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Abstract: Networks offer a compact representation of complex systems such as social, communication,
and biological systems. Traditional network models are often inadequate to capture the diverse nature
of contemporary networks, which may exhibit temporal variation and multiple types of interactions
between entities. Multilayer networks (MLNs) provide a more comprehensive representation by
allowing interactions between nodes to be represented by different types of links, each reflecting
a distinct type of interaction. Community detection reveals meaningful structure and provides
a better understanding of the overall functioning of networks. Current approaches to multilayer
community detection are either limited to community detection over the aggregated network or are
extensions of single-layer community detection methods with simplifying assumptions such as a
common community structure across layers. Moreover, most of the existing methods are limited to
multiplex networks with no inter-layer edges. In this paper, we introduce a spectral-clustering-based
community detection method for two-layer MLNs. The problem of detecting the community structure
is formulated as an optimization problem where the normalized cut for each layer is minimized
simultaneously with the normalized cut for the bipartite network along with regularization terms
that ensure the consistency of the within- and across-layer community structures. The proposed
method is evaluated on both synthetic and real networks and compared to state-of-the-art methods.
MLNs. The problem of detecting the community structure is formulated as an optimization problem
where the normalized cut for each layer is minimized simultaneously with the normalized cut for
the bipartite network along with regularization terms that ensure the consistency of the intra- and
inter-layer community structures. The proposed method is evaluated on both synthetic and real
networks and compared to state-of-the-art methods.

Keywords: multilayernetworks; bipartite graph; spectral clustering; projection distance

1. Introduction

Networks provide a compact representation of the internal structure of complex
systems consisting of agents that interact with each other. Some example application areas
include social sciences, engineering systems, and biological systems [1,2]. A core task in
network analysis is community detection, which identifies the partition of the node set
such that within-community connections are denser than between-community connections.

While different methods have been proposed to detect the community structure of
simple (single-layer) graphs, in many contemporary applications, a pair of nodes may
interact through multiple types of links yielding multilayer networks. In MLNs, each
type of link represents a unique type of interaction. These links can be separated into
different layers, enabling the same group of nodes to be connected in multiple ways [3].
The layers in a multilayer network can represent various attributes or features of a complex
system. For instance, they can be temporal snapshots of the same network at different
time intervals, or they can correspond to different types of connections in social networks,
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e.g., friendship, collaboration, or family relationships, different types of units in military
tactical networks, e.g., infantry, vehicles, or airborne units [4], or transportation networks,
where nodes representing different locations can be linked through various modes of
transportation, including roads, railways, and air routes. Multilayer networks can further
be categorized based on the homogeneity of the nodes and complexity of topological
structure as (i) multiplex networks that exhibit homogeneity in terms of the entities they
comprise, with each layer consisting of the same set of entities of the same type where the
inter-layer edges are implicit and not shown; (ii) heterogeneous multilayer networks by the
possibility of having different sets and types of entities for each layer and the relationships
between entities across layers are explicitly represented by inter-layer edges.

Current approaches to multilayer community detection are either limited to commu-
nity detection over the aggregated network or are extensions of single-layer community
detection methods with simplifying assumptions such as a common community struc-
ture across layers. Moreover, they are mostly limited to multiplex networks with no
inter-layer edges.

In this paper, we extend the notion of spectral clustering from single-layer networks to
two-layer networks with inter-layer edges. In particular, we model the two-layer network
as the union of two single-layer networks and a bipartite network that is represented
through its symmetric rows’ and columns’ adjacency matrices. Next, we express the cost
functions corresponding to minimizing the normalized cut for each of the layers as well as
the inter-layer adjacency matrix in its relaxed form similar to spectral clustering. In order
to ensure the consistency of the communities across layers, we regularize the resulting cost
function by a projection distance metric that quantifies the consistency of the low-rank
embeddings of the networks across layers. The resulting optimization problem is solved
through an alternating maximization scheme.

2. Related Work

Community detection methods for multilayer networks can be broadly categorized
into three classes: flattening methods, aggregation methods, and direct methods. Flattening
methods convert the multilayer network into a single-layer network by collapsing the layers
and then apply traditional community detection algorithms. This approach ignores the
information present in the multiple layers, which can lead to loss of important features and
inaccuracies in the community structure [5]. Aggregation methods detect the community
structure for each layer separately and then merge the results into a single structure. This
method requires a merging strategy to combine the community structures from each layer,
which can be challenging and subjective. Additionally, it may fail to capture the inter-
layer dependencies and correlations between the layers [6]. Direct methods work directly
on the multilayer network and optimize community-quality assessment criteria such as
modularity or normalized cut to identify the community structure. This approach accounts
for the interactions between the layers and can reveal the inter-layer dependencies and
correlations [7–9].

Some examples of the direct method include multilayer label propagation, random-
walk-based methods, non-negative matrix factorization, modularity, and spectral-clustering-
based methods. Label propagation algorithms (LPAs) propagate node attributes based on
their neighbors’ behavior and exhibit linear complexity. Inspired by the traditional LPA,
the authors of [10] presented a redefinition of the neighborhood in multilayer networks and
proposed a multilayer LPA. Although this approach is efficient and can handle weighted
and directed networks, the resulting partition is highly dependent on the threshold pa-
rameter and the density of the network dataset. Moreover, this method is only suitable
for multiplex networks. Kuncheva et al. [9] proposed locally adaptive random transitions
(LARTs), which are designed to detect communities that are shared by some or all layers in
multiplex networks. More recently, matrix and tensor factorization methods have been pro-
posed for multilayer community detection. Among these, non-negative matrix factorization
(NMF)-based methods that extract low-dimensional feature representations for each layer,
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where collective factorization is then used to fuse them into a common representation [11].
In [12], a semi-supervised joint non-negative matrix factorization (S2-jNMF) algorithm
is proposed for community detection in multiplex networks, aiming to detect a common
structure across layers. However, all of these methods are restricted to multiplex networks,
where inter-layer edges are only allowed between each node and its corresponding replicas
across different layers.

