

∆−1Ψ−1ζ√
1 + ζ>Ψ−1ζ

, (7)

where

∆ = diag
(√

1− δ2
1 , . . . ,

√
1− δ2

d

)
,

ζ = (ζ1, . . . , ζd), ζ j =
δj√

1− δ2
j

, j ∈ {1, . . . , d}.

The marginal pdf of Yj, j ∈ {1, . . . , d}, is given by

fSN(yj; δj) = 2φ(yj)Φ(ζ jyj), yj ∈ R,

where φ and Φ are pdf and cdf of N(0, 1), respectively. Note that Yj ∼ SN(δj), j ∈ {1, . . . , d},
where SN(δj) = SN1(δj, 1). Moreover, it follows from (1) that

−Y ∼ SNd(−δ, Ψ). (8)

Skewness of the skew-normal copula is illustrated in Figure 1, where the contour plot
of the (symmetric) normal distribution is compared with that of the skew-normal copula
with its marginal distributions transformed into the standard normal distributions.
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Figure 1. Contour plots of the (symmetric) normal distribution with ρ = 0.5 (left) and the skew-
normal copula CSN(δ, Ψ) with (δ1, δ2, Ψ1,2) = (−0.8,−0.8, 0.5) with its marginal distributions trans-
formed into the standard normal distributions (right).

The skew-normal distribution can be written in terms of the conditional distribution
of the normal distribution. More precisely, it is shown in Section 2.2 of [3] that

(X1, . . . , Xd) | {X0 > 0} ∼ SNd(δ, Ψ), (9)

where (X0, X1, . . . , Xd) ∼ Nd+1(0d+1, Ω∗(δ)) with the extended correlation matrix

Ω∗(δ) =
(

1 δ>

δ Ω

)
∈ Pd+1. (10)

This representation allows us to write the cdfs of SNd(δ, Ψ) and its copula as follows.
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Lemma 1. Let FSN(·; δ, Ψ) be the cdf of Y ∼ SNd(δ, Ψ) with marginal cdfs FSN(·; δj), j ∈
{1, . . . , d}. Then

FSN(y; δ, Ψ) = 2Φd+1((0, y); Ω∗(−δ)), (11)

where Φd+1(·; Ω∗(−δ)) is the cdf of Nd+1(0d+1, Ω∗(−δ)). Therefore, the cdf of the skew-normal
copula CSN(·; δ, Ψ) can be written by

CSN(u; δ, Ψ) = 2Φd+1((0, F−1
SN (u1; δ1), . . . , F−1

SN (ud; δd)); Ω∗(−δ)). (12)

3. Tail Asymmetry of the Skew-Normal Copula

In this section, we explore tail asymmetry of the skew-normal copula via the mea-
sure (2) and its asymptotic behavior. We will show in Proposition 1 that the measure (2),
after properly scaled, quantifies the difference between the upper and lower tail orders
when they differ. Moreover, when the upper and lower tail orders coincide, the measure (2)
quantifies the difference between the upper and lower tail order parameters. These results
support the use of the measure (2) for quantifying tail asymmetry of the skew-normal
copula since, to our knowledge, difference-based measures of asymmetry proposed in the
literature do not measure tail asymmetry properly when the upper and lower tail indices
are not equal.

3.1. Measure of Tail Asymmetry and Tail Order

This section explores the relationship between the measure of tail asymmetry (2) and
the tail order. To this end, suppose that a bivariate copula C satisfies (4) and (5).

The next proposition states that the measure of tail asymmetry (2) can be asymptoti-
cally represented in terms of the difference between the upper and lower tail indices.

Proposition 1 (Measure of tail asymmetry and tail order). Let C be a bivariate copula with
lower and upper tail orders κL(C) and κU(C), respectively. If κU(C) 6= κL(C), then

αC(u) ∼ {κU(C)− κL(C)} log u, u ↓ 0. (13)

If κU(C) = κL(C) and C admits the upper and lower tail order parameters `∗U(C), `
∗
L(C) ∈ (0, ∞),

then

αC(u) ∼ log
(
`∗U(C)
`∗L(C)

)
. (14)

Remark 1 (Relationship with TDCs). Equation (14) implies that the limit of αC(u) as u ↓ 0 is
obtainable from upper and lower TDCs. Indeed, if κU(C) = κL(C) = 1, `∗U(C) and `∗L(C) corre-
spond to upper and lower TDCs, respectively. Then limu↓0 αC(u) is a straightforward calculation
from (14). This result can be applied to evaluate the limit of αC(u) of, for example, the skew-t
distribution, whose upper and lower TDCs are available; see [19].

