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Abstract: The idea of symmetry, which is used to describe the shape of a probability distribution,
is a key concept in the theory of probability. The use of symmetric and asymmetric distributions is
common in statistical inference, decision-making, and probability calculations. This article introduces
a novel asymmetric model for assessing risks under a skewed claims dataset. The new distribution
is also employed for both censored and uncensored validation testing. Four estimation methods,
maximum likelihood, ordinary least squares, L-Moment, and Anderson Darling, were used for
the risk assessment and analysis. To explain the exposure to risk within actuarial claims data, we
introduced five crucial indicators, namely value-at-risk, tail-value-at-risk, tail variance, tail mean-
variance, and mean excess losses. A numerical and graphical analysis is presented to assess the
actuarial risk. Furthermore, the article discusses a newly developed Rao Robson Nikulin statistic
for censored and uncensored validation testing. The validation testing also involved the insurance
claims dataset.

Keywords: skewed claim data; Cullen–Frey; L-moment; Lomax distribution; risk indicators; risk
analysis; mathematical modeling; simulations; validation; censored data

MSC: 60E05; 62H05; 62E10; 62F10; 62F15; 62P05

1. Introduction

Skewed distributions can have important implications for statistical analysis. For
example, if the data are positively skewed, the mean may not be a good measure of central
tendency, as it will be influenced by the few extreme values on the right-hand side of
the distribution. In this case, the median may be a better measure of central tendency.
Similarly, if the data are negatively skewed, the mean may be lower than expected, and
again, the median may be a better measure of central tendency. In a negatively skewed
distribution, the mean is less than the median, and the tail of the distribution is longer on
the left-hand side. This means that there are more data points on the right-hand side of the
distribution than on the left-hand side. An example of a negatively skewed distribution is
the distribution of reaction times, where most people react quickly, but a few people take a
long time to react (see Aboraya et al. [1], Acerbi and Tasche [2]).
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Following Adcock et al. [3], Eling [4] and Ali et al. [5,6], the concept of symmetry refers
to the shape of a probability distribution. When the left and right sides of a probability
distribution mirror the other side exactly, the distribution is said to be symmetric. Or, to
put it another way, the left and right sides of the distribution would be identical if a vertical
line were drawn down the center of it. The most well-known illustration of a symmetric
distribution is probably the normal distribution. In the study of statistics, the normal
distribution is commonly used to describe a wide range of real-world events. The mean
and the median are both located in the center of the bell-shaped curve that symbolizes the
normal distribution. Because of the distribution’s symmetry, the mean, median, and mode
are the same in a normal distribution. As a result, symmetry plays a crucial role in the
definition of a probability distribution’s shape in the field of probability theory. Anything
from a circle to a bell curve might be this shape. Symmetric distributions are commonly
used in the areas of statistical inference, decision-making, and probability computation.
However, not all distributions are symmetric, and probability theory also heavily utilizes
asymmetric distributions, also referred to as skewed distributions.

This study investigates a new model called the generalized exponential Lomax (GELX)
for the negatively skewed insurance data. The new model is a new generalization of the
well-known Lomax (LX) model. A random variable (RV) Z has the LX distribution if it has
cumulative distribution function (CDF) (for z > 0) given by

Hβ(z)
∣∣∣(β>0) = 1− ϕβ(z), (1)

where ϕβ(z) =
(

1 + 1
2 z
)−β

and β refers to the shape parameter. The scale parameter
is considered as 2 for reducing the number of the parameters. Then, the corresponding
probability density function (PDF) of (1) is

hβ(z) =
1
2

β

(
1 +

1
2

z
)−(β+1)

. (2)

Based on Alizadeh et al. [7], the CDF and PDF of GELX model is given, respectively, by

FV (z) =
[
1− exp

{
−
[
ψδ2,β(z)− 1

]−1
}]δ1 |V=δ1,δ2,β, (3)

where V = (δ1, δ2, β), ψδ2,β(z) =
[
1− ϕβ(z)

]−δ2 and

fV (z) = δ1δ2
β

2

[
1− ϕβ(z)

]δ2−1
(

1 + 1
2 z
)−(β+1)

{
1−

[
1− ϕβ(z)

]δ2
}2

exp
{[

ψδ2,β(z)− 1
]−1
}[1− exp

{
−
[
ψδ2,β(z)− 1

]−1
}]δ1−1

︸ ︷︷ ︸
Aδ1,δ2,β(z)

, (4)

where δ1, δ2 > 0 are two additional shape parameters. Henceforth, Z ∼ GELX(V ) denotes
an RV having density function (4). The reliability function (rf) and hazard rate function
(HRF) of Z are, respectively, given by hV (z) = fV (z)/RV (z), where RV (z) = 1− FV (z).

In this paper, we employ the new model in (4) in two significant directions which are
the risk analysis and distributional validity. The use of probability-based distributions to
describe risk exposure is an important new statistical direction. Typically, a single number
or a small set of numbers, known as key risk indicators (KRIs), are used to represent the
level of risk exposure. The KRIs serve as a valuable tool for actuaries and risk managers
by providing information about the extent to which a company is exposed to specific
risks. Various KRIs, such as value-at-risk (VaRK), tail-value-at-risk (TVaRK), conditional-
value-at-risk (CVaRK), tail variance (TV), and tail mean-variance (TMV), can be analyzed.
For the risk validation, the Rao–Robson Nikulin (RRNIK) test statistic (see Nikulin [8],
Nikulin [9], Nikulin [10], and Rao and Robson [11]) is used for uncensored validation. On
the other hand, a new modified version of the RRNIK test statistic is used for the censored
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validation. Finally, the actuarial datasets are examined for validation under the RRNIK test
statistic. These risk indicators help investors and risk managers make informed decisions
by quantifying and assessing the potential downside risk of investments. They contribute
to a more comprehensive understanding of risk and support the development of robust
risk management strategies.

The following reasons are the primary drivers driving the introduction of this
new distribution:

I. We created a new probability distribution with only three parameters for validation
and risk analysis. For applied modeling, estimation, simulation trials, etc., the fewer
the distribution parameters, the better.

II. A new probability distribution is presented with simple mathematical features that
make it simple to compute and use. The quantile function is the only mathematical
or statistical property of the present distribution that cannot be obtained in precise
formulas, as will be demonstrated later. The latest statistical programs such as “R” and
“Mathcad”, however, greatly aid in overcoming this issue with numerical approaches
and fixes. In these circumstances, it is essential to comprehend numerical methods
(and the numerical solutions they provide) in order to get around some of the more
difficult formulations that researchers may run against.

III. We examined numerous traditional estimation techniques in light of the new distribu-
tion, either through simulative experiments or through real-world applications.

IV. The majority of practical statistical work must include the new distributions into the
modeling procedures. In this work, we did this by employing an old, well-known
goodness-of-fit test and a new, modified goodness-of-fit test, and we gave evidence
and justifications in support of the validity of the new modified test as well as the
significance of the new distribution.

V. We examined the new distribution from a number of perspectives in order to better
understand it, including the mathematical side, the modeling side, the estimation and
simulation processes in various ways, and the statistical hypothesis tests.

In fact, the specialized literature has a good number of extensions of the LX distribution,
and these extensions were mostly used in mathematical and statistical modeling processes.
The Lomax distribution is often used to model extreme events or rare occurrences that fall
in the upper tail of a distribution. In actuarial sciences, extreme events are of particular
interest since they often represent catastrophic or high-impact events such as insurance
claims, natural disasters, or financial losses. The Lomax distribution provides a flexible
framework for modeling the tail behavior of these events and estimating their probabilities.
Actuaries play a crucial role in the insurance industry by assessing and managing risks.
The Lomax distribution is often employed in insurance modeling, particularly in areas such
as property and casualty insurance. It helps actuaries estimate the likelihood and severity
of extreme events, which is essential for determining appropriate insurance premiums,
policy limits, and reserves (see Aboraya et al. [1]).