More recently, community detection methods that consider fully connected MLNs,
MLNs with inter-relations, have been proposed [13]. The authors of [14,15] propose to ex-
tend the modularity function and its solution to account for MLNs with inter-layer relations.
Similarly, [16] propose a normalized cut extension to MLNs by creating a block Laplacian
matrix, where each block corresponds to a specific layer. The community structure is then
obtained through standard spectral clustering on this block Laplacian matrix. However,
the selection of the parameter β is crucial to ensuring the community structure consistency
across the layers in this method. Another commonly employed technique that incorporates
the concept of network dynamics, specifically diffusion, is Infomap [17]. This method opti-
mizes the map equation, which leverages the information–theoretic relationship between
reducing network dimensionality and detecting network communities. However, in the
case of noisy networks, the efficiency of the diffusion process, i.e., information propagation,
may be compromised, leading to suboptimal clustering performance [18].

3. Background
3.1. Graph Theory

Single-layer network: A single-layer network or a simple graph models the inter-
actions between entities in network science. A single-layer network can be defined as
GS = (VS, ES, A), where VS is the set of nodes, ES ⊆ (VS × VS) is the set of edges, and
A ∈ Rn×n is the symmetric adjacency matrix, with n = |V| being the number of nodes.

Bipartite network: A bipartite network or graph is a graph that can be partitioned
into two sets of vertices where all edges connect vertices from one set to vertices in the
other set. Formally, a bipartite graph is defined as GB = (VB, EB, B), where VB = V1 ∪V2,
EB ⊆ (V1 ×V2) are the disjoint sets of vertices and the set of edges that connects a vertex in
V1 to a vertex in V2. B ∈ R(n1+n2)×(n1+n2) denotes the symmetric adjacency matrix of the
bipartite network, where n1 = |V1| and n2 = |V2| refer to the size of the two disjoint sets.
The adjacency matrix of the bipartite graph can be defined as follows:

B =

[
0 A12

A21 0

]
, (1)

where A12 ∈ Rn1×n2 describes the relationships between V1 and V2.
Two-layer network: A two-layer network is a type of multilayer network that consists

of two layers or graphs, where each layer represents a different type of relationship or
interaction between nodes. A two-layer network, G2M, can be formally defined as the set of
two single-layer graphs, G1 and G2, and a bipartite graph, G12, such that G2M = {G1,G2,G12}
with G1 = (V1, E1, A1), G2 = (V2, E2, A2), and G12 = (V1, V2, E12, A12). G1 and G2 are known
as within- or intra-layer graphs, whereas G12 refers to the across- or inter-layer graph.

Supra-adjacency matrix: A supra-adjacency matrix is a symmetric matrix that repre-
sents both the intra- and inter-layer connections in a multilayer network. A supra-adjacency
matrix of a two-layer MLN, A2M ∈ RN×N , where N = n1 + n2 can be constructed from the
intra- and inter-layer adjacency matrices as follows:

A2M =

[
A1 A12

A21 A2

]
, (2)

where A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , and A12 ∈ Rn1×n2 .
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3.2. Graph Cut Problem and Spectral Clustering

Graph minimum cut (mincut) is a problem in graph theory that involves partitioning
a graph into multiple partitions or disjoint sets of nodes such that the number of edges be-
tween these sets is minimized. The mincut problem is NP-hard. However, there are efficient
algorithms to approximate the mincut, such as spectral clustering. Spectral clustering relies
on the spectral properties (eigenvalues and eigenvectors) of the symmetric graph Laplacian
matrix or normalized adjacency matrix. In particular, spectral clustering uses these eigen-
values and eigenvectors to embed the nodes of the graph into a lower-dimensional space.
The nodes can be then clustered using standard k-means in this lower-dimensional space.

Given a single-layer graph with a symmetric adjacency matrix, A ∈ Rn×n, spectral
clustering solves the following trace maximization problem [19,20]:

max
U∈Rn×k

tr
(

U>ANU
)

, s.t U>U = Ik, (3)

where “tr” and “>” refer to the trace and transpose operators, respectively. AN = D−
1
2 AD−

1
2

is the normalized version of the adjacency matrix, where D is the degree matrix with
Dii = ∑j Aij. Spectral clustering uses the spectrum (eigenvalues) of the normalized adja-
cency matrix to partition the nodes into clusters. In particular, the eigenvectors correspond-
ing to the largest k eigenvalues are used to embed the nodes in a low-dimensional space,
where the matrix U is constructed by arranging these eigenvectors as its columns. The
final structure is then determined by applying classical k-means to the rows of the matrix
U [19]. The number of the eigenvectors, k, corresponds to the number of communities in
the network.

3.3. Spectral Co-Clustering in Bipartite Networks

Bipartite spectral co-clustering is a technique for simultaneously clustering both rows
and columns of a bipartite network [21,22]. The problem can be formulated as a trace
maximization problem as follows:

max
Z∈R(n1+n2)×k

tr(Z>BNZ) = max
Z∈R(n1+n2)×k

tr

([
UL
UR

]>
BN

[
UL
UR

])
, (4)

where BN =

[
0 A12

N
A21

N 0

]
, Z =

[
UL
UR

]
, A12

N = D−
1
2

L A12D−
1
2

R with

DLii = ∑j A12
ij , and DR jj = ∑i A12

ij . According to the Ky Fan theorem, the global opti-
mum solution of Equation (4) is the matrix Z containing k eigenvectors that correspond to
the largest eigenvalues of BN .

