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Abstract: For coded distributed computing (CDC), polynomial code is one prevalent encoding
method for CDC (called Poly-CDC). It suffers from poor numerical stability due to the Vandermonde
matrix serving as the coefficient matrix which needs to be inverted, and whose condition number
increases exponentially with the size of the matrix or equivalently with the number of parallel
worker nodes. To improve the numerical stability, especially for large networks, we propose a
Newton-like polynomial code (NLPC)-based CDC (NLPC-CDC), with a design dedicated for both
matrix–vector and matrix–matrix multiplications. The associated proof of the constructed code
possesses a (n, k)-symmetrical combination property (CP), where symmetrical means the worker
nodes have identical computation volume, CP means the k-symmetrical original computing tasks are
encoded into n(n ≥ k)-symmetrically coded computing tasks, and the arbitrary k resulting from the
n-coded computing tasks can recover the intended computing results. Extensive numerical studies
verify the significant numerical stability improvement of our proposed NLPC-CDC over Poly-CDC.

Keywords: symmetrical combination property; coded distributed computing (CDC); Newton
interpolation polynomial (NIP) encoding; numerical stability

1. Introduction

Matrix multiplications (especially large matrix multiplications) are widely adopted
in data mining, machine learning, etc. [1]. A single computing node may not be able to
handle large or frequent matrix multiplications [2–6]. Due to the development of 5G/6G
communication techniques [7] and network virtualizations [8] that provide efficient and
reliable data delivery, especially in future 6G communication networks, the strict require-
ments of a high data rate and computational complexity require frequent processing of
large matrices [9,10], and distributed computing (DC) based on partitioning computing
tasks could effectively alleviate this problem. By introducing proper redundant comput-
ing [11,12], coded distributed computing (CDC) effectively tackles the straggler problem of
DC [13,14]. Prevalent CDC designs aims at obtaining the (n, k)-symmetrical combination
property (CP): k original symmetrical computing tasks are encoded into n(n ≥ k)-coded
computing tasks, and the arbitrary k resulting from the n-coded computing tasks can
recover the intended computing results [15], where symmetrical means the worker nodes
have identical computation volume. Based on this symmetrical assumption, the worker
nodes can be viewed as having identical but independent capabilities, and the design focus
of CDC can be directed towards achieving (n, k) CP.

Prevalent encoding methods for CDC are based on polynomial encoding meth-
ods [16–18], and is therefore called Poly-CDC, where the work in [16] set the fundamen-
tal/framework for Poly-CDC, while the work in [17,18] reported variants within this
framework. More specifically, the the authors of [16] designed the fundamental encoding
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coefficients which laid the actual framework, and the authors in [17,18] modified the encod-
ing coefficients within this framework. The drawback lies in poor the numerical stability
during the associated decoding stage: The coefficient matrix of the polynomial method is a
Vandermonde matrix whose condition number increases exponentially with the size of the
matrix [19–21], and the decoding process inevitably involves the interpolation of polynomi-
als, eventually evolving into the inversion of the coefficient matrix. Note that the size of
the matrix may be large by network slicing techniques [22], and a large condition number
means that a small perturbation will cause a larger perturbation after decoding [23,24], thus
affecting the robustness of the decoding results. This makes large networks have extremely
poor numerical stability.

In order to obtain higher numerical stability, based on Newton-like polynomial code
(NLPC), we propose an NLPC-based CDC (NLPC-CDC). This encoding is designed for both
matrix–vector and matrix–matrix multiplications. An associated proof that the constructed
code possesses a (n, k)-symmetrical combination property (CP) is provided. Extensive numer-
ical studies verify that this method improves numerical stability significantly.

Preliminaries are given in Section 2. Afterwards, our proposed NLPC-CDC is elab-
orated upon in Section 3. Numerical comparisons are executed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Preliminaries

We first formulate the matrix–vector and matrix–matrix multiplication within the CDC
framework. Afterwards, we briefly describe the Newton interpolation polynomial (NIP)
encoding method.