Actuarial risk analysis involves modeling the frequency and severity of losses or
claims. The Lomax distribution can be used to model the severity component, representing
the distribution of individual claim sizes or losses. By fitting the Lomax distribution
to historical data, actuaries can gain insights into the statistical properties of losses and
make informed decisions regarding risk management and pricing. Actuarial risk analysis
involves estimating extreme quantiles, such as value-at-risk or Conditional Tail Expectation,
which are used to assess the potential losses or liabilities associated with extreme events.
The Lomax distribution can be fitted to historical data or used in combination with other
models to estimate these tail quantiles accurately. Its tail heaviness allows for the extreme
values and tail behavior of the data to be captured better (see Wirch [12] and Tasche [13]).
The LX distribution serves as a useful tool for actuarial science researchers. It provides a
flexible framework for studying extreme value theory, analyzing heavy-tailed distributions,
and developing new statistical models for actuarial risk. Researchers can explore various
aspects of risk analysis, such as dependence modeling, copulas, multivariate extensions,
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and time series modeling, using the Lomax distribution as a building block. For more
details, regression models, applications, and real datasets, see Butt and Khalil [14] for a
novel skewed bimodal model for modeling the asymmetric heavy-tail bimodal datasets,
Reyes et al. [15] for a new bimodal exponential extension with some applications in risk
theory, and Gómez et al. [16] for asymmetric bimodal double-regression modeling. A few
plots of the GELX PDF and HRF are shown in Figure 1. We conclude from Figure 1′s
left panel that the PDF of the GELX distribution displays a variety of significant forms
with varied kurtosis values. Based on Figure 1a, it is seen that the new PDF can be
symmetric with one peak, asymmetric with one peak and right skewed with no peak.
Based on Figure 1b, it is seen that the new HRF can be constant, decreasing, increasing, and
increasing–constant.
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Section 2 presents some mathematical properties of the new model. Section 3 presents
the KRIs. The risk assessment using different estimation methods is given in Section 4.
A case study is illustrated in Section 5. The construction of the RRNIK statistic for the
GELX model is given in Section 6. Sections 7 and 8 give the uncensored and censored
distributional validations, respectively. Section 9 offers some concluding remarks.

2. Mathematical Properties

First, we give a simple formula for (4). Using the following series expansion which
holds for

∣∣∣ ζ1
ζ2

∣∣∣ < 1 and ζ3 > 0 real non-integer

(
1− ζ1

ζ2

)ζ3−1
=

∞

∑
ζ4=0

(−ζ1)
ζ4

(
ζ3 − 1

ζ4

)(
1
ζ2

)ζ4

,

to expand the quantity Aδ1,δ2,β(z), we obtain

Aδ1,δ2,β(z) =
∞

∑
i=0

(−1)i
(

δ1 − 1
i

)
exp
(
−i
{

ψδ2,β(z)− 1
}−1

)
.

Then, the novel PDF in (4) can be derived as

fV (z) = δ1δ2
β

2

[
1− ϕβ(z)

]δ2−1{
1−

[
1− ϕβ(z)

]δ2
}2

∞

∑
i=0

(−1)i
(

δ1 − 1
i

)(
1 +

1
2

z
)−(β+1)

exp
(
−(1 + i)

{
ψδ2,β(z)− 1

}−1
)

︸ ︷︷ ︸
Bδ2,β(z)

.
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Expanding the quantity Bδ2,β(z) using the power series, we obtain

Bδ2,β(z) =
∞

∑
d1=0

(−1)d1 (1 + i)d1

d1!

 [
1− ϕβ(z)

]δ2d1{
1−

[
1− ϕβ(z)

]δ2
}d1

.

Then, the PDF in (4) can be formulated as

fV (z) = δ1δ2
β

2

∞

∑
i,d1=0

(−1)i+d1(1 + i)d1
[
1− ϕβ(z)

]δ2(d1+1)−1

d1!
{

1−
[
1− ϕβ(z)

]δ2
}2+d1︸ ︷︷ ︸

Cd1,δ2,β(z)

(
δ1 − 1

i

)(
1 +

1
2

z
)−(β+1)

.

We apply the series expansion again to the quantity Cd1,δ2,β(z). Then, we can obtain

fV (z) =
∞

∑
d1,d2=0

wd1,d2 hδ∗ ,β(z)|δ∗=δ2(d1+d2+1), (5)

where hδ∗ ,β(z) = 1
2 ξa∗

[
1− ϕβ(z)

]δ∗−1
(

1 + 1
2 z
)−(β+1)

represents the PDF of the exp-LX
model with power parameter δ∗ and

wd1,d2 =
δ1δ2

d1!δ∗
(−1)d1+d2

(
−(d1 + 2)

d2

) ∞

∑
i=0

(−1)i(i + 1)d1

(
δ1 − 1

i

)
.

The CDF of the GELX model can also be expressed as a mixture of exponentiated
Lomax (ELX) CDFs. By integrating (4), we obtain the same mixture representation

FV (z) =
∞

∑
d1,d2=0

wd1,d2 Hδ∗ ,β(z)|δ∗=δ2(d1+d2+1), (6)

where Hδ∗ ,β(z) =
[
1− ϕβ(z)

]δ∗ is the CDF of the ELX model with power parameter δ∗.
The stochastic properties of probability distributions are important because they describe
the behavior of random variables and stochastic processes. These properties are used to
model and analyze a wide range of real-world phenomena, from stock prices to weather
patterns to the behavior of subatomic particles.

Stochastic properties are used to model the uncertainty of and variability in financial
assets and to analyze the risk associated with investments. The mean and variance of
probability distributions are used to calculate the expected return and risk of a portfolio
of assets.

3. The KRIs

The VaRK is a widely used risk indicator that estimates the maximum potential loss
within a specified confidence level over a given time horizon. It provides a single number
that represents the worst-case loss a portfolio or investment is expected to experience.
VaRK helps investors assess and compare the riskiness of different assets or portfolios and
set risk management limits. It is particularly useful in risk measurement, risk monitoring,
and regulatory compliance; see Wirch [12], Tasche [13], and Acerbi and Tasche [2] for
more details and applications. We can simply obtain the quantity VaR(z) for the GELX
distribution from the following probability:

Pr

{
Z > 2

[(
1− {−q(δ1)/[1− q(δ1)]}

1
δ2

)− 1
β

− 1

]}
=


1%|q=99%
5%|q=95%
...

, (7)
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where q(δ1) = log
(

1− q
1

δ1

)
.

The TVaRK, which is also known as conditional value-at-risk (CVaR), is an extension
of VaR by considering the expected loss beyond the VaRK threshold. Unlike VaR, which
only measures the loss at a specific confidence level, TVaRK estimates the average loss
in the tail of the distribution (see Hogg and Klugman [17], Klugman et al. [18], Lane [19],
McNeil et al. [20], Vernic [21], Artzner [22], and Charpentier [23]). This risk indicator
provides additional information about extreme losses and tail risks. TVaRK is often used to
evaluate downside risk and is popular in risk measurement, risk budgeting, and portfolio
optimization. The TVaRK(Z) can also be derived due to the main result below as

TVaRK(Z) = E(Z|Z >π(q)) =
1

1− FV (π(q))

∫ ∞

π(q)
z fV (z)dz,

which can be simplified to

TVaRK(Z) = 1
1− q

∫ ∞

π(q)
z fV (z)dz. (8)

Then, using (5), we reach

TVaRK(Z) = 1
1− q

∞

∑
d1,d2=0

1

∑
d3=0

γ
(1,δ∗)
d1,d2,d3

 B
(

δ∗, 1 + d3−1
β

)
−Bπ(q)

(
δ∗, 1 + d3−1

β

)|(β>1), (9)

where

γ
(1,δ∗)
d1,d2,d3

= 2wd1,d2 δ∗(−1)d3

(
1
d3

)
,

B(1 + γ1, 1 + γ2) =
∫ 1

0
zγ1(1− z)γ2 dz, and Bπ(q)(1 + γ1, 1 + γ2) =

∫ π(q)

0
zγ1(1− z)γ2 dz.