3.2. Measure of Tail Asymmetry of the Skew-Normal Copula

From this section, we focus on the bivariate case d = 2. Let ρ̃ ∈ (−1, 1) be the off-
diagonal entry of Ψ and ρ ∈ (−1, 1) be that of Ω. We denote, for example, the bivariate case
of CSN(·; δ, Ψ) by CSN(·; δ, ρ̃) for notational simplicity. Note that ρ̃ is the partial correlation
of Y1 and Y2 given Z0, where Z0, Y1 and Y are those used in (1). By calculation, it holds that

ρ = ρ̃
√
(1− δ2

1)(1− δ2
2) + δ1δ2. (15)

By selecting (δ1, δ2) ∈ (−1, 1)2 and ρ̃ ∈ (−1, 1) independently, the range of the
parameter ρ implied by (15) is given by
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δ1δ2 −
√
(1− δ2

1)(1− δ2
2) < ρ < δ1δ2 +

√
(1− δ2

1)(1− δ2
2). (16)

Moreover, in the bivariate case, the parameter α̃ is given by

α̃ =
1√

(1− ρ2)(1− ρ̃2)(1− δ2
1)(1− δ2

2)

(
δ1 − ρδ2
δ2 − ρδ1

)
. (17)

The reader is referred to Appendix A.1 for detailed derivations of (15) and (17).
We first consider the case of a finite threshold u ∈ (0, 1/2]. In this case, the measure of

tail asymmetry (2) of the skew-normal copula can be evaluated by the following proposition.
Note that we denote by αSN(u; δ, ρ̃) the measure (2) of the skew-normal copula CSN(·; δ, ρ̃).

Proposition 2 (Measure of tail asymmetry of the skew-normal copula). Let CSN(·; δ, ρ̃) be
the skew-normal copula with δ ∈ (−1, 1)2 and ρ̃ ∈ (−1, 1). Then, its measure of tail asymmetry (2)
for a finite threshold u ∈ (0, 1/2] is given by

αSN(u; δ, ρ̃) = log
(

CSN(u, u;−δ, ρ̃)

CSN(u, u; δ, ρ̃)

)

= log

Φ3

(
(0, F−1

SN (u;−δ1), F−1
SN (u;−δ2)); Ω∗(δ)

)
Φ3

(
(0, F−1

SN (u; δ1), F−1
SN (u; δ2)); Ω∗(−δ)

)
, (18)

where

Ω∗(δ) =


1 δ1 δ2

δ1 1 ρ̃
√

1− δ2
1

√
1− δ2

2 + δ1δ2

δ2 ρ̃
√

1− δ2
1

√
1− δ2

2 + δ1δ2 1

.

The Formula (18) enables us to numerically compute αSN(u; δ, ρ̃) for a finite threshold
u ∈ (0, 1/2].

For an illustrative example, Figure 2 provides curves of αSN(u; δ, ρ̃), u = 0.01, for the
skew-normal copula with different parameters. The function Φ3 in (18) is evaluated
by pmvnorm(algorithm = TVPACK) [25] in the R package mvtnorm. We observe that the
measure αSN(u; δ, ρ̃) is symmetric in δ with respect to δ = 0 and is monotonically changing
in ρ̃.

We next consider the asymptotic behavior of α(u) for an extremely large and small
thresholds. Summarizing the existing results in the literature, we have that

κL(CSN; δ, ρ̃) =

{
2

1+ρ̃ , if δ1, δ2 ≥ 0,
2

1+ρ , if δ1, δ2 ≤ 0;
(19)

see Appendix A.2 for detailed calculations. Together wtih κU(CSN; δ, ρ̃) = κL(CSN;−δ, ρ̃),
we obtain the following result.

Proposition 3 (Asymptotic behavior of the measure of tail asymmetry of the skew-normal
copula). Let CSN(·; δ, ρ̃) be the skew-normal copula with δ = (δ1, δ2) ∈ (−1, 1)2 and ρ̃ ∈
(−1, 1). Suppose that δ1 and δ2 have the same sign, which includes the case when at least one of
them is zero. Then, the measure of tail asymmetry (2) of CSN(·; δ, ρ̃) satisfies

lim
u↓0

αSN(u; δ, ρ̃)

log u
= sign(δ1, δ2)

(
2

1 + ρ
− 2

1 + ρ̃

)
, (20)
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where

sign(δ1, δ2) =

{
1, if δ1 ≥ 0 and δ2 ≥ 0,
−1, if δ1 ≤ 0 and δ2 ≤ 0.

−1.0 −0.5 0.0 0.5 1.0

−
15

−
10

−
5

0
5

10
15

δ

α(u)

ρ~ = − 0.8
ρ~ = − 0.6
ρ~ = − 0.4
ρ~ = − 0.2
ρ~ = 0
ρ~ = 0.2
ρ~ = 0.4
ρ~ = 0.6
ρ~ = 0.8

u = 0.01

Figure 2. The measure of tail asymmetry αSN(u; δ, ρ̃), u = 0.01, for different parameters of the
skew-normal copula with δ1 = δ2 = δ.

