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Abstract: The structural stability of γ-boron is investigated using Raman spectra and DFT calculations
under high pressures, up to 126 GPa, at ambient temperature. The pressure dependence of all the
Raman-active modes of the γ-boron is reported. We also observe amusing changes within the B3g

and B1g Raman-active vibrational modes, which result in the phenomenon of first merging and
then separating the Raman peaks. In addition to the Raman measurements, the changes in crystal
structure and force constants are calculated to reasonably explain the discrepancy between the two
Raman modes in response to pressure. The results of the continuous shifts for all Raman modes
and the unit-cell parameters, as well as volume with increasing pressure, indicate that there is no
structural transformation of γ-boron below this pressure value, with no changes in either symmetry
or structure.

Keywords: diamond anvil cell; γ-boron; high pressure; structural stability; internal coordinates;
force constants

1. Introduction

Boron, one of the most fundamental elements in nature, often exists in the form
of boron-rich solids, due to its high chemical activity. The first nonmetallic solid in the
Periodic Table under ambient conditions makes boron an extraordinarily attractive topic
in terms of its physical and chemical properties, as boron-rich solids are one of the most
important members of non-metallic superhard materials. However, pure boron has rarely
been studied, due to its difficult preparation.

Although the literature suggests that boron exists in many polymorphs [1], only three
pure phases are well characterized with definite structures. They are α-B12 [1], β-B106 [2],
and γ-B28 [3], all of which have complicated structures dominated by B12 icosahedron
clusters. Only three sufficiently localized valence electrons result in boron nonmetallization.
However, several theoretical studies have reported that α-B12 and β-B106 should undergo a
transformation from non-metal to metal under compression [4–6]. It was confirmed that
the β-B106 transforms from a nonmetal to a superconductor at about 160 GPa [7]. The
high-pressure resistance measurements of α-B12 also demonstrated its pressure-induced
superconductivity [8,9]. Nevertheless, from the structural viewpoint, focusing on the phase
stability of boron under high pressure is indispensable. The structural stability of α-B12
and β-B106 under pressure has been investigated experimentally and theoretically [10–20].
Unfortunately, the structural stability of γ-B28 at high pressures is still experimentally
unsolved, whereas many previous studies have concentrated on the synthesis and phase
diagram at high pressure and high temperature (HPHT) [21–25].
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Wentorf firstly observed γ-B28 at HPHT in 1965 [26]. In 2009, Oganov et al. determined
its structure, as shown in Figure 1 [3]. They concluded that γ-B28 remained stable up to
89 GPa and then transformed into the α-Ga-type phase, which was predicted to be a possible
good candidate for the high-pressure metallic phase of boron via ab initio evolutionary
crystal structure predictions [27]. Several theoretical and experimental studies have been
devoted to the structural stability of γ-B28 under pressure [28–33]. However, there are
contradictions and controversies in these results. Jiang et al. suggested that the structure of
γ-B28 was expected to remain stable up to 40 GPa using first-principle density functional
calculations [28]. At the same time, the γ-B28 phase was demonstrated to be stable up to
at least 65 GPa, as a result of high-pressure x-ray diffraction (XRD) measurements with
Ne or He as a pressure-transmitting medium [29–31]. However, Zarechnaya et al. claimed
that γ-B28 undergoes an isostructural phase transformation around 40 GPa, based on their
Raman spectra and XRD data under high pressure [34]. They reported that both Raman
modes of Ag at 380 cm−1 and B3g at 470 cm−1 undergo hardening and then softening
with increasing pressure, and the modes at 480 cm−1 and 810 cm−1 split at approximately
40 GPa [34]. However, Oganov et al. considered that the results of Zarechnaya et al. did
not provide sufficient evidence to support an isostructural phase transition due to the
contradiction of their XRD data with theoretical works and the absence of a physically
reasonable mechanism of the “isostructural transformation” [35].
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Boron is a light element and a very poor scatterer because of the low scattering cross-
section of boron atoms. Thus, it is very difficult to measure XRD of boron at high pressure. 
This makes studying the behavior of boron under high pressure extremely difficult. γ-B28 
has an extraordinary complicated structure with an utterly unique and easily 
distinguishable Raman spectrum [36]. Moreover, phase transitions are often associated 
with changes in crystal structure and symmetry, which can be directly demonstrated by 
Raman spectroscopy. Therefore, Raman spectroscopy is the most convenient and 
powerful method to research the properties of γ-B28 under high pressure. However, 
experimental information about the high-pressure Raman spectra of γ-B28 is limited. Here, 
we present the results of the high-pressure Raman spectroscopy of γ-B28 up to 126 GPa at 
room temperature. 