Thus, the quantity TVaRK(z) is an average of all VaRK values above the confidence
level q, which provides more information about the tail of the GELX distribution. Further,
it can also be expressed as

TVaRK(Z) = VaRK (Z) + e(VaRK (Z)), (10)

where e(VaRK (Z)) is the mean excess loss function evaluated at the 100q% th quantile. So,
TVaRK(Z) is larger than its corresponding VaRK(Z) by the amount of average excess of all
losses that exceed the MELS(Z) value of VaRK(Z) (see Acerbi and Tasche [2], Wirch [12],
and Tasche [13] for more details and applications). Tail variance measures the variability
in or dispersion of returns in the extreme tails of the distribution. It focuses on the higher
moments of the distribution beyond the mean and standard deviation. The TV provides
information about the thickness and shape of the tails, helping investors gauge the potential
losses in extreme market conditions. It is particularly useful in assessing tail risk, designing
risk management strategies, and constructing tail risk hedging instruments. Following
Furman and Landsman [24], the TV risk indicator can be derived due to the following
formula:

TVq(Z) = E
(
Z2|Z >π(q)

)
− [TVaRK(Z)]2; (11)

then, using (6) we reach

E
(
Z2|Z >π(q)

)
=

1
1− q

∞

∑
d1,d2=0

2

∑
d3=0

γ
(2,δ∗)
d1,d2,d3

 B
(

δ∗, 1 + d3−2
β

)
−Bπ(q)

(
δ∗, 1 + d3−2

β

)|(β>2), (12)
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and γ
(2,δ∗)
d1,d2,d3

= 4wd1,d2 δ∗(−1)d3

(
2
d3

)
. Inserting (9) and (12) in (11), the TVq(Z ;V) can be

expressed as

TVq(Z ;V) =
1

1− q


∞
∑

d1,d2=0

2
∑

d3=0
γ
(2,δ∗)
d1,d2,d3

 B
(

δ∗, 1 + d3−2
β

)
−Bπ(q)

(
δ∗, 1 + d3−2

β

)
− 1

1−q

 ∞
∑

d1,d2=0

1
∑

d3=0
γ
(1,δ∗)
d1,d2,d3

 B
(

δ∗, 1 + d3−1
β

)
−Bπ(q)

(
δ∗, 1 + d3−1

β

)
2

. (13)

The TMVK analysis combines elements of mean-variance analysis with a focus on
the tail of the distribution. It considers the trade-off between expected return and risk,
specifically targeting the downside risk associated with extreme losses. By incorporating
tail risk measures, such as TVaRK or tail variance, into the traditional mean-variance
framework, investors can construct portfolios that optimize risk-adjusted returns, giving
more weight to the tail behavior of the returns distribution. Following Landsman [25], the
TMVK risk can be expressed as

TMVK(Z , ς) = TVaRK(Z) + ςTVq(Z)
∣∣0<ς<1. (14)

Then, for any LRV, TMVK(Z , ς) > TVq(Z) and, for ς = 0, TMVK(Z) = TVaRK(Z).
For more applications, see Punzo [26] and Punzo et al. [27,28].

4. Risk Assessment Using Different Estimation Methods

In this section, we consider the following estimation methods—maximum likelihood
estimation (MAXLE), ordinary least squares (OLS), L-Moment (L-MO), and Anderson
Darling estimation (ADE)—for calculating the KRIs. These quantities are estimated using
N = 1000 with different sample sizes (n = 50, 150, 300, 500) and three confidence levels
(CLs) (q = (70%, 90%, 99%)). All results are calculated and checked using the Mathcad
program and reported in Table 1 (n = 50), Table 2 (n = 150), Table 3 (n = 300), and Table 4
(n = 300), from which we conclude:

Table 1. Simulated KRIs for assessing the artificial data when n = 50.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

MAXLE δ̂1 δ̂2 β̂ V̂ = (2.04918, 0.49665, 0.91060)
70% 1.61281 2.81002 1.45159 3.53581 1.19721
90% 2.09861 3.29513 1.46162 4.02594 1.19652
99% 2.92329 4.12641 1.48586 4.86934 1.20313

ORLSE δ̂1 δ̂2 β̂ V̂ = (2.04195, 0.49835, 0.910004)
70% 1.61918 2.82220 1.46627 3.55533 1.20302
90% 2.10724 3.30969 1.47661 4.04799 1.20245
99% 2.93591 4.14515 1.50138 4.89584 1.20924

L-MO δ̂1 δ̂2 β̂ V̂ = (2.0585, 0.49779, 0.90782)
70% 1.62969 2.837329 1.478363 3.57651 1.20764
90% 2.119556 3.32671 1.489147 4.071284 1.207154
99% 2.951297 4.16552 1.514822 4.922931 1.214223
ADE δ̂1 δ̂2 β̂ V̂ = (2.03741, 0.49876, 0.90752)
70% 1.624843 2.834897 1.485409 3.577601 1.210054
90% 2.11546 3.325319 1.496623 4.073631 1.209859
99% 2.948882l 4.166121 1.522854 4.927548 1.21724
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Table 2. Simulated KRIs for assessing the artificial data when n = 150.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

MAXLE δ̂1 δ̂2 β̂ V̂ = (2.0195, 0.49829, 0.90467)
70% 1.62028 2.83521 1.50046 3.58544 1.21493
90% 2.11236 3.32775 1.51290 4.08420 1.21539
99% 2.94906 4.17270 1.54098 4.94318 1.22364

ORLSE δ̂1 δ̂2 β̂ V̂ = (2.0113, 0.49932, 0.903658)
70% 1.623738 2.843695 1.513935 3.600662 1.219957
90% 2.117681 3.338316 1.526869 4.101751 1.220635
99% 2.957812 4.187016 1.555751 4.964891 1.229203

L-MO δ̂1 δ̂2 β̂ V̂ = (2.00845, 0.49962, 0.90153)
70% 1.62885 2.854852 1.530688 3.620195 1.226002
90% 2.124982 3.351991 1.544416 4.1242 1.22701
99% 2.969195 4.205292 1.574624 4.992604 1.236097
ADE δ̂1 δ̂2 β̂ V̂ = (2.00961, 0.49939, 0.90306)
70% 1.62463 2.846179 1.518412 3.605385 1.221549
90% 2.119135 3.341468 1.531581 4.107258 1.222332
99% 2.960342 4.191399 1.562079 4.972438 1.231056

Table 3. Simulated KRIs for assessing the artificial data when n = 300.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

MAXLE δ̂1 δ̂2 β̂ V̂ = (2.00366, 0.49948, 0.90189)
70% 1.62484 2.84929 1.52681 3.61269 1.22445
90% 2.12033 3.34580 1.54048 4.11605 1.22548
99% 2.96349 4.19804 1.57054 4.98331 1.23455

ORLSE δ̂1 δ̂2 β̂ V̂ = (2.00291, 0.49977, 0.90154)
70% 1.626766 2.852887 1.53125 3.618512 1.22612
90% 2.12289 3.35009 1.54507 4.122625 1.227201
99% 2.967193 4.20355 1.57538 4.991238 1.236357

L-MO δ̂1 δ̂2 β̂ V̂ = (2.00794, 0.5006, 0.89939)
70% 1.638691 2.872898 1.552791 3.649294 1.234208
90% 2.137925 3.373422 1.567315 4.15708 1.235497
99% 2.9877 4.232777 1.59892 5.032237 1.245077
ADE δ̂1 δ̂2 β̂ V̂ = (2.00315, 0.49981, 0.90111)
70% 1.628126 2.855469 1.534616 3.622777 1.227343
90% 2.12470 3.353181 1.548585 4.127473 1.22848
99% 2.969828 4.20756 1.57915 4.997135 1.237733

Table 4. Simulated KRIs for assessing the artificial data when n = 500.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

MAXLE δ̂1 δ̂2 β̂ V̂ = (2.01061, 0.49948, 0.90142)
70% 1.62956 2.85558 1.53073 3.62094 1.22602
90% 2.12570 3.35272 1.54446 4.12495 1.22702
99% 2.96993 4.20603 1.57468 4.99337 1.23611

ORLSE δ̂1 δ̂2 β̂ V̂ = (2.00896, 0.49979, 0.901087)
70% 1.631067 2.85872 1.5351 3.62627 1.227653
90% 2.127829 3.35654 1.54898 4.13103 1.228711
99% 2.97316 4.211052 1.57946 5.00078 1.237892

L-MO δ̂1 δ̂2 β̂ V̂ = (2.0063, 0.50069, 0.89895)
70% 1.639371 2.874868 1.556445 3.65309 1.235496
90% 2.139063 3.375931 1.571156 4.16151 1.236869
99% 2.98971 4.23628 1.603063 5.037811 1.24657
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Table 4. Cont.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

ADE δ̂1 δ̂2 β̂ V̂ = (2.00866, 0.4998, 0.90094)
70% 1.631294 2.859325 1.536172 3.62741 1.22803
90% 2.128189 3.357302 1.550111 4.132357 1.229113
99% 2.973774 4.212106 1.580686 5.00245 1.238333

• VaRK(Z), TVaRK(Z), TVq(Z), TMVK(Z), and MELS(Z) increase when q increases
for all selected methods. For example,

For n = 50 : VaRK (Z)MAXLE = 1.61281
∣∣q=70%, 2.09861

∣∣q=90%, 2.92329
∣∣q=99%, . . .