A more computationally efficient solution [21] to solve Equation (4) is to compute UL
and UR as the matrices containing the left and right singular vectors that correspond to the
largest k singular values of the matrix A12

N , respectively.
Another approach to solve Equation (4) is by first computing the symmetric rows and

columns adjacency matrices, A12
N A12

N
> and A21

N A21
N
>, and then solving two trace maximiza-

tion problems, simultaneously, as follows [22]:

max
UL∈Rn1×k

tr
(
U>L A12

N A12
N
>

UL
)

s.t U>L UL = Ik

and

max
UR∈Rn2×k

tr
(
U>R A21

N A21
N
>

UR
)

s.t U>R UR = Ik,

(5)

where UL and UR can be computed separately as the eigenvectors’ matrices related to the
largest k eigenvalues of A12

N A12
N
> and A21

N A21
N
>, respectively.
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3.4. Projection Distance between Subspaces

The projection distance between subspaces measures the distance between two sub-
spaces of a vector space. In particular, it quantifies the distance between the orthogonal
projections of a vector onto each of the two subspaces. Let span(H1) and span(H2) be two
subspaces and their corresponding orthonormal basis sets are H1 ∈ Rn×k and H2 ∈ Rn×k,
respectively. The projection distance can be determined by the principal angles between
the two subspaces. Let θi denote the ith principal angle between the two subspaces; then,
the projection distance is defined as [23]:

d2
p(span(H1), span(H2)) =

k

∑
i=1

sin2(θi),

= k−
k

∑
i=1

cos2(θi),

= k− tr(H1H>1 H2H>2 ).

(6)

4. Community Detection in Multilayer Networks: A Unified Spectral Clustering
Approach (ML-USCL)
4.1. Problem Formulation

Given a two-layer network, in order to determine a community, Ck, two subsets of
vertices are defined: (i) within-layer community subset, CS = (VCk

m , ECk
m ), with VCk

m ⊆ Vm

and ECk
m = Em ∩ (VCk

m × VCk
m ), where m ∈ {1, 2}, and (ii) across-layer community subset,

CB = (VCk
1 , VCk

2 , ECk
12) with VCk

1 ⊆ V1, VCk
2 ⊆ V2 and ECk

12 = E12 ∩ (VCk
1 ×VCk

2 ). A community
can then be defined as Ck = {CS, CB}, where it may include vertices from one or more layers
in the network. In particular, Ck defines either a within-layer community when CB = ∅ or
an across-layer community when CB 6= ∅.

In this paper, the objective is to partition a two-layer network into K disjoint communi-
ties. The goal is to find the low-rank embeddings of each layer to maximize the separability
between communities while ensuring that these low-rank embeddings are consistent with
the partitioning of the inter-layer graph. This objective is achieved by exploiting previous
work in spectral clustering of single-layer networks and spectral co-clustering of bipartite
networks. More precisely, intra-and inter-layer graphs are modeled as single-layer and bi-
partite graphs, respectively. The intra-layer graph encodes the interactions between nodes
within the same layer, whereas the inter-layer graph encodes the interactions between
nodes from both layers.

The proposed objective function can be expressed mathematically as:

max
U1∈Rn1×k1 ,U2∈Rn2×k2 ,
UL∈Rn1×k ,UR∈Rn2×k

tr(U>1 A1
NU1) + tr(U>2 A2

NU2)︸ ︷︷ ︸
Within-Layer Normalized Cut

+ tr(U>L (A
12
N A12

N
>
)UL) + tr(U>R (A

21
N A21

N
>
)UR)︸ ︷︷ ︸

Across-Layer Normalized Cut

+ λ1tr(U1U1
>ULUL

>) + λ2tr(U2U2
>URUR

>)︸ ︷︷ ︸
Regularization

s.t U>1 U1 = Ik1 , U>2 U2 = Ik2 , U>L UL = Ik, U>R UR = Ik.

(7)

The proposed objective function is formulated such that the first two terms refer to
the spectral clustering problem for Layers 1 and 2, respectively, where A1

N ∈ Rn1×n1 and
A2

N ∈ Rn2×n2 are the symmetric normalized intra-layer adjacency matrices. The third and
fourth terms refer to the bipartite spectral clustering problem. The last two terms define the
spectral embedding similarity between the left and right subspaces of A12

N and the low-rank
subspaces of A1

N and A2
N , respectively [24–26]. In particular, maximizing these two terms

minimizes the projection subspace distance between (U1, UL) and (U2, UR), ensuring the
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consistency between the intra- and inter-layer partitions. k1 and k2 refer to the number of
within-layer communities in Layers 1 and 2, respectively, whereas k refers to the number of
across-layer communities. λ1 and λ2 are the regularization parameters.

4.2. Problem Solution
4.2.1. Initializing the Intra- and Inter-Layer Basis Matrices

Intra-layer basis matrices, U1 ∈ Rn1×k1 and U2 ∈ Rn2×k2 , are initialized using
Equation (3). The number of communities, k1 and k2, in each one of the layers is de-
termined initially by the asymptotical surprise (AS) metric [27]. In particular, the AS
metric is calculated for a range of possible community numbers, and the initial number of
intra-communities is set to the number that achieves the maximum value of the AS metric.
On the other hand, inter-layer basis matrices, UL ∈ Rn1×k and UR ∈ Rn2×k, are initialized
using Equation (5), where k = min(k1, k2). The steps of initializing the basis matrices are
oultined in Algorithm 1.