2. Experimental Details 
β-boron (β-B106, rhombohedral, space group R-3m; purity at. 99.9999%) was employed 

as the raw material to synthesize polycrystalline aggregates of gamma phase boron (γ-B28, 
orthorhombic with space group Pnnm) at 10 GPa and at high temperatures above 2000 K. 
We synthesized the γ-boron in three steps. In the 1st step, β-boron and Ne as pressure-
transmitting medium were loaded into the chamber of DAC; in the 2nd step, β-boron is 
loaded to 10 GPa; in the 3rd step, laser heating was performed to synthesize the γ-boron, 
and then it was cooled to room temperature. To check the quality of the samples after 

Figure 1. Structure of γ-B28 from different directions of (a) a axis, (b) b axis and (c) c axis, respectively.
The boron atoms in B12 icosahedra are marked in green while those in B2 dumbells are marked
in orange.

Boron is a light element and a very poor scatterer because of the low scattering
cross-section of boron atoms. Thus, it is very difficult to measure XRD of boron at high
pressure. This makes studying the behavior of boron under high pressure extremely
difficult. γ-B28 has an extraordinary complicated structure with an utterly unique and easily
distinguishable Raman spectrum [36]. Moreover, phase transitions are often associated with
changes in crystal structure and symmetry, which can be directly demonstrated by Raman
spectroscopy. Therefore, Raman spectroscopy is the most convenient and powerful method
to research the properties of γ-B28 under high pressure. However, experimental information
about the high-pressure Raman spectra of γ-B28 is limited. Here, we present the results of
the high-pressure Raman spectroscopy of γ-B28 up to 126 GPa at room temperature.

2. Experimental Details

β-boron (β-B106, rhombohedral, space group R-3m; purity at. 99.9999%) was employed
as the raw material to synthesize polycrystalline aggregates of gamma phase boron (γ-B28,
orthorhombic with space group Pnnm) at 10 GPa and at high temperatures above 2000 K.
We synthesized the γ-boron in three steps. In the 1st step, β-boron and Ne as pressure-
transmitting medium were loaded into the chamber of DAC; in the 2nd step, β-boron is
loaded to 10 GPa; in the 3rd step, laser heating was performed to synthesize the γ-boron,
and then it was cooled to room temperature. To check the quality of the samples after
synthesis, we measured the Raman spectra of different regions of the sample. The absence
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of other Raman modes of impurities and the high intensity of the Raman peaks obtained in
a very short measurement time demonstrated the high quality of the samples.