Remark 2 (δ1 and δ2 with opposite signs). It is assumed in Proposition 3 that δ1 and δ2 have
the same sign. However, the upper and lower tail orders of the bivariate skew-normal copula are
investigated in [17] for more general δ1 and δ2. Based on their results, analytical expression of the
limit limu↓0 αSN(u; δ, ρ̃)/ log u can be derived even for δ1 and δ2 with opposite signs, although the
expression may not be as simple as (20).

Note that αSN(u; δ, ρ̃) = 0 for every u ∈ (0, 1/2] if δ = 0. The asymptotic behavior of
αSN(u; δ, ρ̃) as u ↓ 0 is illustrated in Figure 3, where αSN(u; δ, ρ̃) is evaluated by (18) with
the algorithm TVPACK. It is observed that the curves of αSN(u; δ, ρ̃) against − log(u) are
asymptotically linear.

2 4 6 8 10 12 14

0
2

4
6

8
10

− log(u)

α(u) δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 0.4
δ = 0.5
δ = 0.6
δ = 0.7
δ = 0.8
δ = 0.9

ρ~ = 0

Figure 3. The measure of tail asymmetry αSN(u; δ, ρ̃) against − log(u) for different skewness param-
eters δ of the skew-normal copula with ρ̃ = 0.

Remark 3 (A test of symmetry). The measure of tail asymmetry (18) can be applied to testing
symmetry of the bivariate skew-normal copula. We first note that the density of the bivariate
skew-normal copula is symmetric about u = (0.5, 0.5) for δ = 0 and not symmetric for δ 6= 0.
Then, it seems reasonable to consider a hypothesis test of symmetry of the skew-normal copula by
testing the null hypothesis H0: δ = 0 against the alternative hypothesis H1: δ 6= 0.
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Let U1, . . . , Un be a random sample from the bivariate skew-normal copula. For u ∈ (0, 0.5],
the sample analogue of the measure of tail asymmetry [9] is defined by

α̂SN(u) = log
(

TU(u)
TL(u)

)
,

where

TL(u) =
1
n

n

∑
i=1

1(U1i ≤ u, U2i ≤ u), TU(u) =
1
n

n

∑
i=1

1(U1i ≥ 1− u, U2i ≥ 1− u),

U i = (U1i, U2i), and 1(·) is the indicator function, namely, 1(A) = 1 if A is true and
1(A) = 0 otherwise. For 0 < p < 1, the 100(1 − p)% asymptotic confidence interval for
αSN(u; 0, ρ̃) discussed by [9] is[

α̂SN(u)−
zp/2σ̂(u)
√

n
, α̂SN(u) +

zp/2σ̂(u)
√

n

]
=: CI,

where zp/2 = Φ−1(1 − p/2) and σ̂(u) = [{TL(u) + TU(u)}/{TL(u)TU(u)}]1/2. Since
αSN(u; 0, ρ̃) = 0 under the null hypothesis H0, the test of symmetry based on the 100(1− p)%
asymptotic confidence interval for αSN(u; 0, ρ̃) is to accept H0 if 0 ∈ CI and to reject H0 if 0 /∈ CI.
This test could be useful if analysts are interested in testing symmetry of the skew-normal copula
based on observations in tails.

Figure 2 implies that, for a small u and a fixed ρ̃, αSN(u; δ, ρ̃) 6= 0 holds for δ 6= 0 and the
power of this test of symmetry tends to be high for moderately large values of |δ|. In particular,
the test seems to be more powerful for ρ̃ ≤ −0.6 than for ρ̃ > −0.6. Figure 3 agrees with Figure 2
that, given a fixed value of u and ρ̃ = 0, the greater the value of δ(> 0), the greater the power of the
test. A more detailed discussion about the power of the test, including the relationship between the
power and the value of u, would be future work.

Remark 4 (Measure of tail asymmetry and TDCs). The measure of tail asymmetry (2) of the
skew-normal copula can also be written by

αSN(u; δ, ρ̃) = log
(

λL(u;−δ, ρ̃)

λL(u; δ, ρ̃)

)
, (21)

where

λL(u; δ, ρ̃) =
CSN(u, u; δ, ρ̃)

u
. (22)

The value λL(u; δ, ρ̃) for a finite u ∈ (0, 1/2] can be computed by (18) with the algorithm
TVPACK. Figure 4 shows the curves of log λL(0.01; δ, ρ̃) against δ for various correlation parameters.
It is observed that λL(0.01; δ, ρ̃) increases as |δ| goes to 1; moreover, λL(0.01; δ, ρ̃) is higher for
δ < 0 than for δ > 0.