Algorithm 1 Initializing the intra- and inter-layer basis matrices

Input: A1, A2, A12, maximum number of communities (Cm).
Output: Initial (U1, U2, UL and UR), k1, k2, k

1: Compute A1
N , A2

N and A12
N

2: Compute eigendecomposition of A1
N = U1Λ1U>1 and A2

N = U2Λ2U>2
3: for NOC = 2 : Cm do
4: Apply k-means to U1(:, 1 : NOC) to determine the first layer nodes clustering labels

(CL1w).
5: Apply k-means to U2(:, 1 : NOC) to determine the second layer nodes clustering

labels (CL2w).
6: Compute asymptotical surprise (AS) for Layer 1: AS1(NOC)=AS(A1, CL1w)
7: Compute asymptotical surprise (AS) for Layer 2: AS2(NOC)=AS(A2, CL2w)
8: end for
9: Find k1 as k1 = maxj AS1(j)

10: Find k2 as k2 = maxj AS2(j)
11: Set k to min(k1, k2)
12: Compute UL(:, 1 : k) and UR(:, 1 : k) using Equation (5)
13: return U1(:, 1 : k1), U2(:, 1 : k2), UL(:, 1 : k) and UR(:, 1 : k), k1, k2 and k

4.2.2. Finding the Basis Matrices

As solving for the different variables in the proposed objective function jointly is not
feasible, alternating maximization can be adopted to compute the variables, iteratively.
Alternating maximization is a commonly used approach for solving optimization prob-
lems that involve multiple variables or constraints. In particular, the technique involves
fixing one set of variables and computing the other set, alternating between the two until
convergence [28,29].

The solution to the proposed problem in Equation (7) can be found using an alternating
maximization scheme as follows:

• Update U1: By considering only the terms that contain U1, we obtain

max
U1∈Rn1×k1

tr(U>1 A1
NU1) + λ1tr(U1U1

>ULUL
>) s.t U>1 U1 = Ik1

= max
U1∈Rn1×k1

tr(U>1 A1
modU1) s.t U>1 U1 = Ik1 ,

(8)

where A1
mod = A1

N + λ1ULUL
> is the modified normalized adjacency matrix repre-

senting Layer 1. The solution to this problem is similar to the classic spectral clustering
formulation. In particular, the matrix U1 is computed through eigen decomposition
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(ED) of A1
mod, where it consists of the k1 eigenvectors that are associated with the k1

largest eigenvalues of A1
mod.

• Update U2: By considering only the terms that contain U2 we obtain,

max
U2∈Rn2×k2

tr(U>2 A2
NU2) + λ2tr(U2U2

>URUR
>) s.t U>2 U2 = Ik2

= max
U2∈Rn2×k2

tr(U>2 A2
modU2) s.t U>2 U2 = Ik2 ,

(9)

where A2
mod = A2

N + λ2URUR
> is the modified normalized adjacency matrix repre-

senting Layer 2. Similar to U1, U2 contains k2 eigenvectors associated with the k2
largest eigenvalues of A2

mod.
• Update UL: By considering only the terms that contain UL, we obtain

max
UL∈Rn1×k

tr(U>L (A
12
N A12

N
>
)UL) + λ1tr(U1U1

>ULUL
>) s.t U>L UL = Ik

= max
UL∈Rn1×k

tr(U>L ĀLUL) s.t U>L UL = Ik,
(10)

where ĀL = A12
N A12

N
>
+ λ1U1U1

> is referred to as the modified normalized adjacency
matrix that represents the rows of the inter-layer graph and UL can be computed also
through eigendecomposition and it comprises the eigenvectors corresponding to the k
largest eigenvalues of ĀL.

• Update UR: By keeping all the terms that include only UR, we obtain

max
UR∈Rn2×k

tr(U>R (A
21
N A21

N
>
)UR) + λ2tr(U2U2

>URUR
>) s.t U>R UR = Ik

= max
UR∈Rn2×k

tr(U>R ĀRUR) s.t U>R UR = Ik,
(11)

where ĀR = A12
N
>A12

N +λ2U2U2
> indicates the modified normalized adjacency matrix

that represents the columns of the inter-layer graph, and UR represents the eigenvector
matrix that corresponds to the k largest eigenvalues of ĀR.

As it can be seen from the update steps outlined above, each of the basis matrices is
found jointly using both intra- and inter-layer adjacency information. In particular, U1
is the subspace corresponding to both its corresponding adjacency matrix and the Gram
matrix defined by UL, i.e., ULU>L . Similar arguments can be made for the other basis
matrices showing that they are learned to optimize the span for both within- and between-
layer connectivity. After the basis matrices are computed, a set of intra- and inter-layer
communities are determined by applying k-means to U1, U2, and Z = [UL; UR]. The final
community structure of the network is then determined by following the steps explained
in Section 4.3.

4.3. Determining the Final Community Structure of the Network

After estimating a set of within- and across-layer communities, we evaluate their
quality as follows:

1. The quality or strength of each within- and across-layer community is measured using
the communitude metric [30,31] in terms of the supra-adjacency matrix as:

Communitude(Ck) =

E
Ck
in
E − (

E
Ck
in +E

Ck
ex

2E )2

(
E
Ck
in +E

Ck
ex

2E )2(1− (
E
Ck
in +E

Ck
ex

2E )2)

, (12)

where ECk
in is the sum of internal edges in a community, i.e., edges between the nodes in

the same community or “within-community” edges; ECk
ex is the sum of external edges
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in a community, i.e., edges that connect nodes belonging to different communities
or “between-community” edges; and 2E refers to the sum of all edges in the supra-
adjacency. In fact, this quality function can be seen as an adapted form of the Z-score
function, where it is normalized by the standard deviation of the fraction of the
number of edges within the subgraph. The upper bound of the communitude metric
is 1.

2. To identify the most significant communities in a network, the communities are
ranked in descending order depending on their communitude values. Every node
in the proposed ML-USCL is allowed to join one community, within- or across-layer
community. In particular, the communitude values of both the within- or across-layer
communities are compared; then, the community that scores a higher value is selected.

3. The final community structure of the two-layer MLN is then considered as the set of
K communities, C2M = {C1, C2, . . . , CK}, that scores the largest communitude values.

The steps of the developed algorithm are summarized in Algorithm 2.

Algorithm 2 Detecting Community Structure in Multilayer networks: Unified Spectral
Clustering (ML-USCL)

Input: A1, A2, A12, λ1, λ2
Output: Within- and across-layer communities.