For n = 500 : VaRK (Z)MAXLE = 1.62956
∣∣q=70%, 2.12570

∣∣q=90%, 2.96993
∣∣q=99%,

For n = 50 : VaRK (Z)ORLSE = 1.61918
∣∣q=70%, 2.10724

∣∣q=90%, 2.93591
∣∣q=99%, . . .

For n = 500 : VaRK (Z)ORLSE = 1.631067
∣∣q=70%, 2.12570

∣∣q=90%, 2.97316
∣∣q=99%,

For n = 50 : VaRK (Z)L−MO = 1.62969
∣∣q=70%, 2.119556

∣∣q=90%, 2.119556
∣∣q=99%, . . .

For n = 500 : VaRK (Z)L−MO = 1.639371
∣∣q=70%, 2.139063

∣∣q=90%, 2.98971
∣∣q=99%.

• VaRK(Z)MAXLE < VaRK(Z)ORLSE < VaRK(Z)ADE < VaRK(Z)L−MO for most q. For
example,

For n = 50 : VaRK (Z)MAXLE = 1.61281
∣∣q=70% < . . . < VaRK (Z)L−MO = 1.62969

∣∣q=70%,

For n = 150 : VaRK (Z)MAXLE = 1.62028
∣∣q=70% < . . . < VaRK (Z)L−MO = 1.62885

∣∣q=70%,

For n = 300 : VaRK (Z)MAXLE = 1.62484
∣∣q=70% < . . . < VaRK (Z)L−MO = 1.638691

∣∣q=70%,

For n = 500 : VaRK (Z)MAXLE = 1.62956
∣∣q=70% < . . . < VaRK (Z)L−MO = 1.639371

∣∣q=70%,

For n = 50 : TVaRK(Z)MAXLE = 2.81002
∣∣q=70% < . . . < TVaRK(Z)L−MO = 2.837329

∣∣q=70%,

For n = 150 : TVaRK(Z)MAXLE = 2.83521
∣∣q=70% < . . . < TVaRK(Z)L−MO = 2.854852

∣∣q=70%,

For n = 300 : TVaRK(Z)MAXLE = 2.84929
∣∣q=70% < . . . < TVaRK(Z)L−MO = 2.872898

∣∣q=70%,

For n = 500 : TVaRK(Z)MAXLE = 2.85558
∣∣q=70% < . . . < TVaRK(Z)L−MO = 2.874868

∣∣q=70%,



Symmetry 2023, 15, 1356 10 of 24

• For the same method, we have the following results:

VaRK (Z)MAXLE = 1.61281
∣∣q=70%,n=50 < . . . < VaRK (Z)MAXLE = 1.62956

∣∣q=70%,n=500,

VaRK (Z)ORLSE = 1.61918
∣∣q=70%,n=50 < . . . < VaRK (Z)ORLSE = 1.631067

∣∣q=70%,n=500,

TVaRK(Z)MAXLE = 2.81002
∣∣q=70%,n=50 < . . . < TVaRK(Z)MAXLE = 2.85558

∣∣q=70%,n=500,

TVaRK(Z)ORLSE = 2.82220
∣∣q=70%,n=50 < . . . < TVaRK(Z)ORLSE = 2.85872

∣∣q=70%,n=500,

TV(Z)MAXLE = 1.45159
∣∣q=70%,n=50 < . . . < TV(Z)MAXLE = 1.53073

∣∣q=70%,n=500,

TV(Z)ORLSE = 1.46627
∣∣q=70%,n=50 < . . . < TV(Z)ORLSE = 1.5351

∣∣q=70%,n=500,

VaRK (Z)MAXLE = 2.92329
∣∣q=99%,n=50 < . . . < VaRK (Z)MAXLE = 2.96993

∣∣q=99%,n=500,

VaRK (Z)ORLSE = 2.93591
∣∣q=99%,n=50 < . . . < VaRK (Z)ORLSE = 2.97316

∣∣q=99%,n=500,

TVaRK(Z)MAXLE = 4.12641
∣∣q=99%,n=50 < . . . < TVaRK(Z)MAXLE = 4.20603

∣∣q=99%,n=500,

TVaRK(Z)ORLSE = 2.93591
∣∣q=99%,n=50 < . . . < TVaRK(Z)ORLSE = 4.211052

∣∣q=99%,n=500,

TV(Z)MAXLE = 1.48586
∣∣q=99%,n=50 < . . . < TV(Z)MAXLE = 1.57468

∣∣q=70%,n=500,

and

TV(Z)ORLSE = 1.50138
∣∣q=99%,n=50 < . . . < TV(Z)ORLSE = 1.57946

∣∣q=99%,n=500.

5. Risk Analysis under the Actuarial Negatively Skewed Claims Data: A Case Study

The applications of these risk indicators are varied, but some common applications
include:

I. Investors and portfolio managers use these risk indicators to assess and manage the
risk exposure of their portfolios. They aid in setting risk limits, designing optimal asset
allocations, and monitoring portfolio performance (see Furman and Landsman [24]).

II. Financial institutions, regulatory bodies, and risk management professionals use
these indicators to quantify and report risks associated with different investment
strategies. They provide insights into potential losses and help ensure compliance
with regulatory requirements.

III. Risk indicators play a crucial role in stress testing and scenario analysis. By simulating
extreme market conditions, these indicators help assess the resilience of portfolios
and investment strategies in adverse scenarios.

IV. Risk indicators facilitate the effective communication of risk to stakeholders, including
investors, clients, and regulators. They provide a standardized and concise measure of
risk that can be easily understood and compared across different investments. Skewed
distributions are used in risk management to model the potential losses from different
types of risks, such as credit risk, market risk, and operational risk. For example, the
skewed-t distribution is commonly used to model credit risk in banking. Skewed
distributions are widely used in insurance to model the frequency and severity of
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losses (see Shrahili et al. [20]). For example, the Lomax distribution is often used to
model the distribution of losses in insurance claims.

We examine the actuarial claims payment triangle from a U.K. Motor Non-Compre-
hensive account in this section as a practical illustration of case studies. We choose the
2007–2013 origin period for practical reasons (Charpentier [23]). The actuarial claims
payment data frame displays the claims data similarly to how a database would normally
keep it. The development year, incremental payments, and origin year are all listed in the
first column and range from 2007 to 2013. You should be aware that these actuarial claims
data are initially assessed using a probability-based distribution (for relevant applications,
see Ali et al. [5]). Tables 5 and 6 present the results obtained from the analysis. The key risk
indicators (KRIs) for the GELX model under the four different techniques are listed in four
sections of Table 5: MAXLE, ORLSE, L-MO, and AD. Table 6 also has four sections, each of
which lists the KRIs for the ELX model using the same procedures.

Table 5. KRIs under the actuarial claims data for the GELX model.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

MAXLE
70% 3104.32244 5606.27701 9,440,936.45213 4,726,074.50308 2501.95457
75% 3484.41321 6070.0002 10,036,485.93869 5,024,312.96954 2585.58699
80% 3966.00977 6658.83201 10,807,176.41369 5,410,247.03886 2692.82224
85% 4616.76526 7454.13658 11,867,945.16302 5,941,426.71809 2837.37132
90% 5596.91224 8647.48402 13,490,055.41992 6,753,675.19398 3050.57178
95% 7459.55288 10,893.75394 16,607,628.92341 8,314,708.21564 3434.20106
99% 12,791.47826 17,177.67141 25,556,711.36924 12,795,533.3560 4386.19315

ORLSE
70% 3559.79706 7134.33969 24,911,253.94439 12,462,761.31189 3574.54263
75% 4045.1113 7802.59529 27,210,192.2259 13,612,898.70824 3757.48399
80% 4673.91066 8667.11009 30,267,699.58567 15,142,516.90292 3993.19942
85% 5546.81613 9861.68726 34,627,832.78095 17,323,778.07774 4314.87113
90% 6908.36821 11,708.34462 41,634,963.92469 20,829,190.30696 4799.97641
95% 9635.19398 15,345.05825 56,219,134.95016 28,124,912.53333 5709.86427
99% 18,274.02938 26,462.60076 105,590,441.51078 52,821,683.35616 8188.57138

L Moment
70% 2684.87356 3955.54267 1,918,151.15731 963,031.12132 1270.66911
75% 2903.62873 4188.46069 1,975,480.70746 991,928.81442 1284.83196
80% 3171.9493 4477.40671 2,050,406.71371 1,029,680.76357 1305.45741
85% 3521.44703 4857.24341 2,153,396.37504 1,081,555.43093 1335.79639
90% 4025.0856 5408.33534 2,308,485.33826 1,159,651.00447 1383.24974
95% 4925.8752 6397.33797 2,594,824.31143 1,303,809.49368 1471.46277
99% 7251.04539 8938.81397 3,335,108.33788 1,676,492.98291 1687.76858

ADE
70% 3428.17317 6329.36348 12,876,115.36083 6,444,387.0439 2901.19032
75% 3864.86096 6867.49358 13,710,663.08286 6,862,199.03501 3002.63262
80% 4419.70382 7551.86416 14,790,120.57833 7,402,612.15333 3132.16035
85% 5171.6275 8477.78875 16,275,193.88372 8,146,074.73061 3306.16126
90% 6307.81287 9869.81569 18,546,348.35369 9,283,043.99254 3562.00282
95% 8475.47761 12,496.5283 22,913,550.8921 11,469,271.97435 4021.0507
99% 14,714.50356 19,871.73902 35,461,472.29616 17,750,607.88709 5157.23545
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Table 6. KRIs under the actuarial claims data for the LX model.

