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Abstract: The second kind of two-dimensional nonlinear integral equation (NIE) with symmetric and
nonsymmetrical kernel is solved in the Banach space L2[0, 1]× L2[0, 1]. Here, the NIE’s existence and
singular solution are described in this passage. Additionally, we use a numerical strategy that uses
hybrid and block-pulse functions to obtain the approximate solution of the NIE in a two-dimensional
problem. For this aim, the two-dimensional NIE will be reduced to a system of nonlinear algebraic
equations (SNAEs). Then, the SNAEs can be solved numerically. This study focuses on showing the
convergence analysis for the numerical approach and generating an estimate of the error. Examples
are presented to prove the efficiency of the approach.
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1. Introduction

Integral equations are used in many disciplines of applied mathematics to explore and
solve problems. See [1–6] for more information on the topic of two-dimensional nonlinear
integral equations, which have long been of growing interest in many fields, including
medicine [7], biology [8], physics [9], geography and fuzzy control [10]. According to the
references [11–16], many problems in engineering [17], applied mathematics and mathe-
matical physics [18] can be reduced to two-dimensional nonlinear integral equations with
a symmetric and nonsymmetrical kernel. The analytical solutions for these equations are
typically difficult. Therefore, it is necessary to use numerical methods or semianalytical
methods to obtain the solutions numerically. For example, Bernstein polynomial hybrids
with functions of block-pulse form [19,20] and Legendre hybrids with functions of block-
pulse form [21,22] have both recently been examined as computational approaches for
solving two-dimensional nonlinear integral equations. Alhazmi et al., in [23], used the
Lerch polynomial method for solving mixed integral equations in position and time with a
strongly symmetric singular kernel. In [24], Azeem et al. conducted research by using the
fractional derivative as a treatment for a partial cancer stem cell model. In [25], Attia et al.
presented numerical solutions for the fractional differential equations, while in [26], Liaqat
et al. presented Shehu transform and the Adomian decomposition technique in a novel
algorithm form to establish approximate and exact solutions to quantum mechanics models.
Electrical engineering was originally introduced to block-pulse functions by Harmuth; also,
other academics have discussed the topic [27].
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Recently, hybrid functions have been considered for solving numerous mathemati-
cal models, including [28–30]. Using block-pulse functions and Legendre polynomials,
Maleknejad and Hashemizadeh described a method for solving mixed-type Hammerstein
integral equations [31]. Also, hybrid functions have been applied for solving nonlinear
Fredholm–Hammerstein systems. Hesameddini et al., in [32,33], obtained a numerical
solution to partial differential equations with nonlocal integration terms. Rafiei et al., in [34]
obtained the optimal solution of linear time-delay systems. In [35], Ray and Singh discussed
the solution of stochastic Volterra–Fredholm integral equations, numerically using hybrid
functions. Hashemzadeh and Maleknejad included the necessary definitions as well as
some properties of Legendre polynomials and hybrid block-pulse functions [21].

The focus of this research is how to obtain the numerical solution of nonlinear integral
equations with a symmetric and nonsymmetrical kernel in two dimensions. By applying
special conditions, we utilize the Banach fixed point theorem to establish the existence
and uniqueness of a solution for these equations [36–40]. Our investigation delves into the
characteristics of hybrid functions, which are a combination of block-pulse functions and
Legendre polynomials. We employ these hybrid functions to solve the integral equations,
taking advantage of their useful properties. The approach involves transforming the
integral equation into a system of algebraic equations, simplifying and improving the
process for finding solutions. Overall, our study provides a novel technique for solving
two-dimensional nonlinear integral equations with a symmetric and nonsymmetrical kernel
using hybrid functions and demonstrates its effectiveness in obtaining accurate solutions.

The present study is structured into six sections, each focusing on a specific aspect of
the numerical approach for solving a two-dimensional nonlinear integral equation with a
symmetric and nonsymmetrical kernel. Section 2 delves into the existence and uniqueness
of the solution for Equation (1), while Section 3 outlines a method for estimating the
solution to this equation. In Section 4, we provide a detailed analysis of the convergence
properties of our proposed method. The numerical results obtained from applying this
approach are presented in Section 5, followed by concluding remarks in Section 6.

This study aims to present a numerical approach for solving the following two-
dimensional nonlinear integral equation with a symmetric and nonsymmetrical
kernel approximatively:

γψ(x, y) = f (x, y) + λ1

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)µ(τ, v, ψ(τ, v))dvdτ

+ λ2

∫ x

0

∫ 1

0
G(x, τ; y, v)ν(τ, v, ψ(τ, v))dvdτ,

(1)

where λ1 and λ2 are constant scalers having several physical meanings; the function ψ(x, y)
is unknown in the Banach spaces L2[0, 1]× L2[0, 1]. The kernels Φ(x, τ; y, v) and G(x, τ; y, v)
are continuous in the same space, and the known function f (x, y) is continuous in the
space L2[0, 1]× L2[0, 1]. In addition, the constant γ defines the kind of nonlinear integral
equations.