1: Initialize U1, U2, UL and UR as explained in Algorithm 1.
2: while not converge do
3: Calculate U1 using Equation (8)
4: Calculate U2 using Equation (9)
5: Calculate UL using Equation (10)
6: Calculate UR using Equation (11)
7: end while
8: Apply k-means on U1 and U2 to determine the within-layer communities.
9: Apply k-means on Z = [UL; UR] to determine the across-layer communities.

10: Compute the communitude of the detected communities using Equation (12).
11: return Best quality communities.

4.4. Computational Complexity of ML-USCL

The order of complexity of the proposed ML-USCL depends on the specific imple-
mentation of the algorithm and the size of the input network. The main steps involved in
the proposed ML-USCL include initializing the basis matrices, updating the basis matrices
by performing eigenvalue decomposition, and applying k-means to get the within- and
across-layer communities.

Let nm be the number of nodes in the mth layer; then, initializing each one of the
basis matrices requires eigenvalue decomposition of the intra- and inter-layer adjacency
matrices, which has a complexity of O(n3

m). During the initialization step, the number of
communities in each of the intra-layer graphs is determined by calculating the AS metric
over a range of communities, {2, . . . , Cm}. The AS calculation requires CmO(|Em|), where
|Em| refers to the number of edges in the mth layer. For each iteration, the update of Um
has a complexity of O(n3

m). Applying k-means to Um to get the clustering labels requires
O(nml

′
mkm), where l

′
m refers to the number iterations taken by the k-means.

Overall, the complexity of the proposed ML-USCL is dominated by the eigenvalue
decomposition step. In particular, the order of complexity when full eigenvalue decom-
position is calculated can be determined as lmO(n3

m), where lm refers to the total number
of iterations. However, this computational complexity can be reduced to lmO(kmn2

m) by
computing the leading km eigenvectors. Consequently, the order of complexity of the
proposed ML-USCL can be considered as lmO(kmn2

m) since the leading km eigenvectors are
computed in each iteration.
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5. Results and Discussion

In this section, multiple experiments are conducted to evaluate the significance of
the proposed approach. All experiments are performed on a standard Windows 10 Server
with Intel (R) Core (TM) i7-9700 CPU @ 3.00GHz and 16GB RAM, MATLAB R2022b. The
performance of the proposed ML-USCL is compared to other existing approaches, including
block spectral clustering with inter-layer relations (BLSC), where β = 1 as suggested by
the approach [16], generalized Louvain (GenLov) [32], collective NMF approaches [11],
including CSNMTF and CPNMF. The input to the BLSC, GenLov, and collective NMF is
the two-layer network directly, supra-adjacency, and the multiplex version of the network,
respectively. The number of communities is determined using the asymptotical surprise for
BLSC and the collective NMF methods, while it is self-optimized in GenLov. The value of
the maximum number of communities, Cm, is determined based on the size of the network.
For example, Cm can be set to 20 for small networks and to 100 for large networks. The
quality of the network’s final partition is evaluated using normalized mutual information
(NMI) [33], adjusted Rand index (ARI) [34], and purity [35].

5.1. Simulated Networks
5.1.1. LFR Binary Simulated Networks

• LFR benchmark description: The Lancichinetti–Fortunato–Radicchi (LFR) bench-
mark [36,37] is a commonly used benchmark for evaluating the performance of com-
munity detection algorithms. In this experiment, the LFR benchmark is adopted to
generate two-layer simulated networks, each with n nodes. The LFR benchmark uses a
truncated power-law distribution to determine the community sizes. The parameters
that control the community structure in the generated networks are (i) minimum
degree, dmin, (ii) maximum degree, dmax, and (iii) mixing parameter, µ. The minimum
and maximum values of the degree distribution (dmin and dmax, respectively) are cho-
sen such that the average degree of the network is equal to 〈d〉. Within-layer graphs
are generated with k1 and k2 communities, whereas the across-layer graph is generated
such that the ratio of the across-layer communities to the total number of communities
is greater than or equal to α, where α ∈ [0, 1]. These selected communities are ran-
domly combined with each other to create an across-layer community. The connection
density within communities is set to (1− µ)〈d〉 and between communities to µ〈d〉.
The parameter µ controls the degree of inter-community connectivity, where a low µ
value results in a strong community structure with few inter-community links, while
a high µ value results in a weaker community structure with more inter-community
links. On the other hand, α controls the percent of the across-layer communities. As α
increases, the networks tend to have more across-layer communities.

• Experiment: In this experiment, two-layer unweighted networks with n1 = n2 = 200
are created. The parameters of the generated networks are dmin = 8, dmax = 20,
µ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, and α = {0.0, 0.5, 1.0}. To assess the efficacy
of various algorithms in detecting community structure, a comparative analysis is
carried out as the mixing parameter increases, i.e., the noise increases. Figure 1 shows a
comparison between the different approaches in recovering the structure of two-layer
LFR networks. Figure 1a–c reflect the performance of the different approaches when
the two-layer network consists of within-layer communities only, i.e., α = 0. As it can
be noticed from the figures, the proposed ML-USCL outperforms the other methods
significantly over the different values of the mixing parameter, µ, with respect to all
of the evaluation metrics. In Figure 1d–f, where α = 0.5, the two-layer networks
comprises both intra- and inter-layer communities, the proposed ML-USCL exceeds
the other algorithms in terms of the purity metric, and its performance is comparable
to GenLov and BLSC with respect to the NMI and ARI metrics. Yet, the proposed ML-
USCL performs better than both methods as the value of µ increases, which reflects its
robustness. In Figure 1g–i, the networks consist of across-layer communities only. As
illustrated in the figures, the proposed ML-USCL achieves higher scores of purity over
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the range of µ, whereas GenLov and BLSC achieve better performance in terms of NMI
and ARI. This improvement in the performance of GenLov and BLSC compared to the
networks with α = 0 and α = 0.5 is due to the fact that the networks consist of larger
communities. However, the performance of both methods is inferior to ML-USCL for
µ > 0.4, which indicates that BLSC and GenLov are not robust to noise.
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Figure 1. Comparison conducted among the various methods to evaluate their effectiveness in
detecting the community structure. of LFR benchmark binary networks in terms of NMI, ARI, and
purity with α = {0, 0.5, 1} and variable mixing parameter µ: (a–c) α = 0; (d–f) α = 0.5; (g–i) α = 1.