Method VaRK(Z ;V̂ ) TVaRK(Z ;V̂ ) TVq(Z ;V̂ ) TMVK(Z ;V̂ ) MELS(Z ;V̂ )

MAXLE
70% 3111.07381 5021.8463 3,603,201.42134 1,806,622.55697 1910.77249
75% 3463.60349 5369.79592 3,595,282.61482 1,803,011.10333 1906.19243
80% 3892.70894 5794.71975 3,586,988.89312 1,799,289.16632 1902.01082
85% 4443.26608 6341.23782 3,579,959.55802 1,796,321.01684 1897.97175
90% 5215.88511 7110.03085 3,571,410.79727 1,792,815.42948 1894.14574
95% 6531.31508 8421.41502 3,562,554.54166 1,789,698.68585 1890.09994
99% 9573.57721 11,459.39595 3,552,197.8018 1,787,558.29686 1885.81874

ORLSE
70% 3542.73806 5874.90639 5,536,193.62065 2,773,971.71671 2332.16832
75% 3965.20737 6300.37248 5,554,334.38704 2,783,467.566 2335.16511
80% 4482.319 6821.93431 5,577,229.5614 2,795,436.71501 2339.61531
85% 5149.91825 7495.90521 5,607,030.11784 2,811,010.96413 2345.98696
90% 6093.65222 8449.01733 5,648,474.19665 2,832,686.11566 2355.36512
95% 7716.03184 10,087.1357 5,715,983.27761 2,868,078.7745 2371.10386
99% 11,526.75745 13,930.0466 5,853,915.35108 2,940,887.72214 2403.28915

L Moment
70% 1780.469963 3924.982702 6,530,455.061545 3,269,152.513475 2144.512739
75% 2099.875261 4323.192881 6,883,421.403626 3,446,033.894694 2223.31762
80% 2513.05595 4829.794349 7,317,506.345204 3,663,582.96695 2316.738398
85% 3080.346568 5513.076649 7,880,283.644864 3,945,654.899081 2432.730082
90% 3942.633913 6531.366731 8,679,013.576416 4,346,038.154939 2588.732817
95% 5574.930807 8413.421022 10,058,024.987684 5,037,425.914864 2838.490216
99% 10,051.866809 13,408.968091 13,316,139.798268 6,671,478.867225 3357.101282

ADE
70% 3440.462517 5686.884025 5,117,423.474536 2,564,398.621294 2246.421509
75% 3848.293402 6096.615947 5,130,859.099228 2,571,526.165561 2248.322545
80% 4347.15518 6598.656147 5,148,180.281415 2,580,688.796855 2251.500967
85% 4990.716911 7247.054666 5,171,100.864762 2,592,797.487047 2256.337756
90% 5899.678155 8163.408015 5,203,399.79205 2,609,863.30404 2263.729861
95% 7460.475938 9736.833061 5,258,762.770151 2,639,118.218136 2276.357122
99% 11,119.778633 13,422.696625 5,369,579.581477 2,698,212.487364 2302.917992

In addition to numerical research, graphical methods are employed to look at how the-
oretical distributions initially fit and how the densities of actuarial claims take shape. The
Cullen and Frey plot helps identify whether a dataset deviates from a normal distribution.
Understanding the distributional characteristics of data is crucial in many statistical analy-
ses, as assumptions about normality often underlie many statistical tests. Skewness, which
is represented on the x-axis of the plot, measures the extent to which the data distribution
is asymmetric. Positive skewness indicates a longer right tail, while negative skewness
suggests a longer left tail. The plot helps visualize and quantify the skewness of the dataset.
Kurtosis, shown on the y-axis of the plot, measures the degree of peakedness or flatness
of a distribution compared to a normal distribution. High positive kurtosis implies heavy
tails, while negative kurtosis suggests lighter tails. Analyzing kurtosis helps us understand
the presence of outliers or extreme values in the dataset. Figure 2 gives the Cullen and Frey
plot for actuarial claims data. The Cullen and Frey (skewness–kurtosis plot) in Figure 2
reveals that the data are left-skewed with a kurtosis of less than 3. The big blue dot refers to
our insurance data. It is clear that the data stay away from the main points which represent
normal distribution and exponential distribution. Also, our insurance data are away from
the lines which represent gamma distribution and lognormal distribution. By projecting
vertically to those lines, we can see that the data have lower kurtosis than the lognormal
and the gamma models of the same skewness.
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The nonparametric kernel density estimation (NKDE) method (top left), the quantile-
quantile (Q-Q) plot (top right), the total time on test (TTT) plot (bottom left), and the “box
plot” (bottom right) are only a few of the graphical techniques shown in Figure 3 below.
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Figure 3. NKDE plot (top left), Q-Q plot (top right), TTT plot (bottom left), and box plot
(bottom right) for actuarial claims data.

Figure 3 (top left panel) shows that the initial density is an asymmetric function with a
left tail and that there are no extreme observations. Figure 3 (top right panel) shows that
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data do not contain any extreme values. According to the TTT plot (Figure 3 (bottom right
panel)), the hazard rate function for the models used to explain the current data should be
consistently growing. Figure 3 (bottom right panel) shows that the data do not contain any
extreme values. The scattergrams for the data on actuarial claim size are shown in Figure 4
(first row panels), where Figure 4 (top left) refers to the initial scattergram and Figure 4 (top
right) refers to the fitted scattergram. For the actuarial claim size data, the autocorrelation
function (ACF) and partial autocorrelation function (partial-ACF) are shown in Figure 4’s
second row. We offer the ACF, which can be used to demonstrate how the correlation
between any two signal values alters when the distance between them alters the ACF.
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for the actuarial claims data.

The theoretical ACF is a time domain measure of the stochastic process memory and
offers no insight into the frequency content of the process. Also included is the theoretical
partial ACF with Lag = k = 1; see Figure 4 (bottom right panel). The initial lag value is
statistically significant, while none of the other partial autocorrelations for any other delays
are, according to Figure 4’s bottom right corner. This proposes an autoregressive (AR(1))
model as a potential fit to these data. Due to our data, skewness = −0.74828 (left-skewed
data), kurtosis = 2.78846 < 3, and dispersion index (DIx) = 0.070835 (under dispersed
data). Based on these Tables 5 and 6, the following results can be highlighted:
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1. For all risk assessment methods:

For GELX : VaRK
(
Z|1−q=0.3

)
< VaRK

(
Z|1−q=0.25

)
< . . . < VaRK

(
Z|1−q=0.1

)
< VaRK

(
Z|1−q=0.01

)
,

For ELX : VaRK
(
Z|1−q=0.3

)
< VaRK

(
Z|1−q=0.25

)
< . . . < VaRK

(
Z|1−q=0.1

)
< VaRK

(
Z|1−q=0.01

)
.

2. For all risk assessment methods:

For GELX : TVaRK
(
Z|1−q=0.3

)
< TVaRK

(
Z|1−q=0.25

)
< . . . < TVaRK

(
Z|1−q=0.1

)
< TVaRK

(
Z|1−q=0.01

)
,

For ELX : TVaRK
(
Z|1−q=0.3

)
< TVaRK

(
Z|1−q=0.25

)
< . . . < TVaRK

(
Z|1−q=0.1

)
< TVaRK

(
Z|1−q=0.01

)
.

3. For all risk assessment methods:

For GELX : TV
(
Z|1−q=0.3

)
< TV

(
Z|1−q=0.25

)
< . . . < TV

(
Z|1−q=0.1

)
< TV

(
Z|1−q=0.01

)
,

For ELX : TV
(
Z|1−q=0.3

)
> TV

(
Z|1−q=0.25

)
> . . . > TV

(
Z|1−q=0.1

)
> TV

(
Z|1−q=0.01

)
.