2. Existence of a Unique Solution for the Integral Equation with Symmetric and
Nonsymmetrical Kernel

The existence of a unique solution of problem (1) is discussed and proved in this
section using the Banach fixed point theorem. For this, we write Equation (1) in the form of
an integral operator:

Vψ(x, y) =
1
γ

f (x, y) + Vψ(x, y); γ 6= 0, (2)
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where

Vψ(x, y) =
λ1

γ

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)µ(τ, v, ψ(τ, v))dvdτ

+
λ2

γ

∫ x

0

∫ 1

0
G(x, τ; y, v)ν(τ, v, ψ(τ, v))dvdτ.

(3)

We assume the following conditions:

(i) The kernels Φ(x, τ; y, v) and G(x, τ; y, v) satisfy the following conditions:
‖Φ(x, τ; y, v)‖ ≤ A1, ‖G(x, τ; y, v))‖ ≤ A2, where A1 and A2 are two constants,
assume A = max{A1, A2}.

(ii) ‖ f (x, y)‖ =
[∫ 1

0

∫ 1
0 | f (x, y)|2dxdy

] 1
2
= D, D is a constant.

(iii) The function µ(x, y, ψ(x, y)) satisfies the following conditions:

‖µ(x, y, ψ(x, y))‖ =
[∫ 1

0

∫ 1

0
|µ(x, y, ψ(x, y))|2dxdy

] 1
2

≤ M1‖ψ(x, y)‖ (4)

‖µ(x, y, ψ1(x, y))− µ(x, y, ψ2(x, y))‖ ≤ M2‖ψ1(x, y)− ψ2(x, y)‖, (5)

where M1 and M2 are constants.
(iv) The function ν(x, y, ψ(x, y)) is bounded and satisfies the following:

‖ν(x, y, ψ(x, y))‖ =
[∫ 1

0

∫ 1

0
|ν(x, y, ψ(x, y))|2dxdy

] 1
2

≤ N1‖ψ(x, y)‖ (6)

‖ν(x, y, ψ1(x, y))− ν(x, y, ψ2(x, y))‖ ≤ N2‖ψ1(x, y)− ψ2(x, y)‖, (7)

where, N1 and N2 are constants.

Theorem 1. Assume that the conditions (i)–(iv) are satisfied. Then, Equation (1) has a unique
solution ψ(x, y) in the space L2[0, 1]× L2[0, 1], if the condition

η = A
∣∣∣∣λγ
∣∣∣∣[M + N] < 1; (λ = max{λ1, λ2}, M = max{M1, M2}, N = max{N1, N2}) (8)

is true.

To prove the theorem, the following two lemmas must be proven:

Lemma 1. Under the conditions (i), (ii), (iii-4) and (iv-6), the operator Vψ(x, y), defined by
Equation (2), maps the space L2[0, 1]× L2[0, 1] into itself.

Proof. In light of Formulas (2) and (3), we obtain

‖Vψ(x, y)‖ ≤ 1
|γ| ‖ f (x, y)‖+

∣∣∣∣λ1

γ

∣∣∣∣∥∥∥∥∫ 1

0

∫ 1

0
|Φ(x, τ; y, v)|µ(τ, v, ψ(τ, v))dvdτ

∥∥∥∥
+

∣∣∣∣λ2

γ

∣∣∣∣∥∥∥∥∫ x

0

∫ 1

0
|G(x, τ; y, v)|ν(τ, v, ψ(τ, v))dvdτ

∥∥∥∥.

From conditions (i) and (ii), we obtain

‖Vψ(x, y)‖ ≤ D
|γ| + A

∣∣∣∣λ1

γ

∣∣∣∣∥∥∥∥∫ 1

0

∫ 1

0
|µ(τ, v, ψ(τ, v))dvdτ

∥∥∥∥
+ A

∣∣∣∣λ2

γ

∣∣∣∣∥∥∥∥∫ x

0

∫ 1

0
ν(τ, v, ψ(τ, v))dvdτ

∥∥∥∥.
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Given conditions (iii-4) and (iv-6), the above inequality takes on the following form:

‖Vψ(x, y)‖ ≤ D
|γ| + AM‖ψ(x, y)‖

∣∣∣∣λ1

γ

∣∣∣∣∥∥∥∥∫ 1

0

∫ 1

0
dvdτ

∥∥∥∥
+ AN‖ψ(x, y)‖

∣∣∣∣λ2

γ

∣∣∣∣∥∥∥∥∫ x

0

∫ 1

0
dvdτ

∥∥∥∥,

where max0≤x≤1 |x| = 1, so that the last inequality becomes

‖Vψ(x, y)‖ ≤ D
|γ| + A

∣∣∣∣λγ
∣∣∣∣[M + N]‖ψ(x, y)‖,

since

‖Vψ(x, y)‖ ≤ D
|γ| + η‖ψ(x, y)‖; η = A

∣∣∣∣λγ
∣∣∣∣[M + N] < 1. (9)

According to this inequality, the operator V maps the ball Br ⊂ L2[0, 1]× L2[0, 1] into itself,
where

r =
D

|γ|(1− η)
.