5.1.2. Weighted Simulated Networks

• Weighted network description: The two-layer simulated weighted MLNs are gener-
ated from a truncated Gaussian distribution in the range of [0, 1]. The networks are
generated based on the parameters (µw, σw) and (µb, σb), which refer to the mean and
standard deviation of edge weights within and between communities, respectively.
Several two-layer MLNs are generated by varying the ground-truth structure, includ-
ing the number of communities (NOCs). Furthermore, a percentage of sparse noise
(SPN%) is randomly introduced into the networks to assess the algorithms’ ability to
handle noise.
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• Experiment: In this experiment, multilayer weighted networks (MLWNs) with 2 layers and
100 nodes per layer are generated. The parameters of the constructed MLWNs are reported
in Table 1. Three different MLWNs are generated with different ground-truth communities
and varying sparse noise levels, SPN% = {0%, 5%, 10%, 15%, 20%, 25%, 30%}. The
proposed ML-USCL is compared to the other algorithms, and the results are shown
in Figure 2. It is evident from Figure 2 the superiority of ML-USCL compared to
the other algorithms in weighted networks in terms of all metrics. Moreover, the
proposed approach exhibits robustness to the addition of sparse noise, with the ability
to accurately detect the community structure even as the percentage of added sparse
noise, SPN%, increases.

Table 1. Parameters of the simulated weighted two-layer MLNs.

Network n1, n2 NOC Ground Truth: Cluster (Nodes in the Cluster) µw, σw, µb, σb

MLWN 1 100, 100 7 Graph1: C1
1 (1–20), C1

2 (21–40), C1
3 (41–60), G1: (0.5, 0.3, 0.3, 0.2)

C1
4 (61–100)

Graph2: C2
1 (1–20), C2

2 (21–35), C2
3 (36–50), G2: (0.5, 0.2, 0.2, 0.2)

C2
4 (51–75), C2

5 (76–100)
Ground truth: C12

1 = {C1
1 , C2

1}, C12
2 = {C1

2 , C2
2}, C1

3 , C1
4 ,C2

3 , C2
4 , C2

5 G12: (0.8, 0.2, 0.3, 0.1)

MLWN 2 100, 100 4 Graph1: C1
1 (1–40), C1

2 (41–100) G1: (0.5, 0.4, 0.3, 0.2)
Graph2: C2

1 (1–30), C2
2 (31–60), C2

3 (61–100) G2: (0.5, 0.1, 0.2, 0.2)
Ground truth: C12

1 = {C1
1 , C2

1}, C1
2 , C2

2 , C2
3 G12: (0.5, 0.2, 0.3, 0.1)

MLWN 3 100, 100 8 Graph1: C1
1 (1–20), C1

2 (21–40), C1
3 (41–60), G1: (0.5, 0.4, 0.3, 0.2)

C1
4 (61–100)

Graph2: C2
1 (1–15), C2

2 (16–35), C2
3 (36–50), G2: (0.5, 0.1, 0.2, 0.2)

C2
4 (51–75), C2

5 (76–100)
Ground truth: C12

1 = {C1
1 , C2

1}, C1
2 , C1

3 , C1
4 , C2

2 , C2
3 , C2

4 , C2
5 G12: (0.5, 0.2, 0.3, 0.1)
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Figure 2. Cont.
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Figure 2. Comparison conducted among the various methods to evaluate their effectiveness in
recovering the community structure of the multilayer weighted networks (MLWNs) from Table 1
in terms of NMI, ARI, and purity with different levels of added sparse noise percent (SPN%):
(a–c) MLWN1; (d–f) MLWN2; (g–i) MLWN3.

5.2. Scalability Comparison

To evaluate the scalability of the proposed ML-USCL, we constructed a set of weighted
multilayer networks with varying sizes. The network sizes ranged from 32 to 8192 on
a logarithmic scale. For each network, the within- and between-community edges were
randomly selected from a truncated Gaussian distribution within the range of [0, 1] using the
following parameters: µ1

w = 0.5, σ1
w = 0.1, µ1

b = 0.3, σ1
b = 0.2, µ2

w = 0.7, σ2
w = 0.1, µ2

b = 0.2,
σ2

b = 0.2, µ12
w = 0.5, σ12

w = 0.1, µ12
b = 0.3, and σ12

b = 0.2, where the superscripts refer to the
within- and across-layer graphs. Each network consisted of two equal-sized communities:
C1

1 and C1
2 in Layer 1, and C2

1 and C2
2 in Layer 2. The community structure of the multilayer

network comprised C12
1 = C1

1 , C2
1 , C1

2 , and C2
2 . The number of communities was specified

as an input for all the algorithms. The run time of the different algorithms was measured
as the network size varied, and the results are displayed in Figure 3. Figure 3 illustrates
that the run time of the different methods exhibits a log-linear relationship as the number
of nodes increases. Moreover, the proposed ML-USCL performs better than CSNMTF as
the number of nodes grows, and it is comparable to BLSC and CPNMF. However, GenLov
exhibits a faster run time compared to ML-USCL. The order of complexity of the different
algorithms is given in Table 2. Nonetheless, as shown by the different experiments, the
proposed algorithm maintains good performance compared to all other methods in terms
of detecting an accurate community structure.