4. For all risk assessment methods:

For GELX : TMVK
(
Z|1−q=0.3

)
< TMVK

(
Z|1−q=0.25

)
< . . . < TMVK

(
Z|1−q=0.1

)
< TMVK

(
Z|1−q=0.01

)
,

For ELX : TMVK
(
Z|1−q=0.3

)
> TMVK

(
Z|1−q=0.25

)
> . . . > TMVK

(
Z|1−q=0.1

)
> TMVK

(
Z|1−q=0.01

)
.

5. For all risk assessment methods:

For GELX : MELS
(
Z|1−q=0.3

)
< MELS

(
Z|1−q=0.25

)
< . . . < MELS

(
Z|1−q=0.1

)
< MELS

(
Z|1−q=0.01

)
,

For ELX : MELS
(
Z|1−q=0.3

)
> MELS

(
Z|1−q=0.25

)
> . . . > MELS

(
Z|1−q=0.1

)
> MELS

(
Z|1−q=0.01

)
.

6. Under the MAXLE method and the GELX model: The VaRK(Z) is consistently
growing, starting with 3104.32244 and ending with 12,791.47826; the TVaRK(Z) is
consistently growing, starting with 5606.27701 and ending with 17,177.67141.

7. Under the ORLSE method and the GELX model: The VaRK(Z) is consistently growing,
starting with 3559.79706 and ending with 18,274.02938; the TVaRK(Z) is consistently
growing, starting with 7134.33969 and ending with 26,462.60076.

8. Under the L-MO method and the GELX model: The VaRK(Z) is consistently growing,
starting with 2684.87356 and ending with 7251.04539; the TVaRK(Z) is consistently
growing, starting with 3955.54267 and ending with 8938.81397.

9. Under the ADE method and the GELX model: The VaRK(Z) is consistently growing,
starting with 3428.17317 and ending with 14,714.50356; the TVaRK(Z) is consis-
tently growing, starting with 6329.36348 and ending with 19,871.73902. Similarly,
the TVq(Z), the TMVK(Z), and the MEL(Z) are consistently growing. Under the
ADE method and the ELX model: The VaRK is consistently growing, starting with
3440.462517 and ending with 11,119.778633; the TVaRK is consistently growing, start-
ing with 5686.884025 and ending with 13,422.696625. However, the TVq, the TMVK,
and the MEL are monotonically decreasing.
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10. For the GELX model: For nearly for all q values, the ORLSE method is recommended
since it provides the most acceptable risk exposure analysis; then, the MAXLE method
is recommended as a second one, then the ADE method, and then the L-MO method.
However, the other two methods perform well. For the ELX model: For nearly for all
q values, the ORLSE method is recommended since it provides the most acceptable
risk exposure analysis; then, the MAXLE method is recommended as a second one.
However, the other two methods also perform well.

6. Construction of RRNIK Statistic for the GELX Model

Many statistical tests assume that the data are normally distributed. If the data are
skewed, these tests may not be appropriate and can lead to incorrect conclusions. By using
a skewed distribution to model the data, more robust statistical tests can be used to test
hypotheses and make inferences. Skewed distributions can be used to make better decisions
in various fields, such as finance, insurance, and engineering. By accurately modeling the
data and estimating the likelihood of extreme events, decisions can be made that are more
informed and better account for risk.

The RRNIK statistic is a well-known substitute for the traditional chi-squared tests
where there are complete data (for additional information, see Nikulin [8], Nikulin [9],
Nikulin [10], and Rao and Robson [11]). The most popular test to check whether a mathe-
matical model is suitable for the data from observations is the Pearson chi-square statistic.
But in cases where the model’s parameters are unknown or the data are censored, these
tests are useless. For the entire set of data, Nikulin [8], Nikulin [9], Nikulin [10], and Rao
and Robson [11] all indicated natural variations in the Pearson statistic, which is referred to
as RRNIK. The chi-square distribution, a logical extension of the Pearson statistic, is used
in this statistical test.

When the filtering is applied on top of the unknown parameter, the standard test is not
strong enough to establish the null hypothesis. Nikulin [8], Nikulin [9], Nikulin [10], and
Rao and Robson [11] suggest that the RRNIK statistic be modified to take into consideration
random right censoring. In the current study, we provide a modified chi-square test
for the GELX model (see also Bagdonavičius et al. [29], Bagdonavičius and Nikulin [30],
Bagdonavičius and Nikulin [31] for more details). To test the theory, Nikulin [8], Nikulin [9],
Nikulin [10], and Rao and Robson [11] established the RRNIK statistic Y2

(
V̂m

)
). Let

H0 : Pr
{
ZV ≤ z

}
= FV (z)

∣∣∣z∈R.

Then, according to Nikulin [8], Nikulin [9], Nikulin [10] and Rao and Robson [11], we
have

Y2
(
V̂m

)
= Z2

m

(
V̂m

)
+ m−1LT

(
V̂m

)(
I
(
V̂m

)
− J
(
V̂m

))−1
L
(
V̂m

)
,

where

Z2
m

(
V̂m

)
=

 ς1 −mp1

(
V̂m

)
√

mp1

(
V̂m

) ,
ς2 −mp2

(
V̂m

)
√

mp2

(
V̂m

) , · · · ,
ςm −mpb

(
V̂m

)
√

mpb

(
V̂m

)


T

and J
(
V̂m

)
is the information matrix for the grouped data

J
(
V̂m

)
= B

(
V̂m

)T
B
(
V̂m

)
,

with

B
(
V̂m

)
=

[
1
√

pi

∂

∂V̂m
pi

(
V̂m

)]
r×s

|(i=1,2,··· ,b and k=1,2,··· ,s),
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and then

L
(
V̂m

)
=
(

L1

(
V̂m

)
, . . . , Ls

(
V̂m

))T
with Lk

(
V̂m

)
=

r

∑
i=1

ςi
pi

∂

∂
(
V̂m

) pi

(
V̂m

)
,

where Î refers to the estimated Fisher INFMX. Then, the Y2 statistic has (b− 1) degrees of
freedom (DOF), and it follows the Chi square model. Consider a set of observations that
are divided into I1, I2, · · · , Ib, where

Ij =
(
Aj,b(z)− 1;Aj,b(z)

)

pj(V) =
∫ Aj,b(z)

Aj,b(z)−1
fV (z)dz|(j=1,2,··· ,b),

and

Aj,b(z) = F−1
(

j
b

)
|(j=1,··· ,b−1).

In this research, we create a modified goodness-of-fit test known as the RRNIK statistic
to examine if the used data follow the distribution of the GELX model when a parameter is
unknown. Our new statistic relies on the estimated Fisher INFMX, which we employ after
computing the highest likelihood estimator of the unknown GELX distribution parameter
on the dataset.

7. Uncensored Distributional Validation

To test a hypothesis with censored data and an unknown parameter, we utilize a
specific type of statistical test based on the RRNIK statistic variation, as suggested by
Nikulin [7–9] and Rao and Robson [11]. Our adaptation of this test is tailored for the
GELX model, where the failure rate zi follows a GELX distribution. The null hypothesis is
then considered:

H0 : F(z) ∈ F0 = F0,V (z)|z∈R.

Below are the expressions for the survival function (SrF) and cumulative hazard
function of the GELX distribution:

SV (z) = 1− FV (z) = 1−
[
1− exp

{
−
[
ψδ2,β(z)− 1

]−1
}]δ1 |V=δ1,δ2,β,

and
VV (z) = − ln

[
SV (z)

]
,

For all j, we have a constant value of ej,Z = Ek/k, where

Ek = Ek(z) = ∑i−1
l=1 VV (z)|0 =< A0,b < A1,b < . . . < Ak−1,b < Ak,b = +∞.,

and Aj,b(z) are random data functions. Then, the test statistic can be formulated as

Y2
m,r−1,q

(
V̂
)
= ZTŜ−Z|Z = (Z1, Z2, . . . , Zk)

T

where
Zj =

1√
m
(
Qj,Z − ej,Z

)
|( j=1,2,...,k).

Then, the test statistic can also be presented in the following formula:

Y2
m,r−1,q

(
V̂
)
=

k

∑
j=1

1
Qj,Z

(Qj,Z − ej,Z )
2 + VW,G,
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where VW,G and many other details are given in Nikulin [8], Nikulin [9], Nikulin [10], and
Rao and Robson [11].