Lemma 2. If the conditions (i), (iii-5) and (iv-7) are verified, then the operator Vψ(x, y) defined by
Equation (2) is continuous in the space L2[0, 1]× L2[0, 1].

Proof. Suppose two functions, Ψ1(x, y) and Ψ2(x, y), satisfy Equation (2). Then,

Vψ1(x, y)−Vψ2(x, y) =
λ1

γ

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)[µ(τ, v, ψ1(τ, v))− µ(τ, v, ψ2(τ, v))]dvdτ

+
λ2

γ

∫ x

0

∫ 1

0
G(x, τ; y, v)[ν(τ, v, ψ1(τ, v))− ν(τ, v, ψ2(τ, v))]dvdτ,

applying the properties of the norm, we obtain

‖Vψ1(x, y)−Vψ2(x, y)‖ ≤
∣∣∣∣λ1

γ

∣∣∣∣∥∥∥∥∫ 1

0

∫ 1

0
|Φ(x, τ; y, v)||µ(τ, v, ψ1(τ, v))− µ(τ, v, ψ2(τ, v))|dvdτ

∥∥∥∥
+

∣∣∣∣λ2
γ

∣∣∣∣∥∥∥∥∫ x

0

∫ 1

0
|G(x, τ; y, v)||ν(τ, v, ψ1(τ, v))− ν(τ, v, ψ2(τ, v))|dvdτ

∥∥∥∥.

In view of the conditions (i), (iii-5) and (iv-7), the above inequality becomes

‖Vψ1(x, y)−Vψ2(x, y)‖ ≤ A
∣∣∣∣λγ
∣∣∣∣[M + N]‖ψ1(x, y)− ψ2(x, y)‖,

since
‖Vψ1(x, y)−Vψ2(x, y)‖ ≤ η‖ψ1(x, y)− ψ2(x, y)‖.

This inequality shows that V is a continuous operator in L2[0, 1]× L2[0, 1]. Moreover, V is
a contraction operator under the condition η < 1.

The previous two Lemmas 1 and 2 show that the operator V defined by (2) is a contraction
operator in the space L2[0, 1]× L2[0, 1]. Hence, from the Banach fixed point theorem, V has a
unique fixed point which is, of course, the unique solution of Equation (1).

3. Method of Solution for the Main Problem

This section applies the collocation method, two-dimensional hybrid functions and
the Gauss quadrature formula to transform the integral Equation (1) into nonlinear systems
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of equations. The following results are obtained by expanding the function Ψ(x, y) in
Equation (1) with respect to two-dimensional hybrid functions:

Ψ(x, y) =
∞

∑
m1=1

∞

∑
n1=0

∞

∑
m2=1

∞

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y), (10)

where the finite series in Equation (10) can be written as

ΨS,K(x, y) =
S

∑
m1=1

K−1

∑
n1=0

S

∑
m2=1

K−1

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y). (11)

where cm1n1m2n2 , m1, m2 = 1, 2, . . . , S, n1, n2 = 0, 1, 2, . . . , K− 1, and S, K are the unknown
hybrid coefficients.

Substituting Equation (11) into Equation (1) yields

γψS,K(x, y) = f (x, y) + λ1

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)µ(τ, v, ψS,K(τ, v))dvdτ

+ λ2

∫ x

0

∫ 1

0
G(x, τ; y, v)ν(τ, v, ψS,K(τ, v))dvdτ.

(12)

Now, we discretize Equation (12) at the set of collocation nodes (xm, yn) for m, n =
1, 2, . . . , SK as follows:

γψS,K(xm, yn) = f (xm, yn) + λ1

∫ 1

0

∫ 1

0
Φ(xm, τ; yn, v)µ(τ, v, ψS,K(τ, v))dvdτ

+ λ2

∫ xm

0

∫ 1

0
G(xm, τ; yn, v)ν(τ, v, ψS,K(τ, v))dvdτ,

(13)

where

xm =
1
2

(
cos
(
(2m− 1)π

2SK

)
+ 1
)

, m = 1, 2, . . . , SK,

and

yn =
1
2

(
cos
(
(2n− 1)π

2SK

)
+ 1
)

, n = 1, 2, . . . , SK,

the integral operators in Equation (13) are approximated by using the Gauss–Legendre
quadrature formula. For this, we use the following transformations to convert the integrals
over [0, 1] into the integral over [−1, 1],

ξ = 2τ − 1; τ ∈ [0, 1],

$ = 2v− 1; v ∈ [0, 1].