High-pressure experiments were carried out using a diamond anvil cell (DAC) with
100 µm diameter culets, as shown in Figure 2a. Rhenium was used as gasket between the
diamonds, which was preindented to a thickness of 20 µm; then, a hole with diameter
of 70 µm was drilled in the center as sample chamber. The β-boron and ruby particles
were packed into the chamber. The pressure blow 80 GPa was measured in situ from the
calibrated shift of the ruby R1 fluorescent line [37], whereas the pressure above 80 GPa was
calibrated with stressed diamond Raman edge, defined as the frequency that minimized
dI/dν [38,39]. In this work, the error in pressure calibration was approximately ±1 GPa.
Neon was loaded as a pressure-transmitting medium (PTM). A one-side laser-heating
device was employed to provide a high-temperature environment for boron during the
experiment. A near-infrared laser (YAG, 1064 nm) was utilized to heat the sample at a
maximum powder of 11 W. In the experiment, we used a confocal microscope Raman
spectrometer system equipped with a stigmatic spectrometer and a multichannel air-cooled
CCD detector to collect the Raman scattering spectra. The groove density of the grating,
the focal length of the spectrometer, and the spectral resolution of the instrument were,
respectively, 600 lines/mm, 800 mm, and 0.5 cm−1. An He-Ne laser (632.8 nm, power of
7 mW) was used for an excitation source. After laser heating, the pressure stabilized at
13.5 GPa. Then, the pressure in the cell was pressurized to 126.2 GPa at room temperature.
The Raman spectra were measured at each pressure step, and similar experiments were
run three times.
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Figure 2. (a) The scheme of the diamond anvil cell (DAC). (b,c) Raman spectra of γ-B28 compressed
in a neon pressure-transmitting medium in a diamond anvil cell. Raman spectra at different pressures
are displayed in different colors.

3. First Principle Calculations

Crystal structures under high pressure were performed using the periodic plane-
wave density functional theory (DFT) method with the projected-augmented wave (PAW)
method implemented in the VASP code. Perdew–Burke–Ernzerhof (PBE) was used for
the exchange-correlation potentials. The energy cutoff for the plane-wave basis was set to
500 eV, and the Brillouin zone was sampled by a Monkhorst–Pack grid of 12 × 12 × 12.
The self-consistent convergence criteria of energy were set to 1 × 10−6 for ionic relaxations,
and all atoms were relaxed until the forces were less than 0.01 eV/Å.
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4. Results and Discussion

To investigate the structural stability of γ-boron under high pressure, we performed
in situ Raman spectroscopy measurements under high pressures up to 126 GPa at ambi-
ent temperature. The pre-synthesized γ-boron samples demonstrated high quality, and,
consequently, many weak Raman modes could also be detected. Figure 2b,c shows the
evolution of the Raman modes of γ-boron between 100 cm−1 and 1300 cm−1 under high
pressure up to 126 GPa at room temperature. Moreover, the pressure dependence of the
frequencies of different Raman-active modes is displayed in Figure 3. We measured the
pressure dependence of 23 Raman modes. Compared to previous works [34,40], one mode
at approximately 500 cm−1, marked as “BP”, at high pressure could not be assigned; another
mode could not be determined, and its type (B2g or B3g) was noted as “Bα”, as shown in
Figure 3. All Raman modes of γ-boron smoothly shifted with increasing pressure. With
loading compression, all Raman modes above 500 cm−1 remained in blueshift. However,
the Ag mode at 380 cm−1 first shifted towards higher frequencies and then became soft
at high pressures, as shown in Figure 4. The agreement between our results and those
previously published [34] was quite good.
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naya et al. [34] are represented by scatters of different colors and shapes.