Remark 5 (Asymptotic formulas of the TDCs). It is shown in [26] that

λL(u; 0, ρ) ∼ u
1−ρ
1+ρ (1 + ρ)

√
1 + ρ

1− ρ
(−4π log u)−

ρ
1+ρ , u ↓ 0. (23)

Moreover, ([14], Theorem 2) shows that, for u ↓ 0,

λL(u; δ12, ρ) ∼

uβ2 (2πλ)β2
√

πβ(1+β2)2 (− log u)β2− 1
2 , if δ > 0,

u
1−ρ
1+ρ

(
1+ρ

2

)√
1+ρ
1−ρ (−π log u)−

ρ
1+ρ , if δ < 0,

(24)
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where λ = ζ = α̃(1 + ρ)/
√

1 + α̃2(1− ρ2), α̃ = α̃1 = α̃2, ζ = ζ1 = ζ2 and β is defined in (A2)
such that β2 + 1 = 2/(1 + ρ̃).

−1.0 −0.5 0.0 0.5 1.0

−
25

−
20

−
15

−
10

−
5

0

δ

log λL(u)

ρ~ = 0.8
ρ~ = 0.6
ρ~ = 0.4
ρ~ = 0.2
ρ~ = 0
ρ~ = − 0.2
ρ~ = − 0.4
ρ~ = − 0.6
ρ~ = − 0.8

u = 0.01

Figure 4. Values of log λL(u; δ, ρ̃), u = 0.01, computed by (22) with the algorithm TVPACK.

The following asymptotic formulas of λL are also given in ([27], Appendix B) based on the tail
expansion of the skew-normal copula.

λL(u; δ12, ρ̃) ∼

κ−1uκ−1(−2 log u)κ− 3
2 , if δ > 0,(

1+ρ
2

)
u

1−ρ
1+ρ (−2 log u)−

ρ
1+ρ , if δ < 0,

(25)

where

κ =
2(1− δ2)

1 + ρ− 2δ2 =
2

1 + ρ̃
.

Note that the asymptotic formulas in (25) are slightly different from those in (24), but they lead
to the same tail order. With this observation, the asymptotic formulas (23), (24) and (25) yield the
same limit (20) by using (21).

4. Accuracy of the Asymptotic Formulas

In Section 3, various approaches are provided to compute the measure of tail asym-
metry of the skew-normal copula. It is partly observed in Figure 3 that the Formula (18)
with the algorithm TVPACK gives results consistent with the asymptotic Formula (20). As
mentioned in Remark 5, the measure of tail asymmetry (2) can also be computed from
the asymptotic formulas (23), (24) and (25) derived in the literature. In line with this, this
section explores the performance of these asymptotic formulas in a series of numerical
experiments. For ease of illustration, we focus on the equiskewed case δ1 = δ2 = δ.

We first compute the value of λL(u; δ12, ρ̃) for u = 0.01 as an extremely small u
by (22) and (12) with Φ3 evaluated by pmvnorm(algorithm = TVPACK) [25] in the R package
mvtnorm. Figure 5 plots the contour of log λL(0.01; δ12, ρ̃) for δ ∈ [−0.999, 0.999] and ρ̃ ∈
[−0.8, 0.999] by using (12). The range of ρ̃ is restricted due to the numerical limitation. We
observe that log λL(0.01; δ12, ρ̃) approaches 0 as ρ̃ and |δ| go to 1, which is consistent with
the fact that the skew-normal copula is comonotonic for these parameters. Monotonicity
of the function λL(u; δ12, ρ̃) with respect to δ is also indicated from Figure 5. Namely, it is
observable that the value of log λL(0.01; δ12, ρ̃) for a fixed ρ̃ is monotonically decreasing
for δ < 0 and increasing for δ > 0; thus, the minimum is attained at δ = 0.

For special cases, if ρ = 0, the correlation between Y1 and Y2 in (1) is given by δ2. If
δ = ±1, the correlation is one, the variables are comonotonic, and thus log λL(u;±12, 0) =
log 1 = 0. If δ = 0, the variables are independent; thus, log λL(u; 02, 0) = log u.
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Figure 5. Contour of log λL(0.01; δ12, ρ̃) for δ ∈ [−0.999, 0.999] and ρ ∈ [−0.8, 0.999] based on (22)
with the algorithm TVPACK.