The integral over [0, xm] must also be changed into the integral over [−1, 1], having the
following form

ξ̄ =
2

xm
τ − 1; τ ∈ [0, xm].

Then, Equation (13) is converted to

γψS,K(xm, yn) = f (xm, yn)

+
λ1
4

∫ 1

−1

∫ 1

−1
Φ(xm,

1
2
(ξ + 1); yn,

1
2
($ + 1))µ(

1
2
(ξ + 1),

1
2
($ + 1), ψS,K(

1
2
(ξ + 1),

1
2
($ + 1)))d$dξ

+
λ2xm

4

∫ 1

−1

∫ 1

−1
G(xm,

xm

2
(ξ̄ + 1); yn,

1
2
($ + 1))

×ν(
xm

2
(ξ̄ + 1),

1
2
($ + 1), ψS,K(

xm

2
(ξ̄ + 1),

1
2
($ + 1)))d$dξ̄.
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The above equation can be expressed as follows using Gauss–Legendre quadrature:

γψS,K(xm, yn) = f (xm, yn)

+
λ1

4

`1

∑
j=1

`2

∑
i=1

wjwiΦ(xm,
1
2
(ξi + 1); yn,

1
2
($j + 1))

× µ(
1
2
(ξi + 1),

1
2
($j + 1), ψS,K(

1
2
(ξi + 1),

1
2
($j + 1)))

+
λ2xm

4

`1

∑
j=1

¯̀2

∑
i=1

wjw̄iG(xm,
xm

2
(ξ̄i + 1); yn,

1
2
($j + 1))

× ν(
xm

2
(ξ̄i + 1),

1
2
($j + 1), ψS,K(

xm

2
(ξ̄i + 1),

1
2
($j + 1))),

m = 1, 2, . . . , SK, n = 1, 2, . . . , SK,

(14)

and wj, wi and w̄i are the corresponding weights.
This technique can be used to transform the two-dimensional nonlinear integral

problem (1) into a solvable nonlinear system of algebraic equations.

4. Convergence Analysis

The aim of this section is to describe the uniform convergence of the hybrid functions
expansion and to determine the maximum absolute truncation error of the function Ψ
based on hybrid functions.

Theorem 2. If Ψ ∈ C4[0, 1], then the function Ψ(x, y) converges uniformly to the infinite sum of
the hybrid functions of Ψ(x, y) described by (10).

Proof. The hybrid coefficients are defined as

cm1n1m2n2 =

∫ 1
0

∫ 1
0 Ψ(x, y)hm1n1m2n2(x, y)dxdy∫ 1
0

∫ 1
0 h2

m1n1m2n2
(x, y)dxdy

=

∫ m2
S

m2−1
S

∫ m1
S

m1−1
S

Ψ(x, y)Ln1(2Sx− 2m1 + 1)Ln2(2Sy− 2m2 + 1)dxdy∫ m1
S

m1−1
S

L2
n1
(2Sx− 2m1 + 1)dx

∫ m2
S

m2−1
S

L2
n2
(2Sy− 2m2 + 1)dy

.

Suppose that 2m1 − 1 = m̂1 and 2Sx− m̂1 = =. Then,

cm1n1m2n2 =

∫ m2
S

m2−1
S

(∫ 1
−1 Ψ( m̂1+=

2S , y)Ln1(=)d=
)

Ln2(2Sy− 2m2 + 1)dy∫ 1
−1 L2

n1
(=)d=

∫ m2
S

m2−1
S

L2
n2
(2Sy− 2m2 + 1)dy

=
(2n1 + 1)

2

∫ m2
S

m2−1
S

(∫ 1
−1 Ψ( m̂1+=

2S , y)Ln1(=)d=
)

Ln2(2Sy− 2m2 + 1)dy∫ m2
S

m2−1
S

L2
n2
(2Sy− 2m2 + 1)dy

.

From the technique of integration by parts with regard to= and (2n+ 1)Ln(=) = L′n+1(=)−
L′n−1(=), we obtain

cm1n1m2n2 = −
1
2

∫ m2
S

m2−1
S

(∫ 1
−1

∂
∂=Ψ( m̂1+=

2S , y)(Ln1+1(=)− Ln1−1(=))d=
)

Ln2 (2Sy− 2m2 + 1)dy∫ m2
S

m2−1
S

L2
n2 (2Sy− 2m2 + 1)dy

.
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Once again, integration by parts of the above relation results

cm1n1m2n2 =

1
2

∫ m2
S

m2−1
S

(∫ 1
−1

∂2

∂=2 Ψ( m̂1+=
2S , y)[

−Ln1 (=)
2n1+3 −

Ln1 (=)−Ln1−2(=)
2n1−1 ]d=

)
Ln2(2Sy− 2m2 + 1)dy∫ m2

S
m2−1

S

L2
n2
(2Sy− 2m2 + 1)dy

.