2.1. Matrix–Vector Multiplication within the CDC Framework

The first task is to calculate the matrix–vector multiplication Ax, where matrix A ∈
RH×W , column vector x = (x1, x2, . . . , xW) ∈ RW×1, and R stands for the real number field.
For this task, the computing system consists of a master node and N-symmetrical worker
nodes, as shown in Figure 1, where symmetrical means the worker nodes have identical
computation capabilities. Under this symmetrical assumption, codes that have symmetical
CP can be brought into play to tackle stragglers.
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Figure 1. Matrix–vector multiplication within the CDC framework.
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As H is very large, it is necessary to partition matrix A into m sub-matrices, including
A0 ∈ R(H/m)×W through Am−1 ∈ R(H/m)×W . Encoding the m sub-matrices into N matrices
is denoted by C1 through CN .

The master node delivers vector x to all worker nodes. Worker node i ∈ {1, 2, . . . , N}
calculates the matrix–vector multiplication Cix and delivers the calculation result back
to the master node. The master node can then execute decoding to recover the intended
calculation result provided that enough results have been collected.

2.2. Matrix–Matrix Multiplication within the CDC Framework

The next task is to calculate the matrix–matrix multiplication AB, where the matrix
A ∈ RH×W , B ∈ RW×L. For this task, the computing system consists of a master node
and N worker nodes, as shown in Figure 2. The matrix A is split horizontally into m
sub-matrices, including A0 ∈ R(H/m)×W through Am−1 ∈ R(H/m)×W . Matrix B is then
split vertically into q sub-matrices, including B0 ∈ RW×(L/q) through Bq−1 ∈ RW×(L/q). We
suppose H and L are divisible by m and q, respectively (otherwise, A and B are filled with
zeros so that the number of rows of A and the number of columns of B are multiples of m
and q).
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Figure 2. Matrix–matrix multiplication within the CDC framework.

The intended calculated matrix C becomes

C = AB =


A0B0 A0B1 · · · A0Bq−1
A1B0 A1B1 · · · A1Bq−1

...
...

. . .
...

Am−1B0 Am−1B1 · · · Am−1Bq−1



,


C0 C1 · · · Cq−1
Cq Cq+1 · · · C2q−1
...

...
. . .

...
C(m−1)q C(m−1)q+1 · · · Cmq−1

.

(1)
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Calculating C is equivalent to calculating C0 through Cmq−1 simultaneously. We set the
recovery threshold K = mq, directly allocate C0 through Cmq−1 to K-symmetrical worker nodes
(worker node i calculates Ci), and the calculation will encounter the problem of stragglers.

To tackle the straggler problem, an encoding strategy is applied on A0 through Am−1 to
obtain N > K-encoded sub-matrices, recorded as Ã0 through ÃN−1. Similarly, B0 through
Bq−1 are encoded into B̃0 through B̃N−1.

The master node delivers the encoded pair
(

Ãi, B̃i
)

to worker node i ∈ N , {1, 2, . . . , N}.
Worker node i ∈ N then calculates the matrix–matrix multiplication C̃i = Ãi B̃i and delivers
the calculation result back to the master node, which will then execute decoding to recover
the original intended calculation result.

2.3. Newton Interpolation Polynomial (NIP) Encoding

As illustrated previously, symmetrical assumption leads the design to focus on CP
encoding that can be directly applied in CDC systems. NIP may serve as a candidate for
this encoding design.

NIP improves upon the Lagrange interpolation method by saving the number of
multiplication and division operations. In addition, its base is not as complex as the
Lagrange function, thus the solving process is much simpler than that of monomial based
methods.

We suppose there are n + 1 real interpolation points x0 · · · xn in interval [a, b], and the
selected base is

πj(x) =
j−1

∏
k=0

(x− xk) = (x− x0)(x− x1) · · ·
(
x− xj−1

)
, (2)

for j = 0, 1, . . . , n. This base has the property πj(xi) = 0 for ∀i < j.
The polynomial form obtained by linear combination based on πj(x) is

c
n

∑
j=0

ajπj(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · · (3)

+ an(x− x0)(x− x1) · · · (x− xn−1),

where aj is the undetermined coefficient. We let Nn(x) denote the above formula, which
form is called the Newton interpolation polynomial (NIP).