Next, we demonstrate the performance of the asymptotic formulas presented in Re-
mark 5. Figure 6 plots the contour of the difference of log λL(0.01; δ12, ρ̃) based on the
asymptotic Formula (24) and that based on the numerical evaluation of (22) with the algo-
rithm TVPACK. The same plot is provided for the asymptotic Formula (25) instead of (24).
Interestingly, we observe that the two asymptotic formulas perform well on the different
areas of the parameter range. In particular, the difference of the asymptotic approximation
based on the Formula (24) is large around the boundaries. Discontinuity of the asymptotic
formulas is also observed around δ = 0, which is more visible for the Formula (24).
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Figure 6. (Top) Contour of the difference of log λL(0.01; δ12, ρ̃) based on the asymptotic Formula (24)
and that based on the numerical evaluation of (22) with the algorithm TVPACK for δ ∈ [−0.999, 0.999]
and ρ̃ ∈ [−0.8, 0.999]. (Bottom) The same contour plot based on the asymptotic Formula (25) instead
of (24).
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5. Conclusions

In this paper, we explored the measure of tail asymmetry proposed in [9] and its
asymptotic behavior. We showed that the measure, after properly scaled, is asymptotically
equivalent to the difference of the upper and lower tail orders [13]. Based on this result,
we derived an analytical expression of the measure of tail asymmetry for the skew-normal
copula. The performance of this formula is verified by comparing it to another analytical
formula with a finite threshold. We also investigated the asymptotic formulas of the
TDC of the skew-normal copula proposed in the literature. Our numerical experiments
revealed that these formulas perform well for moderate values of parameters but are not
recommendable for approximating the measure of tail asymmetry with finite thresholds
when the parameters are at their boundaries.

Concerning future research, a simulation study and real-data analysis may be ben-
eficial for statistical applications on the measures of tail asymmetry, particularly of the
skew-normal copula. It may also be helpful to compare various measures of asymmetry for
different copulas.
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Appendix A. Detailed Calculations

Appendix A.1. Parameters of the Bivariate Skew-Normal Copula

In this section, we describe detailed derivations of (15) and (17).
For the 2× 2 correlation matrices Ω and Ψ, let ρ = Ω12 = Ω21 and ρ̃ = Ψ12 = Ψ21. Then,

ρ = cor(Y1, Y2) = ρ̃∆1∆2 + δ1δ2, ∆1 =
√

1− δ2
1 , ∆2 =

√
1− δ2

2 .

Here, ρ̃ is the partial correlation of Y1 and Y2 given that Z0 is fixed in the trivariate
random vector (Z0, Y1, Y2) given in (1). By using (6), we have

Ω = ∆
(

Ψ + ζζ>
)

∆ = ∆
((

1 ρ̃
ρ̃ 1

)
+

(
ζ2

1 ζ1ζ2
ζ1ζ2 ζ2

2

))
∆,

where

∆ =

(
∆1 0
0 ∆2

)
=

√1− δ2
1 0

0
√

1− δ2
2

 =

1/
√

1 + ζ2
1 0

0 1/
√

1 + ζ2
2

.
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Hence, we have that

Ω =

(
1 ρ
ρ 1

)
= ∆

(
1 + ζ2

1 ρ̃ + ζ1ζ2
ρ̃ + ζ1ζ2 1 + ζ2

2

)
∆

=

 1 ρ̃+ζ1ζ2√
1+ζ2

1

√
1+ζ2

2
ρ̃+ζ1ζ2√

1+ζ2
1

√
1+ζ2

2
1

 =

(
1 ρ̃∆1∆2 + δ1δ2

ρ̃∆1∆2 + δ1δ2 1

)
,

which yields (15).
Next, we check α̃. By using

Ω−1δ =
1

1− ρ2

(
1 −ρ
−ρ 1

)(
δ1
δ2

)
=

1
1− ρ2

(
δ1 − ρδ2
δ2 − ρδ1

)
,

1− δ>Ω−1δ =
1− ρ2 − δ2

1 + 2ρδ1δ2 − δ2
2

1− ρ2 ,

we have from (7) that

α̃ =
Ω−1δ√

1− δ>Ω−1δ
=

1√
(1− ρ2)

(
1− ρ2 − δ2

1 + 2ρδ1δ2 − δ2
2
)(δ1 − ρδ2

δ2 − ρδ1

)
. (A1)

Recall that the extended correlation matrix Ω∗(δ) in (10) is given by

Ω∗(δ) =

 1 δ1 δ2
δ1 1 ρ
δ2 ρ 1

.

Since
det Ω∗(δ) = 1− ρ2 − δ2

1 + 2ρδ1δ2 − δ2
2 ,

the parameter α̃ in (A1) is given by

α̃ =

(
α̃1
α̃2

)
=

1√
(1− ρ2)det Ω∗(δ)

(
δ1 − ρδ2
δ2 − ρδ1

)
.

Note that this representation coincides with that in Appendix B of [27], where (α̃1, α̃2)
and Ω∗(δ) are denoted by (β1, β2) and R, respectively. Since

det Ω∗(δ) =1− ρ2 − δ2
1 + 2ρδ1δ2 − δ2

2

= 1− (ρ̃∆1∆2 + δ1δ2)
2 − δ2

1 + 2(ρ̃∆1∆2 + δ1δ2)δ1δ2 − δ2
2

= 1 + δ2
1δ2

2 − ρ̃2
(

1− δ2
1

)(
1− δ2

2

)
− δ2

1 − δ2
2

=
(

1− ρ̃2
)(

1− δ2
1

)(
1− δ2

2

)
,

we obtain (17).