Now, we have

cm1n1m2n2 =
1

2(2n1 + 3)(2n1 − 1)

∫ m2
S

m2−1
S

(∫ 1
−1

∂2

∂=2 Ψ( m̂1+=
2S , y)ℵn1 (=)d=

)
Ln2 (2Sy− 2m2 + 1)dy∫ m2

S
m2−1

S

L2
n2 (2Sy− 2m2 + 1)dy

,

where

ℵn1(=) = (2n1 − 1)Ln1+2(=)− (4n1 + 2)Ln1(=) + (2n1 + 3)Ln1−2(=).

Similarly, changing the variable for y as 2m2− 1 = m̂2, where 2Sy− m̂2 = ℘, and integrating
by parts with respect to ℘, we obtain

cm1n1m2n2 =
1

4(2n1 + 3)(2n1 − 1)(2n2 + 3)(2n2 − 1)∫ 1

−1

∫ 1

−1

∂4

∂℘2∂=2 Ψ(
m̂1 +=

2S
,

m̂2 + ℘

2S
)ℵn1(=)ℵn2(℘)d=d℘,

where

ℵn2(℘) = (2n2 − 1)Ln2+2(℘)− (4n2 + 2)Ln2(℘) + (2n2 + 3)Ln2−2(℘).

Using the chain derivatives and σ = max(x,y)∈[0,1]

∣∣∣ ∂4Ψ(x,y)
∂x2∂y2

∣∣∣, it follows that

cm1n1m2n2 ≤
σ

64S4(2n1 + 3)(2n1 − 1)(2n2 + 3)(2n2 − 1)

∫ 1

−1

∫ 1

−1
|ℵn1 (=)||ℵn2 (℘)|d=d℘,

≤ σ

64m2
1m2

2(2n1 + 3)(2n1 − 1)(2n2 + 3)(2n2 − 1)

∫ 1

−1

∫ 1

−1
|ℵn1 (=)||ℵn2 (℘)|d=d℘.

(15)

However,(∫ 1

−1
|ℵn1 (=)|d=

)2

=

(∫ 1

−1
|(2n1 − 1)Ln1+2(=)− (4n1 + 2)Ln1 (=) + (2n1 + 3)Ln1−2(=)|d=

)
,

≤2
∫ 1

−1
|(2n1 − 1)2L2

n1+2(=) + (4n1 + 2)2L2
n1
(=) + (2n1 + 3)2L2

n1−2(=)|d=,

from the Legendre orthogonal polynomial property, we obtain(∫ 1

−1
|ℵn1(=)|d=

)2

≤ 24(2n1 + 3)2

2n1 − 3
, (16)

thus ∫ 1

−1
|ℵn1(=)|d= ≤

2
√

6(2n1 + 3)√
2n1 − 3

(17)

and ∫ 1

−1
|ℵn2(℘)|d℘ ≤

2
√

6(2n2 + 3)√
2n2 − 3

. (18)
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By substituting (17) and (18) into (15), we obtain

cm1n1m2n2 ≤
24σ

64m2
1m2

2(2n1 − 1)(2n2 − 1)
√
(2n1 − 3)

√
(2n2 − 3)

,

≤ 3σ

8m2
1m2

2(2n1 − 3)
3
2 (2n2 − 3)

3
2

.
(19)

Therefore, the following series is absolutely convergent:

|Ψ(x, y)| =
∣∣∣∣∣ ∞

∑
m1=1

∞

∑
n1=0

∞

∑
m2=1

∞

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y)

∣∣∣∣∣
≤

∞

∑
m1=1

∞

∑
n1=0

∞

∑
m2=1

∞

∑
n2=0
|cm1n1m2n2 |

< ∞,

and the series (10) converges to the function Ψ(x, y) uniformly.

Theorem 3. The maximum absolute truncation error of the series solution (10) to nonlinear integral
Equation (1) is

‖Ψ(x, y)−ΨS,K(x, y)‖ ≤ 3σ

8S

(
∞

∑
m1=S+1

1
m4

1

∞

∑
n1=K

1
(2n1 − 3)4

∞

∑
m2=S+1

1
m4

2

∞

∑
n2=K

1
(2n2 − 3)4

) 1
2

.

Proof.