By substituting x0 · · · xn into the above Newton polynomial for interpolation, and
re-arranging into matrix form, we obtain a lower triangular matrix (4).


π0(x0) π1(x0) · · · πn(x0)
π0(x1) π1(x1) · · · πn(x1)
· · · · · · · · · · · ·

π0(xn) π1(xn) · · · πn(xn)




a0
a1
· · ·
an

 =


1 0 · · · 0
1 x1 − x0 · · · 0
· · · · · · · · · · · ·
1 xn − x0 · · · (xn − x0) · · · (xn − xn−1)




a0
a1
· · ·
an

. (4)

The objective is to solve for the undetermined coefficients a0 ∼ an. It can be observed
from the above formula that the interpolation coefficient solution matrix of the Newton
polynomial is a lower triangular matrix.

3. Proposed NLPC-Based CDC (NLPC-CDC)

The processing is divided into matrix–vector and matrix–matrix multiplications.

3.1. NLPC-CDC for Matrix–Vector Multiplication

By applying NIP to encode A0 through Am−1, we obtain

C̃(x) =
m−1

∑
i=0

Ai ϕi(x), (5)
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where ϕ0(x) = 1, ϕi(x) = (x− xi−1)ϕi−1(x). We expand C̃(x) to

C̃(x) = A0 + A1(x− x0) + A2(x− x0)(x− x1) + · · ·+ Am−1(x− x0)(x− x1) . . . (x− xm−2). (6)

The master node delivers the encoded package C̃(x) and column vector x to the worker
nodes. Worker node i performs multiplication of C̃(x)x, and interpolates C̃(x) at xi. The
matrix form of the encoded results is shown in (7).



C̃(x0)
C̄(x1)

C̃(x2)

...
C̄(xm−1)

...
C̄(xn)


x =



1 0 0 0 0 ··· 0
1 x1−x0 0 0 0 ··· 0
1 x2−x0 (x2−x1)(x2−x0) 0 0 ··· 0
...

...
...

...
... ··· 0

1 xm−1−x0 (xm−1−x1)(xm−1−x0) (xm−1−x2)(xm−1−x1)(xm−1−x0) ··· ··· (xm−1−xm−2)···(xm−1−x0)

...
...

...
...

...
...

1 xn−x0 (xn−x1)(xn−x0) (xn−x2)(xn−x1)(xn−x0) ··· ··· (xn−xm−2)···(xn−x0)




A0
A1

...
Am−1

x


. (7)

It can be seen from the above formula that to solve Ax, only m values from the
interpolation coefficient matrix need to be returned, which goes through inversion and
multiplying by C̃(x) obtains the final intended result. The interpolation coefficient matrix
comprising m returned nodes is a lower triangular matrix, making the entire decoding
matrix a sparse trapezoid and the recovery threshold K = m.

3.2. NLPC-CDC for Matrix–Matrix Multiplication

We suppose H = L, matrix A and B can both be partitioned into m blocks in the
following manner:

A =


A0
A1
...

Am−1

, B =
[

B0 B1 . . . Bm−1
]
. (8)

Applying encoding over these two matrices in the following manner gives:

Ã =
m−1

∑
i=0

Ai ϕi(x), (9)

B̃ =
m−1

∑
j=0

Bj ϕjm(x), (10)

where ϕ0(x) = 1, ϕi(x) = (x− xi−1)ϕi−1(x). Thus, the coded matrices have the following
expansions:

Ã = ∑m−1
i=0 Ai ϕi(x)

= A0 + A1(x− x0) + A2(x− x0)(x− x1)
+ · · ·+
Am−1(x− x0)(x− x1) . . . (x− xm−2),

(11)

B̃ = ∑m−1
j=0 Bj ϕjm(x)

= B0 + B1(x− x0)(x− x1) . . . (x− xm−1)
+ B2(x− x0)(x− x1) . . . (x− x2m−1) + · · ·
+ Bm−1(x− x0)(x− x1) . . .