Appendix A.2. Tail Orders of the Bivariate Skew-Normal Copula

In this section, we summarize tail orders of the bivariate skew-normal copula known
in the literature. Since κU(CSN; δ, ρ̃) = κL(CSN;−δ, ρ̃), we study only the lower tail order
κL(CSN; δ, ρ̃), ρ̃ ∈ (−1, 1), for various δ = (δ1, δ2) ∈ (−1, 1)2. Moreover, we focus on the
case when δ1 and δ2 have the same sign, that is, either δ1, δ2 ≥ 0 or δ1, δ2 ≤ 0. In this case,
we will show below that the lower tail order is summarized by (19). The interested reader
is referred to [17] for more general cases of the skewness parameter. Note that the explicit
forms of the tail orders of the skew-normal copula can also be found, for example, in [14,17]
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and [27]. Although they cover different cases of the parameters, their results are consistent
with each other.

Case I: δ1 = δ2 = δ

We first consider the equiskewed case δ1 = δ2 = δ ∈ (−1, 1). It follows from Theorem 2
of [14] that

κL(CSN; δ, ρ̃) =

{
β2 + 1, if α̃ > 0,

2
1+ρ , if α̃ < 0,

where

α̃ =
δ√

(1 + ρ̃)(1 + ρ)(1− δ2)
,

and

β =

√
(1− ρ)(1 + 2(1 + ρ)α̃2)

1 + ρ
, (A2)

and thus, by calculation,

β2 + 1 =
1− ρ̃

1 + ρ̃
+ 1 =

2
1 + ρ̃

.

Note that the signs of α̃ and δ are identical, and that δ = 0 if and only if α̃ = 0. When
δ = 0, we have that

κL(CSN; 0, ρ̃) =
2

1 + ρ̃
=

2
1 + ρ

;

see also Appendix B of [27].

Case II: δ1, δ2 < 0

It is shown in [17] that

κL(CSN; δ, ρ̃) =
2

1 + ρ
,

which is also derived in [27]. Note that the condition ∆1α̃1 + ∆2α̃2 < 0 is imposed in [27],
and this condition is implied by (16). Indeed, we have from (17) that

∆1α̃1 + ∆2α̃2 =
∆1(δ1 − ρδ2) + ∆2(δ2 − ρδ1)√

(1− ρ2)det Ω∗(δ)
, (A3)

and thus the sign of ∆1α̃1 + ∆2α̃2 equals to that of the numerator of the right-hand side
of (A3). From (16), the inequality ∆1δ2 + ∆2δ1 < 0 implies that

∆1(δ1 − ρδ2) + ∆2(δ2 − ρδ1) = ∆1δ1 + ∆2δ2 − ρ(∆1δ2 + ∆2δ1)

< ∆1δ1 + ∆2δ2 − (δ1δ2 + ∆1∆2)(∆1δ2 + ∆2δ1)

= ∆1δ1 + ∆2δ2 − ∆1δ1δ2
2 − ∆2δ2

1δ2 − ∆2

(
1− δ2

1

)
δ2 − ∆1

(
1− δ2

2

)
δ1 = 0,

and thus ∆1α̃1 + ∆2α̃2 < 0.
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Case III: δ1, δ2 > 0

It is shown in [17] that

κL(CSN : δ, ρ̃) = κU(CSN : −δ, ρ̃)

=
1

1− ρ2

1 + α̃2
1
(
1− ρ2)

1 + ζ2
1

+
1 + α̃2

2
(
1− ρ2)

1 + ζ2
2

+
2
(
α̃1α̃2

(
1− ρ2)− ρ

)√(
1 + ζ2

1
)(

1 + ζ2
2
)


=
1

1− ρ2

 1
1 + ζ2

1
+

1
1 + ζ2

2
− 2ρ√(

1 + ζ2
1
)(

1 + ζ2
2
)

+
(

1− ρ2
) α̃1√

1 + ζ2
1

+
α̃2√

1 + ζ2
2

2


=
∆2

1 + ∆2
2 − 2ρ∆1∆2

1− ρ2 + (∆1α̃1 + ∆2α̃2)
2. (A4)

Note that, in [17], ζ1 and ζ2 above are denoted by λ1 and λ2, respectively. The
Formula (A4) is also derived in Appendix B of [27]. Note again that the condition ∆1α̃1 +
∆2α̃2 > 0 imposed in [27] is implied by (16). We will check that

∆2
1 + ∆2

2 − 2ρ∆1∆2

1− ρ2 + (∆1α̃1 + ∆2α̃2)
2 =

2
1 + ρ̃

, (A5)

that is, the expression (A4) can be simplified as

κL(CSN : δ, ρ̃) = κU(CSN : −δ, ρ̃) =
2

1 + ρ̃
.