‖Ψ(x, y)−ΨS,K(x, y)‖

≤
(

∞

∑
m1=S+1

∞

∑
n1=K

∞

∑
m2=S+1

∞

∑
n2=K

c2
m1n1m2n2

∫ 1

0

∫ 1

0
h2

m1n1m2n2
(x, y)dxdy

) 1
2

.

Using the orthogonality property of hybrid functions and taking relation (19) into consider-
ation, we obtain

‖Ψ(x, y)−ΨS,K(x, y)‖ ≤
(

∞

∑
m1=S+1

∞

∑
n1=K

∞

∑
m2=S+1

∞

∑
n2=K

c2
m1n1m2n2

1
S2(2n1 + 1)(2n2 + 1)

) 1
2

≤3σ

8S

(
∞

∑
m1=S+1

1
m4

1

∞

∑
n1=K

1
(2n1 − 3)4

∞

∑
m2=S+1

1
m4

2

∞

∑
n2=K

1
(2n2 − 3)4

) 1
2

.

5. Application and Numerical Results

In order to show the accuracy and efficiency of the proposed method, some numerical
examples are given in this section. We introduce the following notation to study the
absolute values of this method’s errors:

RS,K = |Ψ(x, y)−ΨS,K(x, y)|,

where Ψ(x, y) and ΨS,K(x, y) are the exact solution and the approximate solution of the
integral equations, respectively.

Example 1. Consider the following two-dimensional nonlinear integral equation with a symmetric
and nonsymmetrical kernel:
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16ψ(x, y) = f (x, y) +
∫ 1

0

∫ 1

0
(xτ + yv)ψ2(τ, v)dvdτ +

∫ x

0

∫ 1

0
(x2τ2 + yv)ψ2(τ, v)dvdτ, (20)

where

f (x, y) =
−7
24
− 28yx

45
+ 16(x2 + y2)− x2y2

360
(30y4 + 72y5x + 45y2x2 + 80y3x3 + 30x4 + 72yx5).

Exact solution is ψ(x, y) = x2 + y2, using the proposed numerical technique, where S = 2 and
K = 2, 4, 6, 8 in the interval [0, 1).

In Table 1, we present the absolute error |Ψ(x, y)−ΨS,K(x, y)|, using the introduced numeri-
cal method with S = 2 and K = 2, 4, 6, 8 in the interval [0, 1). Table 2 shows the maximum absolute
errors of the given method.

Table 1. Absolute error of solution of Equation (20) by using the present method with S = 2 and
K = 2, 4, 6, 8.

(xi, yi) S = 2, K = 2 S = 2, K = 4 S = 2, K = 6 S = 2, K = 8

(0, 0) 5.62845 × 10−9 3.25447 × 10−10 2.36512 × 10−13 1.32654 × 10−16

(0.1, 0.1) 2.51405 × 10−7 2.36524 × 10−8 1.36524 × 10−10 6.32514 × 10−13

(0.2, 0.2) 5.62103 × 10−6 2.36985 × 10−7 5.36214 × 10−9 8.22551 × 10−12

(0.3, 0.3) 2.02154 × 10−4 3.58412 × 10−5 8.32541 × 10−8 6.32165 × 10−10

(0.4, 0.4) 4.58721 × 10−4 3.65413 × 10−4 2.21345 × 10−7 1.32114 × 10−9

(0.5, 0.5) 7.36212 × 10−4 2.23651 × 10−4 3.65221 × 10−7 2.36985 × 10−8

(0.6, 0.6) 1.36521 × 10−3 1.65214 × 10−4 7.32651 × 10−7 2.92541 × 10−8

(0.7, 0.7) 5.26512 × 10−3 1.36524 × 10−3 6.32541 × 10−6 6.32548 × 10−8

(0.8, 0.8) 5.62514 × 10−2 4.36210 × 10−3 8.36251 × 10−6 7.32614 × 10−8

(0.9, 0.9) 5.65214 × 10−2 6.25489 × 10−3 5.32658 × 10−5 1.36524 × 10−6

Moreover, in Figures 1–4, we show a comparison between the exact solution and the approxi-
mate solution using the presented numerical technique with different values of K = 2, 4, 6, 8 with
S = 2 in the interval [0, 1).

Figure 1. Exact and approximate solution of Equation (20) with S = 2 and K = 2.
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Figure 2. Exact and approximate solution of Equation (20) with S = 2 and K = 4.

Figure 3. Exact and approximate solution of Equation (20) with S = 2 and K = 6.
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Figure 4. Exact and approximate solution of Equation (20) with S = 2 and K = 8.

Table 2. The maximum error Rmax(x, y) for different values of K = 2, 4, 6, 8 and S = 2 for Equation (20).