(
x− xm(m−1)

)
.

(12)
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The master node delivers the encoded pair (Ã, B̃) to the worker nodes. Each worker
node calculates

C̃ = (Ã, B̃) =
m−1

∑
i=0

Ai ϕi(x)
m−1

∑
j=0

Bj ϕjm(x) =
m−1

∑
i=0

m−1

∑
j=0

AiBj ϕi(x)ϕjm(x). (13)

We divide it into m parts, such that C̃ can be written as shown in (14).

(
1 (x− x0) (x− x0)(x− x1) . . . (x− x0)(x− x1) . . . (x− xm−2)

)


A0B0
A1B0
A2B0

...
Am−1B0

 = M1c1. (14)

Note that (13) can be re-expressed as

C̃ = Mc =
(

M1 M2 M3 . . . Mm )


c1

c2

c3

...
cm

, (15)

where M1 denotes the interpolation coefficient term of the first m terms of C̃, and c1 denotes
the coefficient to be calculated for the first m terms of C̃. Similarly, the remaining items are
processed.

We re-write (15) as C̃ = ∑ Mici, i ∈ {1, 2, · · · , m}. By interpolating C̃ with x0 · · · xn,
we obtain

C̃(x0) = A0B0,
C̃(x1) = A0B0 + A1B0(x1 − x0),

· · ·
C̃(xn) = A0B0 + A1B0(xn − x0) + A2B0(xn − x0)(xn − x1) + · · ·+ Am−1Bm−1(xn − x0)

2(xn − x1)
2 . . .

(xn − xm−2)
2 . . .

(
xn − xm(m−1)−1

)
.

(16)

We divide n + 1 interpolation points x0 · · · xn into m + 1 sets xj, j ∈ {1, 2, · · · , m, m′},
x1 ∼ xm containing m points, where the data point of x1 is x0 · · · xm−1, the data point of xm

is xm(m−1) · · · xm2−1, and the remaining n−m2 + 1 points (xm2 · · · xn) are placed in xm′ . Let
Mij denote the result of interpolation of Mi at xj.

After all interpolated results are processed in the above manner, they can be written
in matrix form as shown in (17). Thus, similar to the Newton polynomial, the matrix for
solving interpolation coefficients can also be treated as a trapezoid, called the Newton-
like interpolation polynomial (NLIP). We have the following theorem, whose proof is
deferred to the Appendix A as the proof is lengthy and does not hinder understanding the
whole idea.
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C̃(x0)
...

C̃(xm−1)
...

C̃(xm2−1)
...

C̃(xn)


=



C̃
(

x1)
C̃
(

x2)
C̃
(

x3)
...

C̃
(

xm−1)
C̃(xm)

C̃
(

x m′)


=



M11 0
M12 M22 0
M13 M23 M33 0

...
. . . 0

M1(m−1) M2(m−1) M3(m−1) · · · M(m−1)(m−1) 0
M1m M2m M3m · · · M(m−1)m Mm2

M1m′ M2m′ M3m′ · · · M(m−1)m′ Mmm′





c1

c2

c3

...
cm−1

cm


. (17)

Theorem 1. For any n(n ≥ 2), there is an NIP matrix of n rows and k columns, as shown in (18).
Randomly selecting k rows from this matrix forms a k× k sub-matrix. This sub-matrix is invertible,
meaning the Newton interpolation matrix has (n, k)-symmetrical CP.



1 0 0 0 0 · · · 0

1 x1 − x0 0 0 0 · · · 0

1 x2 − x0 (x2 − x1)(x2 − x0) 0 0 · · · 0
...

...
...

...
... · · · 0

1 xk−1 − x0 (xk−1 − x1)(xk−1 − x0) (xk−1 − x2)(xk−1 − x1)(xk−1 − x0) · · · · · · (xk−1 − xk−2) · · · (xk−1 − x0)

...
...

...
...

...
...