Next, we concentrated on detailed variations in some Raman modes, especially the
Raman modes between 400 cm−1 and 500 cm−1, in which some peaks “split” visibly at
63 GPa, marked by an arrow in Figure 2b. Figure 5 shows the evolution process of Raman
modes between 340 cm−1 and 500 cm−1 during compression by fitting the Raman spectrum
in this frequency region with the Gaussian-LorenCross function and linear baseline using
Origin PeakFit. As observed in Figure 5a, the lattice mode at 374 cm−1 displays a broad peak
and a fast blueshift with increasing pressure, overlapping with the B3g mode at 23.2 GPa,
and then lifts the background of B3g and B1g modes with the further loading as shown
in Figure 5b. Below the pressure of 18 GPa, the three Raman modes of B3g (447 cm−1),
B3g (465 cm−1) and B1g (477 cm−1) are evidently distinguishable, as seen in the Raman
spectra of Figure 5b. In the process of pressurization from 13.5 GPa, the Raman modes
B3g (447 cm−1) and B3g (465 cm−1) move to high wavenumbers, whereas B1g (477 cm−1)
shifts in the opposite direction. Above 23GPa, the B3g (465 cm−1) begins to merge into
the B1g (477 cm−1). When the pressure reaches approximately 31GPa, B3g (465 cm−1) and
B1g (477 cm−1) are completely degenerate, causing the relative strength of B1g (477 cm−1)
to increase, whereas B3g (465 cm−1) becomes no longer measurable. At this pressure, the
intensity of B1g (477 cm−1) is stronger than that of B3g (447 cm−1). Figure 5c displays the
pressure dependences of the three Raman modes frequencies up to 30 GPa.
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Figure 5. (a) The evolution process during compression. (b) is the gray area in (a), red solid lines are
our experimental data, black dash dot lines represent the fitting curves, and the individual peaks
are marked by green (B3g), yellow (B3g) and blue (B1g) respectively. (c) The positions of these three
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Figure 6 shows the evolution of the B3g and B1g modes between 400 cm−1 and
500 cm−1 from 30 GPa to 126 GPa. For this wavenumber region, in addition to the two
broad peaks of the B2g and Ag modes’ fast sweep, only the B3g and B1g modes remain in the
pressure region. The relationship between the shifts of these two modes with pressure up to
126 GPa is shown in Figure 7. Under compression, the B3g and B1g modes keep the blueshift
and redshift, respectively, and cross at 54 GPa. Around the pressure at 54 GPa, a single
Raman peak is observed due to overlap of the two modes, but they are distinguishable
based on the decomposition of the spectrum, as displayed in Figure 6a,b. At a pressure of
91 GPa, B3g and B1g are completely separated. With further loading compression, the B3g
and B1g modes continue to move monotonously.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 5. (a) The evolution process during compression. (b) is the gray area in (a), red solid lines 
are our experimental data, black dash dot lines represent the fitting curves, and the individual 
peaks are marked by green (B3g), yellow (B3g) and blue (B1g) respectively. (c) The positions of these 
three modes (B3g, B3g, and B1g) as a function of pressure up to 30 GPa. 

Figure 6 shows the evolution of the B3g and B1g modes between 400 cm−1 and 500 cm−1 

from 30 GPa to 126 GPa. For this wavenumber region, in addition to the two broad peaks 
of the B2g and Ag modes’ fast sweep, only the B3g and B1g modes remain in the pressure 
region. The relationship between the shifts of these two modes with pressure up to 126 
GPa is shown in Figure 7. Under compression, the B3g and B1g modes keep the blueshift 
and redshift, respectively, and cross at 54 GPa. Around the pressure at 54 GPa, a single 
Raman peak is observed due to overlap of the two modes, but they are distinguishable 
based on the decomposition of the spectrum, as displayed in Figure 6a,b. At a pressure of 
91 GPa, B3g and B1g are completely separated. With further loading compression, the B3g 
and B1g modes continue to move monotonously. 

 
Figure 6. The process of (a) merging first and (b,c) then separating of B3g and B1g modes with pressure 
from 30 GPa to 126 GPa. In (a) and (b), red solid lines are our experimental data, black dash dot lines 
represent the fitting curves, and the individual peaks are marked by green (B3g), and blue (B1g) re-
spectively. 