S = 2, K = 2 S = 2, K = 4 S = 2, K = 6 S = 2, K = 8

Rmax 6.2103 × 10−2 6.53210 × 10−3 5.32658 × 10−5 1.36524 × 10−6

Example 2. Consider the nonlinear integral equation with a symmetric and nonsymmetrical kernel:

ψ(x, y) = f (x, y) + 0.003
∫ 1

0

∫ 1

0
(xτ2 + v cos y)ψ3(τ, v)dvdτ

+ 0.003
∫ x

0

∫ 1

0
(x2τ + yv)ψ(τ, v)dvdτ,

(21)

where

f (x, y) =
1

12

(
27 + 16 cos 1− 16 cos 2− 18 cos 3 + 7 cos 4− 12t2x(2 + cos 1) sin(

1
4
)4

−12 sin 1− 36 sin 2 + 6 sin 3 + 6 sin 4) + x sin y +
1
2

y3
(
−3x2 + x(2 + 3x) cos x− 2 sin x

)
.

The exact solution is ψ(x, y) = x sin y, using the presented numerical technique with S = 2 and
K = 3, 5, 7, 9 in the interval [0, 1).

In Table 3, we show the absolute error |Ψ(x, y)−ΨS,K(x, y)|, using the introduced numerical
method with S = 2 and K = 3, 5, 7, 9 in the interval [0, 1). Table 4 shows the maximum absolute
errors of the given method.
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Table 3. Absolute error of solution of Equation (21) by using the present method with S = 2 and
K = 3, 5, 7, 9.

(xi, yi) S = 2, K = 3 S = 2, K = 5 S = 2, K = 7 S = 2, K = 9

(0, 0) 3.20514 × 10−5 5.32641 × 10−6 6.32141 × 10−9 2.36541 × 10−11

(0.1, 0.1) 3.25481 × 10−4 9.32541 × 10−5 5.32187 × 10−7 3.65874 × 10−8

(0.2, 0.2) 3.32541 × 10−3 3.21554 × 10−4 2.36414 × 10−6 7.36584 × 10−8

(0.3, 0.3) 4.32641 × 10−3 5.32654 × 10−4 5.32684 × 10−6 3.36241 × 10−7

(0.4, 0.4) 5.36854 × 10−3 6.36524 × 10−4 8.32546 × 10−6 6.32584 × 10−7

(0.5, 0.5) 6.93154 × 10−3 7.1.365 × 10−4 6.32541 × 10−5 8.65241 × 10−7

(0.6, 0.6) 1.32511 × 10−2 3.21547 × 10−3 9.99215 × 10−5 4.32516 × 10−6

(0.7, 0.7) 4.32658 × 10−2 4.36561 × 10−3 1.32154 × 10−4 8.69854 × 10−6

(0.8, 0.8) 5.32666 × 10−2 5.76524 × 10−3 2.34541 × 10−4 4.36215 × 10−5

(0.9, 0.9) 6.32541 × 10−2 7.96525 × 10−3 3.25456 × 10−4 1.05214 × 10−4

Table 4. The maximum error Rmax(x, y) for different values of K = 3, 5, 7, 9 and S = 2 for Equation (21).

S = 2, K = 3 S = 2, K = 5 S = 2, K = 7 S = 2, K = 9

Rmax 6.32541 × 10−2 7.96525 × 10−3 3.25456 × 10−4 1.05214 × 10−4

Furthermore, in Figures 5–8, we present a comparison between the exact solution and the
approximate solution using the introduced numerical method with different values of K = 3, 5, 7, 9
with S = 2 in the interval [0, 1).

Figure 5. Exact and approximate solution of Equation (21) with S = 2 and K = 3.
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Figure 6. Exact and approximate solution of Equation (21) with S = 2 and K = 5.

Figure 7. Exact and approximate solution of Equation (21) with S = 2 and K = 7.
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Figure 8. Exact and approximate solution of Equation (21) with S = 2 and K = 9.

Example 3. Consider the following two-dimensional nonlinear integral equation with a symmetric
and nonsymmetrical kernel:

7ψ(x, y) = f (x, y) + 0.01
∫ 1

0

∫ 1

0
(x− y)2ψ(τ, v)dvdτ + 0.01

∫ x

0

∫ 1

0
(τ + v)ψ2(τ, v)dvdτ, (22)

where

f (x, y) = 7etx− 0.00859141(t− x)2 − 0.000416667x3(2− 3x + e2t(−2 + 4t + 3x)).

The exact solution is ψ(x, y) = xey, using the proposed numerical technique, where S = 3 and
K = 2, 3, 6, 7 in the interval [0, 1).

In Table 5, we present the absolute error |Ψ(x, y)−ΨS,K(x, y)|, using the introduced numeri-
cal method with S = 3 and K = 2, 3, 6, 7 in the interval [0, 1). Table 6 shows the maximum absolute
errors of the given method.