1 xn − x0 (xn − x1)(xn − x0) (xn − x2)(xn − x1)(xn − x0) · · · · · · (xn − xk−2) · · · (xn − x0)


. (18)

4. Numerical Study

Experiments were divided into matrix–vector and matrix–matrix multiplication, where
both the condition number and relative error performance was compared among the
prevalent Poly-CDC and our proposed NLPC-CDC. Since the work in [16] is fundamental,
our proposed NLPC is also fundamental, hence comparing these two fundamentals is
needed, laying the foundation for future variant comparisons.

4.1. Matrix–Vector Multiplication

Condition number: The size of matrix A and column vector x are 5040× 20 and 20× 1,
respectively. We set the number of blocks m to be from 8 to 20. We set the interpolation
point to be a random number in [0, 3]. By averaging over 50 realizations, the condition
number of the Poly-CDC and NLPC-CDC versus m are plotted in Figure 3 for N = 2K and
N = 10K, respectively. The observations show that compared to Poly-CDC, NLPC-CDC
reduces the condition number by over 1010 and 108 for scenario N = 2K and N = 10K,
respectively.

(a) (b)

Figure 3. Condition number of matrix–vector multiplication. (a) N = 2K. (b) N = 10K.
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Relative error: The size of matrix A and column vector x are 900× 20 and 20× 1,
respectively. We set m to range from 10 to 30. The relative error of the results is plotted in
Figure 4. The observations show that NLPC-CDC significantly outperforms Poly-CDC.

(a) (b)

Figure 4. Relative error of matrix–vector multiplication. (a) N = 2K. (b) N = 10K.

4.2. Matrix–Matrix Multiplication

Condition number: The size of matrix A and B are 2520× 10 and 10× 2520, respec-
tively. We set the number of blocks m to be from four to nine. A random number in [0, 3]
is selected as the interpolation point. By averaging over 50 realizations, the condition
numbers of Poly-CDC and NLPC-CDC vs. m are plotted in Figure 5, for N = 2K and
N = 10K, respectively. The observations show that the condition number of Poly-CDC
increases rapidly when the number of blocks exceeds six, while the condition number
of NLPC-CDC grows very slowly for both scenarios, N = 2K and N = 10K, indicating
significant improvement of NLPC-CDC over Poly-CDC.

(a) (b)

Figure 5. Condition number of matrix–matrix multiplication. (a) N = 2K. (b) N = 10K.

Relative error: The relatives error of the results are plotted in Figure 6. The observations
show that NLPC-CDC significantly outperforms Poly-CDC.
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(a) (b)

Figure 6. Relative error of matrix–matrix multiplication. (a) N = 2K. (b) N = 10K.

5. Conclusions

To improve numerical stability, a novel NLPC-based CDC was proposed. A detailed
design were executed for both matrix–vector and matrix–matrix multiplications. An
associated proof that the constructed code possesses an (n, k)-symmetrical combination
property (CP) was provided. A series of numerical studies verified that our proposed NLPC-
CDC significantly outperforms Poly-CDC in terms of the achieved condition number or
relative error, and the improvement was over 104 for all cases. This work adopted random
interpolation points, without careful selection of real interpolation points. Therefore, future
work may consider selecting appropriate interpolation points to obtain the best numerical
results, which variants may outperform the Poly-CDC variants [17,18]. In addition, as
the encoding procedure is complicated and tedious, we may consider designing a simple
encoding method that can maintain numerical stability.
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Appendix A

Proof of Theorem 1. Invertibility of a matrix is equivalent to the determinant of arbitrary
square when a sub-matrix is non-zero. We prove this by the mathematical induction
method.

(1) We first consider the case where k = 2. In this case, determinant
∣∣∣∣ 1 xi − x0

1 xj − x0

∣∣∣∣ =
xj − xi, i 6= j. Therefore,

∣∣∣∣ 1 0
1 x1 − x0

∣∣∣∣ = x1 − x0 is non-zero, and hence we prove

the determinant is non-zero.
(2) We assume that the determinant is non-zero for an arbitrary (k− 1)× (k− 1) Newton-

interpolation matrix, namely
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∣∣∣∣∣∣∣∣∣∣∣∣