First, by multiplying
(
1− ρ2) on the right-hand side of (A5), the desired equation is

equivalent to

∆2
1 + ∆2

2 − 2ρ∆1∆2 +
(

1− ρ2
)
(∆1α̃1 + ∆2α̃2)

2 =
2(1− ρ̃)

(
1− ρ2)

(1− ρ̃2)
,

which is also equivalent to

(1− ρ̃2)∆2
1∆2

2

{
∆2

1 + ∆2
2 − 2ρ∆1∆2 +

(
1− ρ2

)
(∆1α̃1 + ∆2α̃2)

2
}
= 2(1− ρ̃)

(
1− ρ2

)
∆2

1∆2
2 (A6)

by multiplying
(
1− ρ̃2)∆2

1∆2
2 on both sides. Since

(∆1α̃1 + ∆2α̃2)
2 =

{(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2

(1− ρ2)(1− ρ̃2)
(
1− δ2

1
)(

1− δ2
2
) ,

the left-hand side of (A6) reduces to

(1− ρ̃2)∆2
1∆2

2(∆
2
1 + ∆2

2)− 2ρ(1− ρ̃2)∆3
1∆3

2 + {(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2. (A7)

The last two terms of (A7) are expanded into

−2ρ
(

1− ρ̃2
)

∆3
1∆3

2 + {(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2

= −2ρ
(

1− ρ̃2
)

∆3
1∆3

2 + 2(δ1 − ρδ2)(δ2 − ρδ1)∆1∆2

+ (δ1 − ρδ2)
2∆2

1 + (δ2 − ρδ1)
2∆2

2.

(A8)
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By using δ1δ2 − ρ = −ρ̃∆1∆2, the coefficient of ∆1∆2 at the first two terms in the
right-hand side of (A8) is given by

− 2ρ
(

1− ρ̃2
)(

1− δ2
1

)(
1− δ2

2

)
+ 2(δ1 − ρδ2)(δ2 − ρδ1)

= −2ρ
(

1− δ2
1 − δ2

2 + δ2
1δ2

2

)
+ 2ρρ̃2

(
1− δ2

1

)(
1− δ2

2

)
+ 2
(

δ1δ2 − ρδ2
1 − ρδ2

2 + ρ2δ1δ2

)
= 2

(
δ1δ2 − ρ− ρδ2

1δ2
2 + ρ2δ1δ2

)
+ 2ρρ̃2

(
1− δ2

1

)(
1− δ2

2

)
= −2ρ̃(1− ρδ1δ2)∆1∆2 + 2ρρ̃2∆2

1∆2
2

= −2ρ̃(1− ρδ1δ2 − ρρ̃∆1∆2)∆1∆2

= −2ρ̃
(

1− ρ2
)

∆1∆2.

(A9)

By using ρ = ρ̃∆1∆2 + δ1δ2, the last two terms of the right-hand side of (A8) are
rearranged as follows:

(δ1 − ρδ2)
2∆2

1 + (δ2 − ρδ1)
2∆2

2

=
(

δ1

(
1− δ2

2

)
− ρ̃∆1∆2δ2

)2
∆2

1 +
(

δ2

(
1− δ2

1

)
− ρ̃∆1∆2δ1

)2
∆2

2

=
{
(δ1∆2 − ρ̃∆1δ2)

2 + (δ2∆1 − ρ̃∆2δ1)
2
}

∆2
1∆2

2

=
{(

δ2
1 + δ2

2 − 2δ2
1δ2

2

)(
1 + ρ̃2

)
− 4ρ̃δ1δ2∆1∆2

}
∆2

1∆2
2.

(A10)

Combining (A9) and (A10), the term (A8) reduces to

−2ρ
(

1− ρ̃2
)

∆3
1∆3

2 + {(δ1 − ρδ2)∆1 + (δ2 − ρδ1)∆2}2

=
{
−2ρ̃

(
1− ρ2

)
+
(

δ2
1 + δ2

2 − 2δ2
1δ2

2

)(
1 + ρ̃2

)
− 4ρ̃δ1δ2∆1∆2

}
∆2

1∆2
2.

Therefore, the desired equation (A6) is now

(1− ρ̃2)
{

∆2
1 + ∆2

2 − 2ρ∆1∆2 +
(

1− ρ2
)
(∆1α̃1 + ∆2α̃2)

2
}
= 2(1− ρ̃)

(
1− ρ2

)
,

which can be checked as follows:

(1− ρ̃2)
{

∆2
1 + ∆2

2 − 2ρ∆1∆2 +
(

1− ρ2
)
(∆1α̃1 + ∆2α̃2)

2
}

=
(

2− δ2
1 − δ2

2

)(
1− ρ̃2

)
− 2ρ̃

(
1− ρ2

)
+
(

δ2
1 + δ2

2 − 2δ2
1δ2

2

)(
1 + ρ̃2

)
− 4ρ̃δ1δ2∆1∆2

= 2
(

1− δ2
1δ2

2 − ρ̃2∆2
1∆2

2 − 2ρ̃δ1δ2∆1∆2

)
− 2ρ̃

(
1− ρ2

)
= 2(1− ρ2)− 2ρ̃(1− ρ2)

= 2(1− ρ̃)
(

1− ρ2
)

.