Table 5. Absolute error of solution of Equation (22) by using the present method with S = 3 and
K = 2, 3, 6, 7

(xi, yi) S = 3, K = 2 S = 3, K = 3 S = 3, K = 6 S = 3, K = 7

(0, 0) 9.32484 × 10−10 8.32544 × 10−11 5.21432 × 10−14 1.23698 × 10−16

(0.1, 0.1) 7.62514 × 10−9 3.52147 × 10−9 2.81647 × 10−11 5.21478 × 10−15

(0.2, 0.2) 5.03698 × 10−7 3.62149 × 10−8 3.89759 × 10−10 2.98547 × 10−13

(0.3, 0.3) 1.20584 × 10−5 5.20147 × 10−6 5.07896 × 10−10 4.69857 × 10−11

(0.4, 0.4) 2.96521 × 10−5 5.36987 × 10−5 4.36985 × 10−8 3.21458 × 10−10

(0.5, 0.5) 4.36514 × 10−5 5.58741 × 10−5 5.20142 × 10−8 3.69521 × 10−9

(0.6, 0.6) 4.96587 × 10−5 6.36925 × 10−5 1.25847 × 10−7 4.25871 × 10−9

(0.7, 0.7) 1.32548 × 10−3 2.01321 × 10−4 6.87452 × 10−7 3.02587 × 10−8

(0.8, 0.8) 3.02584 × 10−3 3.47585 × 10−4 1.01024 × 10−6 4.08754 × 10−8

(0.9, 0.9) 5.01478 × 10−3 1.75214 × 10−3 4.36954 × 10−6 5.31231 × 10−8
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Moreover, in Figures 9–12, we show a comparison between the exact solution and the approxi-
mate solution using the presented numerical technique with different values of K = 2, 3, 6, 7 with
S = 3 in the interval [0, 1).

Figure 9. Exact and approximate solution of Equation (22) with S = 3 and K = 2.

Figure 10. Exact and approximate solution of Equation (22) with S = 3 and K = 3.
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Figure 11. Exact and approximate solution of Equation (22) with S = 3 and K = 6.

Figure 12. Exact and approximate solution of Equation (22) with S = 3 and K = 7.

Table 6. The maximum error Rmax(x, y) for different values of K = 2, 3, 6, 7 and S = 3 for Equation (22).

S = 3, K = 2 S = 3, K = 3 S = 3, K = 6 S = 3, K = 7

Rmax 5.01478 × 10−3 1.75214 × 10−3 4.36954 × 10−6 5.31231 × 10−8

6. Conclusions and Remarks

The following can be deduced from the above analysis and discussion:

1. Under some conditions, Equation (1) has a unique solution Ψ(x, y) in the space
L2[0, 1]× L2[0, 1].
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2. After applying the proposed method, a two-dimensional integral equation with
a symmetric and nonsymmetrical kernel of the second kind tends to result in an
algebraic system of nonlinear equations.

3. A nonlinear system of algebraic equations has a solution.
4. Three illustrative examples are provided to evaluate and validate the effectiveness

and dependability of the proposed method. Tables and Figures are used to show the
numerical results. For example, Figures 1, 5 and 9 contained the numerical solution
of Examples 1, 2 and 3, respectively, for different values of x, y and K. Figures 1–12
formed the absolute errors of each example with different values of x and y.

5. In Example 1, absolute errors in four cases of K are presented in Table 1 and Figures 1–4.
The error increases through x and y. When we take the Max. value error in Figure 1,
it is (6.2103 × 10−2) at S = 2, K = 2. Also, the Min. error value in Figure 4 is
(1.36524× 10−6) at S = 2, K = 8 (see Table 2).

6. In Example 2, from Table 4 at S = 2, K = 3, the error is as high as possible at point
x = y = 0.9, and its value is (6.32541× 10−2). Likewise, the error begins to decrease,
and when the value of x = y = 0, its value is (1.05214× 10−4).

7. In Example 3, the error decreases as S and K increase, where the maximum value of
the error at x = y = 0.9 for S = 3, K = 2 is (5.01478× 10−3), while for S = 3, K = 7,
the minimum value of the error is (5.31231× 10−8).

8. In general, the error obtained by the proposed method decreases when the number of
(K) increases.

7. Future Work

We will consider the following two-dimensional nonlinear integral equation with
phase-lag term:

γψ(x + δx, y + δy) = f (x + δx, y + δy) + λ1

∫ 1

0

∫ 1

0
Φ(x + δx, τ; y + δy, v)µ(τ, v, ψ(τ, v))dvdτ

+ λ2

∫ x+δx

0

∫ 1

0
G(x + δx, τ; y + δy, v)ν(τ, v, ψ(τ, v))dvdτ.
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