Table 2. Computational complexity of the different methods: M is the number of layers, n is the total
number of nodes in the MLN, nm is the number of nodes in the mth layer, lS

m is the maximum number
of iterations required by CSNMTF, lP

m is the maximum number of iterations required by CPNMF, lm
is the maximum number of iterations required by ML-USCL, K is the number of communities in the
MLN, and km is the number of communities in the mth layer.

Method Computational Complexity

GenLov O(n log n)
BLSC O(K(∑M

m=1 nm)2)
CSNMTF MlS

mO(kmn2
m)

CPNMF MlP
mO(kmn2

m)
ML-USCL MlmO(kmn2

m)

5.3. Regularization Parameters Selection

The proposed ML-USCL incorporates two regularization parameters, namely λ1 and
λ2. Both parameters penalize the similarity between the orthonormal subspaces within
and across layers. The impact of these regularization parameters on the algorithm’s perfor-
mance is investigated through experimental validation. We observed that the selection of
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λ1 and λ2 depends on the characteristics of the multilayer network under examination. If
the network primarily consists of within-layer communities, smaller values of the regu-
larization parameters are advised. Conversely, if the network comprises predominantly
across-layer communities or both within- and across-layer communities, larger values of
the parameters are recommended. In the proposed ML-USCL, we search for the best λ1
and λ2 jointly over a grid of [0.1–10].
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Figure 3. Scalability comparison between the different methods.

5.4. Real-World Networks

To evaluate the effectiveness of the proposed method and compare it with other
algorithms in identifying the community structure in real-world networks, four real-world
networks are considered, as shown in Table 3. A brief description of these networks is
given in the following section.

Table 3. Description of the two-layer real networks.

Network Nodes per Layer Number of Edges Average Degree NOC

Lazega 71 4624 65.13 3
MIT 87 2790 32.06 6
C. Elegans 279 7266 27.03 12
Cora 292 19, 044 10.80 3
Coil20 1440 8, 294, 400 3611.4 20
UCI 2000 1, 011, 534 478.99 12

5.4.1. Networks Description

1. Lazega law-firm network (https://manliodedomenico.com/data.php) (accessed on
20 June 2023) [38] is a multilayer network that represents the interactions between
71 partners and associates in a corporate law partnership, where each layer corre-
sponds to a specific type of interaction among the individuals. The intra-layer graphs
capture co-work and advice relationships, while the inter-layer graph reflects friend-
ship relationships. The dataset also includes seven attributes that can be used to
evaluate the quality of the detected communities. In this study, the ground-truth
community structure is determined based on the office location attribute, which could
be either Boston, Hartford, or Providence.

https://manliodedomenico.com/data.php
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2. MIT Reality Mining (http://reality.media.mit.edu/download.php) (accessed on
20 June 2023) [39] network depicts various modes of mobile phone communication
among 87 users, with edges indicating physical location, Bluetooth scans, and phone
calls. The network (https://github.com/VGligorijevic/NF-CCE/tree/master/data/
nets) (accessed on 20 June 2023) is constructed as a two-layer network, where the intra-
layer graphs represent the physical location and Bluetooth scans, and the inter-layer
graph represents phone call interactions. Further details on the construction of the
network can be found in [40]. The ground-truth community structure in this network
corresponds to the affiliations of the users.

3. The C. Elegans network (https://manliodedomenico.com/data.php) (accessed on 20
June 2023) [8,41] is a multilayer network that depicts the synaptic junctions, including
electric and chemical monadic and polyadic, between neurons in the C. Elegans
nervous system. The network comprises 279 neurons and each neuron is grouped
into different categories such as bodywall, mechanosensory, and head motor neurons.
These categories can be considered as the ground-truth structure. In the constructed
two-layer network, intra-layer edges denote the monadic and polyadic synaptic
junctions among neurons, whereas inter-layer edges represent the electric junctions.

4. Cora (https://people.cs.umass.edu/~mccallum/data.html) (accessed on 20 June 2023)
data set is a subset of the Cora bibliographic data set. The Cora MLN consists of
292 nodes that refer to research papers. The intra-layer edges reflect the title and
abstract similarities between the different research papers and the inter-layer edges
model the citation relationships between them. The clusters in the network correspond
to the research fields, namely data mining, natural language processing, and robotics.

5. COIL20 (https://www.cs.columbia.edu/CAVE/software/softlib/) (accessed on 20
June 2023) is a data set comprising 1440 images obtained from the Columbia object im-
age library where intra- and inter-layers represent different image features. Intra-layer
graphs represent the local binary patterns (LBPs) and Gabor features, whereas inter-
layer graphs represent the intensity feature. The data set consists of 20 communities,
each referring to a group of related images.

6. UCI (https://archive.ics.uci.edu/ml/datasets/Multiple+Features) (accessed on 20
June 2023) [42] consists of features extracted from handwritten digits (0–9) obtained
from a collection of Dutch utility maps. The dataset contains a total of 2000 digit pat-
terns, with 200 patterns per digit. These patterns are represented using different sets
of features, including Fourier coefficients of the character shapes, profile correlations,
and Karhunen–Loéve coefficients.

5.4.2. Experiments

The accuracy of the proposed ML-USCL in uncovering the community structure of
the four real-world networks is evaluated and compared with other existing methods. The
results are reported in Table 4. Based on the table, it is evident that the proposed ML-USCL
for community detection in two-layer MLNs shows significant improvement over other
algorithms. The evaluation of the community structure is performed individually for each
layer and the proposed approach exhibits better performance than the other algorithms, as
it achieves superior results in at least one quality metric in both layers. This indicates that
the proposed approach is highly effective in identifying communities in MLNs. Moreover,
the run time required for each one of the methods is presented in Table 5, where the
proposed ML-USCL is faster than CSNMTF and CPNMF, comparable to BLSC and slower
than GenLov. Nevertheless, ML-USCL exceeds the other algorithms in performance. These
results suggest that the proposed approach can be a valuable tool in various applications
that require the identification of communities in MLNs, such as social, biological, phone,
and citation network analysis. Overall, the proposed approach has the potential to advance
the field of community detection in MLNs and enable more accurate and efficient analysis
of complex systems.

http://reality.media.mit.edu/download.php
https://github.com/VGligorijevic/NF-CCE/tree/master/data/nets
https://github.com/VGligorijevic/NF-CCE/tree/master/data/nets
https://manliodedomenico.com/data.php
https://people.cs.umass.edu/~mccallum/data.html
https://www.cs.columbia.edu/CAVE/software/softlib/
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Table 4. Community detection performance comparison for real-world multilayer networks.