7.1. Uncensored Simulation Study and Assessment under the RRNIK Statistics YYY2
(

q; V̂
)

Here are some general steps to conduct a simulation study using the Rao–Robson
Nikulin test statistic:

I. Define the GELX distribution by specifying its parameters, such as the location, scale,
and shape parameters.

II. Set the sample size and the censoring mechanism. For instance, you can choose a
fixed sample size and right-censor the data at a certain time point.

III. Generate multiple sets of simulated data from the GELX distribution with the specified
parameters and censoring mechanism. The number of simulated datasets should be
sufficiently large to obtain reliable results.

IV. For each simulated dataset, estimate the GELX parameters using maximum likelihood
estimation or another appropriate method.

V. Compute the Rao-Robson Nikulin test statistic for each simulated dataset using the
estimated parameters and the censoring information.

VI. Calculate the empirical distribution of the test statistic across all simulated datasets.
VII. Compare the observed test statistic from the actual data with the empirical distribution

obtained from the simulation study. Evaluate whether the observed test statistic falls
within the expected range under the null hypothesis or not.

Repeat steps III–VII for different sets of GELX parameters, sample sizes, and censoring
mechanisms to assess the performance of the test statistic under various scenarios. Then,
Table 7 shows the relevant empirical and theoretical levels. It is clear that the determined
empirical level value and its equivalent theoretical level value are fairly similar. As a result,
we draw the conclusion that the suggested test is excellent for the GELX distribution.

Table 7. Empirical levels and corresponding theoretical levels (q = 0.01, 0.02, 0.05, and 0.1) and
N = 16,000.

m ↓ and q→ q1 = 0.01 q2 = 0.02 q3 = 0.05 q4 = 0.1

m1 = 25 0.9935 0.9819 0.9522 0.9033
m2 = 40 0.9929 0.9817 0.9515 0.9025

m3 = 150 0.9922 0.9811 0.9509 0.9017
m5 = 300 0.9911 0.9807 0.9506 0.9010
m6 = 700 0.9906 0.9805 0.9503 0.9003

7.2. Uncensored Reliability Data Modeling and Testing under the RRNIK Statistics YYY2
(

q; V̂
)

7.2.1. Uncensored Reliability Strength’s Dataset

To model the uncensored reliability strengths dataset using a probability distribution,
one commonly used distribution is the Weibull distribution. The Weibull distribution is
frequently employed in reliability analyses due to its flexibility in capturing a wide range
of failure patterns. In this application, we test the GELX distribution for the uncensored
reliability strengths dataset. Using the BB algorithm (see Ravi (2009)) and the reliability
data of Nichols and Padgett [32], we can obtain the MAXLE value of the parameter δ,
assuming that our GELX model can fit the strength data of 1.5 cm glass fiber: δ̂1 = 1.52493,
δ̂2 = 1.99834, β̂ = 0.73854. We can compute and provide the Fisher INFMX as follows using
the value:

I
(
V̂
)
=

0.953428 1.26758 2.139537
2.10348 4.801254

0.996598


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Then, Y2
(

q; V̂
)
= 12.004875 and the critical value χ2

0.05(6) = 12.5916, which means
that the GELX distribution can effectively express, simulate, and model the uncensored
reliability strength’s dataset. However, selecting the appropriate distribution necessitates
evaluating the data’s fit to each distribution, usually through the use of statistical tests or
a visual examination of the data plotted against the selected distribution. The selection
procedure may also be aided by domain expertise and theoretical factors.

7.2.2. Uncensored Heat Exchanger Tube Crack

To model the uncensored heat exchanger tube crack dataset using a probability dis-
tribution, you need to determine the appropriate distribution that best fits the data. The
choice of distribution depends on the characteristics of the dataset and the underlying
assumptions you wish to make. Following the BB algorithm and using the data of Meeker
and Escobar [33], we are concerned with testing the null hypothesis that the heat exchanger
tube crack data follow our GELX distribution under the RRNIK statistic test. First, we
have the MAXLE for the three parameters, where δ̂1 = 3.12542, δ̂2 = 2.73154, β̂ = 0.83496.
Second, the INFMX can be obtained as

I
(
V̂
)
=

0.437812 3.76831 1.00703
1.76948 5.11147

1.354706


Then, we also have the following main results: Y2

(
q; V̂

)
= 19.60143 and

χ2
0.01(12) = 21.02607, which means that the GELX distribution can effectively express,

simulate, and model the uncensored heat exchanger tube crack dataset. However, choosing
the best distribution involves assessing the fit of the data to each distribution, typically by
using statistical tests or visual inspection of the data plotted against the chosen distribu-
tion. Additionally, domain knowledge and theoretical considerations can help guide the
selection process.

8. Censored Distributional Validation

8.1. Censored Simulation Study and Assessment under the RRNIK Statistics YYY2
n,r−1,q

(
V̂
)

A censored simulation study under the Rao–Robson Nikulin (RRNIK) statistics is
a method for testing the goodness of fit of a censored distribution using simulated data.
This method is based on the RRNIK test statistic, which is a variation of the Kolmo-
gorov–Smirnov test statistic that takes into account the censoring of the data. To perform
a censored simulation study using the RRNIK statistics, the first step is to generate a set
of simulated data with known distribution parameters. The data should be generated
in such a way that it contains a mixture of censored and uncensored data. This can be
achieved by randomly censoring a portion of the data or by using a censoring mechanism
that is appropriate for the application. Once the simulated data are generated, the RRNIK
test statistic can be calculated by comparing the empirical distribution function of the
censored data to the hypothesized distribution function. The test statistic is then compared
to a critical value from a distribution table to determine whether the null hypothesis can
be rejected. The null hypothesis is that the censored data comes from the hypothesized
distribution function. The censored simulation study can be repeated multiple times with
different sets of simulated data to obtain a more accurate assessment of the goodness of
fit of the hypothesized distribution to the observed data. This can help to determine the
robustness of the RRNIK test statistic and its ability to accurately detect deviations from
the hypothesized distribution. Overall, censored simulation studies using the RRNIK
statistics are a useful tool for assessing the performance of the RRNIK test statistic in
detecting deviations from the hypothesized distribution in censored data. This method can
be applied in a variety of applications, including reliability analysis, survival analysis, and
the modeling of extreme events.
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Under the censored simulated studies, the RRNIK statistics Y2
m,r−1,q

(
V̂
)

can be
evaluated with some experiments. For N = 17,000 samples and censoring at 25% with
DOF = 5, we can calculate the average value of the non-rejection numbers of the null
hypothesis for q = 0.01, 0.02, 0.05, 0.1, where Y2

m,r−1,q

(
V̂
)
≤ χ2

q(r− 1). The simulation
results are presented in Table 8.

Table 8. Censored simulation study and assessment under the RRNIK. Statistics for q = 0.01,
0.02, 0.05, and 0.1 and N = 17,000.

m ↓ and q→ q1 = 0.01 q2 = 0.02 q3 = 0.05 q4 = 0.1

m1 = 25 0.9924 0.9831 0.9522 0.9029
m2 = 40 0.9920 0.9822 0.9515 0.9019

m3 = 150 0.9911 0.9818 0.9510 0.9009
m5 = 300 0.9908 0.9809 0.9505 0.9003
m6 = 700 0.9905 0.9804 0.9502 0.9002

8.2. Right Censored Medical and Reliability Datasets under the RRNIK Statistics YYY2
n,r−1,q

(
V̂
)

8.2.1. Right Censored Medical Lung Cancer Dataset

The censored lung cancer dataset (see Loprinzi et al. [34]) is a valuable resource for
researchers interested in developing and testing statistical models for survival data, as well
as for clinicians and policymakers interested in understanding the factors that contribute
to survival outcomes for patients with lung cancer, where m = 228 and right censored
items = 63. First, we have the following results: δ̂1 = 1.93548, δ̂2 = 1.44046, β̂ = 0.69421.
As a number of classes, we employ DOF = 8. The following results refer to how the test
statistic Y2

m,r−1,q

(
V̂
)

items are presented:

ˆAj,b(Z) 92.14 171.69 216.04 283.0 355.10 456.30 685.30 1022.32

ˆQj,Z 29.0 30.0 35.0 31.0 32.0 25.0 28.0 18.0

ej,Z 8.27173 8.27173 8.27173 8.27173 8.27173 8.27173 8.27173 8.27173

Then, the estimated matrix P̂i|(Z) are as follows:

P̂1|(Z) −0.5674 0.8437 −0.7391 0.1637 0.9000 0.7064 −0.2061 0.2836
P̂1|(Z) 0.7168 −0.1834 0.8245 0.7601 0.3761 0.3066 0.7004 0.2994
P̂1|(Z) 0.6974 −0.8312 0.6498 0.8526 0.5084 0.0942 0.6474 0.1991

and

I
(
V̂
)
=

0.86451 1.62348 2.49312
0.75550 5.11147

0.93784

.