1 xi − x0 (xi − x0)(xi − x1) · · · (xi − x0)(xi − x1) . . . (xi − xk−3)
1 xj − x0

(
xj − x0

)(
xj − x1

)
· · ·

(
xj − x0

)(
xj − x1

)
. . .
(
xj − xk−3

)
1 xk − x0 (xk − x0)(xk − x1)

. . . (xk − x0)(xk − x1) . . . (xk − xk−3)
...
1 xp − x0

(
xp − x0

)(
xp − x1

)
· · ·

(
xp − x0

)(
xp − x1

)
. . .
(
xp − xk−3

)

∣∣∣∣∣∣∣∣∣∣∣∣
= Dk−1 6= 0, (A1)

where xi, xj, xk · · · xp takes actual values at random from x0 · · · xn. We let Q denote
the above matrix within the determinant.

(3) We prove that the determinant of an arbitrary k× k Newton-interpolation matrix is
non-zero.

We randomly choose interpolation point xx from x0 · · · xn in the following manner
and the chosen point should be distinct from xi, xj, xk · · · xp of Q. We then add one row and
one column for Q in the following manner:∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xx − x0 (xx − x0)(xx − x1) · · · (xx − x0)(xx − x1) . . . (xx − xk−3) (xx − x0)(xx − x1) . . . (xx − xk−2)
(xi − x0)(xi − x1) . . . (xi − xk−2)(
xj − x0

)(
xj − x1

)
. . .
(
xj − xk−2

)
Q (xk − x0)(xk − x1) . . . (xk − xk−2)

...
(xn − x0)(xn − x1) . . . (xn − xk−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A2)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xx − x0 (xx − x0)(xx − x1) (xx − x0)(xx − x1) . . . (xx − xk−3) (xx − x0)(xx − x1) . . . (xx − xk−2)

1 xi − x0 (xi − x0)(xi − x1) . . . (xi − x0)(xi − x1) . . . (xi − xk−3) (xi − x0)(xi − x1) . . . (xi − xk−2)

1 xj − x0
(

xj − x0
)(

xj − x1
) (

xj − x0
)(

xj − x1
)

. . .
(
xj − xk−3

) (
xj − x0

)(
xj − x1

)
. . .
(
xj − xk−2

)
1 xk − x0 (xk − x0)(xk − x1)

. . . (xk − x0)(xk − x1) . . . (xk − xk−3) (xk − x0)(xk − x1) . . . (xk − xk−2)

...
...

1 xp − x0
(

xp − x0
)(

xp − x1
)

. . .
(

xp − x0
)(

xp − x1
)

. . .
(
xp − xk−3

) (
xp − x0

)(
xp − x1

)
. . .
(
xp − xk−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A3)

Through elementary operations on this matrix, we can eliminate the first row except
for the first element because

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

1 xi − xx (xi − xx)(xi + xx − x1 − x0)
(

xk−1
i − xk−1

x

)
−
(

xk−2
i − xk−2

x

)
L +

(
xk−3

i − xk−3
x

)
M− · · · ± (xi − xx)N

1 xj − xx
(

xj − xx
)(

xj + xx − x1 − x0
) (

xk−1
j − xk−1

x

)
−
(

xk−2
j − xk−2

x

)
L +

(
xk−3

j − xk−3
x

)
M− · · · ±

(
xj − xx

)
N

1 xk − xx (xk − xx)(xk + xx − x1 − x0) · · ·
(

xk−1
k − xk−1

x

)
−
(

xk−2
k − xk−2

x

)
L +

(
xk−3

k − xk−3
x

)
M− · · · ± (xk − xx)N

...
1 xp − xx

(
xp − xx

)(
xp + xx − x1 − x0

)
· · ·

(
xk−1

p − xk−1
x

)
−
(

xk−2
p − xk−2

x

)
L +

(
xk−3

p − xk−3
x

)
M− · · · ±

(
xp − xx

)
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A4)