Network Metric BLSC GenLov CSNMTF CPNMF ML-USCL

Lazega NMI 0.5129 0.5816 0.5732 0.6332 0.8943
Layer1 ARI 0.3524 0.4724 0.4445 0.4731 0.9515

Purity 0.9155 0.9296 0.9296 0.9437 0.9577

Lazega NMI 0.4858 0.5816 0.5732 0.6332 0.7507
Layer2 ARI 0.3596 0.4724 0.4445 0.4731 0.8482

Purity 0.9014 0.9296 0.9296 0.9437 0.9437

MIT NMI 0.1319 0.1808 0.3197 0.3358 0.4647
Layer1 ARI 0.0326 0.0030 0.2193 0.2803 0.3498

Purity 0.4828 0.4943 0.6092 0.6322 0.6782

MIT NMI 0.4199 0.5251 0.3197 0.3358 0.4760
Layer2 ARI 0.3092 0.3889 0.2193 0.2803 0.3855

Purity 0.6437 0.6897 0.6092 0.6322 0.7011

C. Elegans NMI 0.4614 0.4211 0.4352 0.4710 0.4735
Layer1 ARI 0.2429 0.2652 0.1771 0.2138 0.3714

Purity 0.5167 0.4796 0.5613 0.5502 0.5279

C. Elegans NMI 0.4404 0.4198 0.4352 0.4710 0.4669
Layer2 ARI 0.1988 0.2703 0.1771 0.2138 0.3620

Purity 0.4870 0.4833 0.5613 0.5502 0.5130

Cora NMI 0.1919 0.5634 0.5136 0.2315 0.5700
Layer1 ARI 0.0276 0.5615 0.5306 0.1037 0.5059

Purity 0.4692 0.8938 0.8699 0.5205 0.8390

Cora NMI 0.124 0.6420 0.5136 0.2315 0.8351
Layer2 ARI 0.0163 0.6502 0.5306 0.1037 0.8815

Purity 0.4075 0.9247 0.8699 0.5205 0.9692

Coil20 NMI 0.1921 0.3962 0.7458 0.0429 0.7719
Layer1 ARI 0.0132 0.1307 0.5146 0 0.6174

Purity 0.1438 0.1500 0.6743 0.0993 0.7653

Coil20 NMI 0 0.3917 0.7458 0.0429 0.7646
Layer2 ARI 0 0.1301 0.5146 0 0.6105

Purity 0.0500 0.1500 0.6743 0.0993 0.7188

UCI NMI 0.7613 0.7757 0.8006 0.7566 0.8064
Layer1 ARI 0.6761 0.6383 0.7427 0.6023 0.7722

Purity 0.8170 0.6615 0.8775 0.7600 0.8990

UCI NMI 0.7756 0.7878 0.8006 0.7566 0.8050
Layer2 ARI 0.6863 0.6524 0.7427 0.6023 0.7441

Purity 0.8210 0.6680 0.8775 0.7600 0.8880

Table 5. Run time taken by the different methods for the real-world MLNs.

Network GenLov BLSC CSNMTF CPNMF ML-USCL

Lazega 0.0250 0.2549 2.4958 0.5251 0.2155
MIT 0.0108 0.1873 4.9985 0.7384 0.2594
C. Elegans 0.0184 1.7216 81.6031 11.3486 0.9102
Cora 0.0310 0.6031 14.2655 0.7248 0.5368
Coil20 0.9188 2.8096 155.743 3.0271 5.3361
UCI 0.8801 6.4001 394.735 11.255 29.5577

6. Conclusions

Community detection in multilayer networks is an active research area with various
challenges and opportunities. The structure of multilayer networks provides additional
information that can be used to enhance the accuracy and interpretability of community
detection methods. In this article, a unified spectral-clustering-based community detection
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method for two-layer MLNs is introduced. The task of identifying the community structure
in two-layer MLNs is expressed as an optimization problem, in which the normalized cut
is minimized for each layer while also considering the normalized cut for the bipartite
network. This optimization is performed concurrently with regularization terms that ensure
the coherence of the community structures both within and across layers.

Multiple experiments have been conducted to evaluate the effectiveness of the pro-
posed approach for community detection in two-layer unweighted and weighted simulated
and real-world MLNs. These experiments demonstrate the efficiency and accuracy of the
proposed ML-USCL in detecting the community structure in two-layer MLNs. In addition,
ML-USCL is robust to noise compared to existing approaches. Finally, the ability to use the
same objective function for both weighted and unweighted networks, while being robust
to noise and outliers, makes the proposed method applicable to a wide range of MLNs.

For future work, we will focus on generalizing the proposed ML-USCL and addressing
its limitations. In particular, the proposed approach will be extended to handle MLNs with
more than two layers. The extension will be developed by first constructing a multidimen-
sional array or tensor that represents the multilayer network and then applying tensor
decomposition to reveal the underlying communities in the network. Finally, we would like
to point out that the proposed approach in its current formulation can be adopted to detect
the community structure in heterogeneous MLNs, i.e., nodes in the different layers refer to
different objects. Future work will perform more experiments to validate the extension of
the proposed ML-USCL in heterogeneous MLNs.
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