Case IV: One of δ1 and δ2 Is Zero and the Other Is Negative

By symmetry, it suffices to consider the case when δ1 = 0 and δ2 < 0. In this case, [17]
shows that κL(CSN : δ, ρ̃) = 2/(1 + ρ).

Case V: One of δ1 and δ2 Is Zero and the Other Is Positive

By symmetry, it suffices to consider the case when δ1 = 0 and δ2 > 0. In this case, [17]
shows that, if α̃1 + α̃2∆2 > 0, then

κL(CSN : δ, ρ̃) =
(∆2 − ρ)2

(1− ρ2)
+ (α̃1 + α̃2∆2)

2 + 1.
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The condition α̃1 + α̃2∆2 > 0 is always satisfied since

α̃1 + α̃2∆2 =
δ2(∆2 − ρ)√

(1− ρ2)det Ω∗(δ)

and ρ < ∆2 by (16). Since det Ω∗(δ) = (1− ρ̃2)(1− δ2
2) and ρ = ρ̃∆2, we have that

(∆2 − ρ)2

(1− ρ2)
+ (α̃1 + α̃2∆2)

2 =
(∆2 − ρ)2{δ2

2 + det Ω∗(δ)}
(1− ρ2)det Ω∗(δ)

=
(1− ρ̃)2(1− ρ̃2 + ρ̃2δ2

2)

(1− ρ2)(1− ρ̃2)

=
(1− ρ̃)(1− ρ̃2(1− δ2

2))

(1− ρ2)(1 + ρ̃)

=
1− ρ̃

1 + ρ̃
.

Therefore,

κL(CSN : δ, ρ̃) =
(∆2 − ρ)2

(1− ρ2)
+ (α̃1 + α̃2∆2)

2 + 1 =
2

1 + ρ̃
.

Appendix B. Proofs

Proof of Lemma 1. By (9), it holds that

(X′1, . . . , X′d) | {X
′
0 > 0} ∼ SN(−δ, Ψ),

where (X′0, X′1, . . . , X′d) ∼ Nd+1(0d+1, Ω∗(−δ)). By (8), we have

−(X′1, . . . , X′d) | {−X′0 < 0} ∼ SN(δ, Ψ).

Since −(X′0, X′1, . . . , X′d) ∼ Nd+1(0d+1, Ω∗(−δ)), we obtain (11).
According to Sklar’s theorem [28], the skew-normal copula CSN(·; δ, Ψ) has the cdf

CSN(u; δ, Ψ) = FSN(F−1
SN (u1; ζ1), . . . , F−1

SN (ud; ζd); δ, Ψ).

Then (12) follows directly from (11).

Proof of Proposition 1. By (4) and (5), we have, as x → ∞,

αC(1/x) = log

(
C(1− 1/x, 1− 1/x)

C(1/x, 1/x)

)

∼ log

(
x−κU(C)`U(1/x)
x−κL(C)`L(1/x)

)

∼ {κU(C)− κL(C)} log
(

1
x

)
+ log `U(1/x)− log `L(1/x).

This immediately implies (14). Notice that the functions x 7→ `U(1/x) and x 7→ `L(1/x)
are slowly varying at ∞. Together with Proposition 2.6 (i) of [29], we obtain (13).

Proof of Proposition 2. Notice from (8) that

CSN(1− u1, 1− u2; δ, ρ̃) = CSN(u1, u2;−δ, ρ̃), (u1, u2) ∈ (0, 1)2. (A11)
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By (12), it holds that

αSN(u; δ, ρ̃) = log

(
CSN(1− u, 1− u; δ, ρ̃)

CSN(u, u; δ, ρ̃)

)

= log
(

CSN(u, u;−δ, ρ̃)

CSN(u, u; δ, ρ̃)

)

= log

Φ3

(
0, F−1

SN (u;−δ1), F−1
SN (u;−δ2); Ω∗(δ)

)
Φ3

(
0, F−1

SN (u; δ1), F−1
SN (u; δ2); Ω∗(−δ)

)
,

which completes the proof.

Proof of Proposition 3. By (A11), it holds that κU(CSN; δ, ρ̃) = κL(CSN;−δ, ρ̃). Then the
Formula (20) follows directly from (13) in Proposition 1 and the detailed calculations
provided in Appendix A.2, which is also summarized in (19).
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