Afterwards, we reduce the dimension to (k− 1)(k− 1) as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi − xx (xi − xx)(xi + xx − x1 − x0)
(

xk−1
i − xk−1

x

)
−
(

xk−2
i − xk−2

x

)
L +

(
xk−3

i − xk−3
x

)
M− · · · ± (xi − xx)N

xj − xx
(

xj − xx
)(

xj + xx − x1 − x0
)
· · ·

(
xk−1

j − xk−1
x

)
−
(

xk−2
j − xk−2

x

)
L +

(
xk−3

j − xk−3
x

)
M− · · · ±

(
xj − xx

)
N

xk − xx (xk − xx)(xk + xx − x1 − x0)
(

xk−1
k − xk−1

x

)
−
(

xk−2
k − xk−2

x

)
L +

(
xk−3

k − xk−3
x

)
M− · · · ± (xk − xx)N

...
. . .

xp − xx
(
xp − xx

)(
xp + xx − x1 − x0

)
· · ·

(
xk−1

p − xk−1
x

)
−
(

xk−2
p − xk−2

x

)
L +

(
xk−3

p − xk−3
x

)
M− · · · ±

(
xp − xx

)
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A5)

By extracting the common factor of each row, and letting T denote the common factor
(xi − xx)(xj − xx)(xk − xx) . . . (xp − xx), we obtain
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T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (xi + xx − x1 − x0)
(

xk−2
i + xk−3

i xx + . . . + xk−2
x

)
−
(

xk−3
i + xk−4

i xx + . . . + xk−3
x

)
L + · · · ± N

1
(

xj + xx − x1 − x0
)
· · ·

(
xk−2

j + xk−3
j xx + . . . + xk−2

x

)
−
(

xk−3
j + xk−4

j xx + . . . + xk−3
x

)
L + · · · ± N

1 (xk + xx − x1 − x0)
(

xk−2
k + xk−3

k xx + . . . + xk−2
x

)
−
(

xk−3
k + xk−4

k xx + . . . + xk−3
x

)
L + · · · ± N

...
. . .

1
(

xp + xx − x1 − x0
)
· · ·

(
xk−2

p + xk−3
p xx + . . . + xk−2

x

)
−
(

xk−3
p + xk−4

p xx + . . . + xk−3
x

)
L + · · · ± N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A6)

= T

∣∣∣∣∣∣∣∣∣∣∣∣

1 (xi + xx − x1 − x0) xk−2
i + xk−3

i (xx − L) + xk−4
i
(
x2

x − xxL + M
)
+ · · ·+ xk−2

x ± N
1
(

xj + xx − x1 − x0
)
· · · xk−2

j + xk−3
j (xx − L) + xk−4

j
(
x2

x − xxL + M
)
+ · · ·+ xk−2

x ± N
1 (xk + xx − x1 − x0) xk−2

k + xk−3
k (xx − L) + xk−4

k
(
x2

x − xxL + M
)
+ · · ·+ xk−2

x ± N
...

. . .
1
(

xp + xx − x1 − x0
)
· · · xk−2

p + xk−3
p (xx − L) + xk−4

p
(
x2

x − xxL + M
)
+ · · ·+ xk−2

p ± N

∣∣∣∣∣∣∣∣∣∣∣∣
, (A7)

where L, M, N is a constant that is a linear combination of the interpolation points x0 · · · xn.
Through elementary transformations to eliminate these constants, we obtain

(xi − xx)
(

xj − xx

)
(xk − xx) . . .

(
xp − xx

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xi − x0 (xi − x0)(xi − x1) · · · (xi − x0)(xi − x1) . . . (xi − xk−3)

1 xj − x0

(
xj − x0

)(
xj − x1

)
· · ·

(
xj − x0

)(
xj − x1

)
. . .
(

xj − xk−3

)
1 xk − x0 (xk − x0)(xk − x1)

. . . (xk − x0)(xk − x1) . . . (xk − xk−3)
...
1 xp − x0

(
xp − x0

)(
xp − x1

)
· · ·

(
xp − x0

)(
xp − x1

)
. . .
(

xp − xk−3
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (xi − xx)

(
xj − xx

)
(xk − xx) . . .

(
xp − xx

)
Dk−1 6= 0

(A8)

which completes the proof.
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