Figure 6. The process of (a) merging first and (b,c) then separating of B3g and B1g modes with
pressure from 30 GPa to 126 GPa. In (a) and (b), red solid lines are our experimental data, black dash
dot lines represent the fitting curves, and the individual peaks are marked by green (B3g), and blue
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Similar phenomena to B3g and B1g can also be discovered in other Raman modes, such
as BP (495 cm−1) and Ag (529 cm−1) at 58.5 GPa, as shown in Figure 8. Both peaks remain
blueshifted under pressure at very different rates. At the same time, BP is more sensitive to
pressure, and BP merges into Ag above 60 GPa. Starting from 68 GPa, the relative positions
of BP and Ag will be reversed. BP could only be recognized again on the Raman spectrum
once the pressure had been loaded to 91 GPa.
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Our results indicate that no new peaks appear, and all Raman modes are continuously
shifted up to 126 GPa. In this pressure range, neither the symmetry nor the structure
change was detected. It is controversial that Zarechnaya et al. regarded the softening
of the Ag Raman mode at 380 cm−1 under high pressure as evidence of an isostructural
phase transition. In the work of Isaac F. Silvera and S.J. Jeon in 1992 [41], they used
an established theory of Raman-active modes to investigate the high-pressure softening
of the Raman-active vibron of hydrogen and deuterium. They showed that the Raman
frequency was affected by both the density-dependent intramolecular potential in the
solid and the intermolecular potential, and the softening of the Raman mode was due
to the intermolecular potential. Therefore, the softening of Ag Raman mode under high
pressure was potentially caused by the intermolecular potential varying with pressure
rather than the isostructural phase transition. In previous work [34], the Raman mode
splitting observed at approximately 40–45 GPa was considered as characteristic of the
isostructural phase transition. This was due to the different shift rates of the two Raman
modes of B3g (447 cm−1) and B1g (477 cm−1) with increasing pressure, which resulted in the
phenomenon of merging first and then separating. This fact suggested that there was no
phase transformation of γ-boron under pressures up to 126 GPa, and no new high-pressure
phase was generated.

Despite the complicated structure of γ-boron, we proposed a model to explain the
above amusing phenomenon. The Raman modes B1g and B3g correspond to the tilts of the
B12 icosahedron around the c-axis and a-axis, respectively [34]. As displayed in Figure 9a,
two B12 icosahedrons are connected by a B2 dumbbell. When two B12 icosahedrons tilt
around the c-axis, they will drive the two boron atoms of the B2 dumbbell to stretch along
the bond direction. Figure 9c displays the tilt of the B12 icosahedron around the a-axis,
which responds to the B3g mode. In contrast, the inclination of B12 icosahedron makes
the B2 dumbbell swing in a direction perpendicular to its plane, which is very difficult.
The B2 dumbbell limits the tilt of the B12 icosahedron and even makes it less affected by
compression. Therefore, the B3g mode has a very weak response to pressure, with only a
slight and negligible blueshift. If a B12 icosahedron is equivalent to an atom, the complex
structure in Figure 9a can be simplified to a four-atom system, as shown in Figure 9b.
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and B3g mode, respectively. (b) displays the four-atom system. The boron atoms in B12 icosahedra
are marked in green while those in B2 dumbells are marked in orange.

In this four-atom system, atoms 1 and 4 are icosahedrons, whereas atoms 2 and 3 are
single boron atoms. The lengths of the bonds between 1 and 2 and 3 and 4 are the same,
which is r. The bond between 2 and 3 is longer, which is R. The bond angles (123) and (234)
are also the same, which is φ. The dihedral angle between the planes of atoms (123) and
(234) is zero because four atoms are located in one plane.

To make it easier to investigate the amusing behavior of the B1g mode, the internal
coordinates were used to analyze the vibration of the 4-atom system. For a system of N
atoms, the distance between atoms, the bond angle between chemical bonds, or the change
in both can be used as a set of 3N-6 (for linear molecules, 3N-5) internal coordinates, i.e., the
coordinates are not affected by the translational and rotational motion of the molecule as
a whole; thus, it is a more advanced method for studying vibration. In the above 4-atom
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system, in addition to the dihedral angle (no change), there are five internal coordinates,
which are St(t = 1,2,3,4,5), as shown in Figure 9b.