The critical value of χ2
0.05(DOF = 8) = 15.50731, whereas Y2

m,r−1,q

(
V̂
)
= 12.95384,

which means that the GELX distribution can effectively express, simulate, and model the
censored medical lung cancer dataset.

8.2.2. Right Censored Reliability Dataset

The censored reliability dataset is an excellent resource for researchers who are inter-
ested in developing and testing statistical models for time-to-failure data. These researchers
can obtain the dataset on the Internet. The filtered reliability dataset is an extremely helpful
resource for engineers and manufacturers who are interested in improving the dependabil-
ity of the goods or systems they produce. A set of data for basic reliability assessments,
obtained from an experiment with several factors, includes data on the lifetime of glass



Symmetry 2023, 15, 1356 21 of 24

capacitors as a function of voltage and operating temperature. The dataset includes data
on the longevity of glass capacitors as a function of voltage and operating temperature (see
Meeker and Escobar [33]). Consider the data of Meeker and Escobar [33], where m = 64
and right censored items = 32. Then, we have: δ̂1 = 2.1473, δ̂2 = 1.3614, β̂ = 0.83760.
Considering DOF = 8, we gain the following results:

ˆAj,b(Z) 346.16 469.50 587.11 679.02 1078.83 1089.11 1102.17 1106.44

ˆQj,Z 11.0 15.0 6.0 10.0 6.0 5.0 6.0 5.0

ej,Z 3.6762 3.6762 3.6762 3.6762 3.6762 3.6762 3.6762 3.6762

Then, the estimated matrix P̂i|(Z) are as follows:

P̂1|(Z) 0.3674 0.9005 −0.6118 0.1667 0.7100 −0.6008 0.7487 0.6791
P̂1|(Z) 0.3914 0.4351 0.7003 −0.3332 0.3846 0.3917 0.7066 0.2994
P̂1|(Z) 0.6947 0.8668 0.1979 0.2852 0.4937 0.0971 −0.4444 0.1985

and

I
(
V̂
)
=

0.49382 4.0006 2.35623
1.67940 0.48163

0.77185

.

Then, sine Y2
m,r−1,q

(
V̂
)

= 14.882811 and χ2
0.05(8) = 15.50731, which means that

the GELX distribution can effectively express, simulate, and model the censored
reliability dataset.

9. Validation for the Actuarial Data

The RRNIK test statistic is an essential tool that can be of service to researchers in the
design of improved models and in the generation of more accurate forecasts. The validation
of actuarial data using this test statistic is a critical instrument that can be of assistance to
researchers. The validation of data using this test statistic is an important tool to have at
your disposal when conducting an examination of actuarial data. The validation findings
will be presented in accordance with the revised RRNIK statistical test in this section of the
article. On the other hand, we are going to make use of the actuarial claims data this time
around. In the event that our GELX model is able to produce a satisfactory match with the
actuarial claims data, then we will be able to make use of the BB approach to obtain the
MAXLE value of the parameters. This assumes that the MAXLE value can be calculated
with a high degree of precision; then, we have δ̂1 = 2.19046, δ̂2 = 0.93875, β̂ = 0.84755. We
can compute and provide the Fisher INFMX as follows using the value:

I
(
V̂
)
=

0.89317 2.30159 4.12578
3.95148 5.601474

1.689457

.

The critical values for the RRNIK statistical test were Y2
(

ε; V̂
)

= 9.843197 and

χ2
0.05(5) = 11.070, so the GELX distribution can effectively simulate and model the ac-

tuarial claims data.

10. Concluding Remarks

In this paper, we introduce a new model for actuarial claims analysis and actuarial
risk assessment. The risk assessment process was carried out through four different
classical assessment methods: the maximum likelihood estimation (MAXLE), ordinary
least squares (OLS), L-Moment (L-MO), and Anderson Darling estimation (ADE) methods.
The risk exposure under actuarial claims data was also described using five important risk
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indicators: value-at-risk (VaRK(Z)), tail-value-at-risk (TVaRK(Z)), tail variance (TVq(Z)),
tail mean-variance (TMVK(Z)), and mean excess loss (MELS(Z)). These metrics were
developed for the proposed weighted exponential model. The utilization of actuarial claims
data in accordance with the five individual risk indicators is necessary in order to carry
out an appropriate risk assessment. We came to the opinion that studying the actuarial
claims data that fall within the five major risk indicators would be the most fruitful course
of action given that the data have a distinct peak and a tail that progresses in a leftwards
and unambiguous fashion. This led us to the conclusion that the best line of action would
be to examine the facts. We felt compelled to provide both a numerical and graphical risk
evaluation and analysis because the new distribution was able to model the data under a
variety of different risk factors. This was because the new distribution was flexible enough
to model the actuarial claims data under a variety of different risk indicators. This was
mostly the cause of this. This was the main factor that motivated us to put out the effort.
The fact that the properties of the new distribution matched those of the actuarial claims
data sparked our interest in doing this study even more. We therefore determined that we
ought to go and carry it out.

The following results can be highlighted:

• Under the artificial claims data: VaRK(Z), TVaRK(Z), TVq(Z), TMVK(Z), and
MELS(Z) increase when q increases for all estimation methods.

• Under the artificial claims data:
VaRK(Z)MAXLE < VaRK(Z)ORLSE < VaRK(Z)ADE < VaRK(Z)L−MO for most q.

• Under the actuarial claims data, the MAXLE method, and the proposed model: The
VaRK(Z), TVaRK(Z), TVq(Z), the TMVK(Z), and the MEL(Z) are consistently
growing.

• Under the actuarial claims data, the ORLSE method, and the proposed model: The
VaRK(Z), TVaRK(Z), TVq(Z), the TMVK(Z), and the MEL(Z) are consistently
growing.

• Under the actuarial claims data, the L-MO method, and the proposed model: The
VaRK(Z), TVaRK(Z), TVq(Z), the TMVK(Z), and the MEL(Z) are consistently
growing.

• Under the actuarial claims data, the ADE method, and the proposed model: The
VaRK(Z), TVaRK(Z), TVq(Z), the TMVK(Z), and the MEL(Z) are consistently
growing.

• The ORLSE technique is strongly recommended for use with the new model as it
provides the most dependable risk exposure analysis available. The MAXLE approach
comes in a close second in the order of operations that have been proposed, followed
by the ADE method, and finally, the L-MO method completes the series. On the other
hand, the other two options are both successful in their own right and in their own
particular way. Because it provides the most gratifying risk exposure analysis, the
ORLSE methodology should be used for the ELX model. It is recommended to use
this methodology. This is due to the fact that the ORLSE methodology delivers. As an
alternative recommendation for a backup strategy, the MAXLE approach is the one
that should be employed instead. On the other hand, the other two options are both
successful in their own right and in their own particular way.

• For the testing and validation of the uncensored strengths of glass fibers data,

the critical values for the RRNIK statistical test were Y2
(

q; V̂
)

= 12.004875 and

χ2
0.05(6) = 12.5916; therefore, the new GELX distribution can effectively simulate and

model the uncensored 1.5 cm glass fiber data.
• For the testing and validation of the uncensored heat exchanger tube crack data,

the critical values for the RRNIK statistical test were Y2
(

q; V̂
)

= 19.60143 and

χ2
0.05(6) = 12.5916. As a result, the uncensored heat exchanger tube fracture data can

be efficiently simulated and modelled using the new GELX distribution.
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• For the testing and validation of the censored lung cancer dataset, the value of the

statistical test Y2
m,r−1,q

(
V̂
)
= 12.95384, where χ2

0.05(8) = 15.50731 > Y2
m,r−1,q

(
V̂
)
=

14.61654. Consequently, the censored lung cancer dataset may be modeled using the
new GELX model.

• For the testing and validation of the censored reliability dataset, the value of the

statistical test Y2
m,r−1,q

(
V̂
)
= 13.84577, where χ2

0.05(8) = 15.50731 > Y2
m,r−1,q

(
V̂
)
=

14.882811. Therefore, the censored capacitor data reliability dataset may be modelled
using the new GELX model.
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