The internal coordinates St can be expressed in the following form [42]

St =
N

∑
α=1

stα·ρα (1)

where the point in the formula represents the scalar product of two vectors. The physical
meaning of the vector stα is that only the α atom deviates from the equilibrium position; the
direction of stα is a given position shift of the α atom, which is the direction of the maximum
increase in St; and the value of stα is equal to the increase in St of the atom due to the unit
displacement in the most effective direction. In this way, a given internal coordinate St is
characterized by a set of vectors stα, one for each atom t.

In the 4-atom system, stα can be expressed [43]:

stα =


e21 −e21 0 0
0 −e23 e23 0
0 0 −e34 e34

cos φ123e21−e23
r12 sin φ123

[(r12−r23 cos φ123)e21+(r23−r12 cos φ123)e23]
r12r23 sin φ123

cos φ123e23−e21
r23 sin φ123

0

0 cos φ234e32−e34
r23 sin φ234

[(r23−r34 cos φ234)e32+(r34−r23 cos φ234)e34]
r23r34 sin φ234

cos φ234e34−e32
r34 sin φ234


The potential energy of vibration can be expressed as [44]

2T = ∑
tt′

(G−1)tt′
·
St
·
St′ (2)

∑
t′
(G−1)tt′Gt′t′′ = δt′t′′ (3)

The kinetic energy matrix Gtt′ can be given by [43]

Gtt′ =
N

∑
α=1

µαstα · st′α (4)

where the point in the formula represents the scalar product of two vectors, and µα = 1/mα

is the reciprocal of the mass of the atom to which α refers. Each pair of internal coordi-
nates St and St′ have an element Gtt′ , and this form has the advantage that it requires no
coordinate system.

According to the above equation, the G matrix of the 4-atom system can be obtained:

G =



M + m m ∗ c 0 −m∗s
R

−m∗s
R

m ∗ c M + m m ∗ c −m∗s
r

−m∗s
r

0 m ∗ c M + m −m∗s
R

−m∗s
r

−m∗s
R

−m∗s
r

−m∗s
R

M
r2 + m

R2 +
m∗(r2+R2−2R∗r∗c)

(r∗R)2
2m∗(r−R∗c)

r∗R2

−m∗s
R

−m∗s
r

−m∗s
r

2m∗(r−R∗c)
r∗R2

M
r2 + m

R2 +
m∗(r2+R2−2R∗r∗c)

( r∗R)2


where µ1 = µ4 = M, µ2= µ3 = m, r12 = r34 = r, r23 = R, and cosφ = c, sinφ = s.

If the potential energy is also expressed by the same internal coordinates, then [44]

2V = ∑
tt′

Ftt′StSt′ (5)

where Ftt′ is the force constant; therefore, it has the form
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F =


fr frR 0 r frφ 0

frR fR frR R fRφ R fRφ

0 frR fr 0 r frφ

r frφ R fRφ 0 Rr fφ Rr fφ

0 R fRφ r frφ Rr fφ Rr fφ


where fr is the r bond-stretching force constant; fR is the R bond-stretching force constant;
frR is the force constant for the interaction between bonds r and R; frφ is the force constant
for the interaction between bond r and bond angle φ123 or φ234; fRφ is the force constant for
the interaction between the bond R and bond angle φ123 or φ234; and fφ is the force constant
for the interaction between bond angle φ123 and φ234.

The secular equation can be obtained from the vibration problem and Newton’s
equation of motion [44]:

|GF− Eλ| = 0 (6)

where E is the unit matrix, λ = 4πc2ν2, and ν is the vibration frequency:

ν =

√
λ

2πc
= 1302.8

√
λ (7)

The evolution of the crystal structures of γ-B28 under high pressure (at 1 atm, 10 GPa,
20 GPa, 30 GPa, 40 GPa, 50 GPa, 60 GPa, 70 GPa, 80 GPa, 90 GPa, and 100 GPa) were per-
formed via first principles. The unit cell parameters of γ-boron (a = 5.0426 Å, b = 5.6105 Å,
c = 6.9251 Å) obtained through DFT calculations at ambient pressure were close to the ex-
perimental data reported by Oganov et al. (a = 5.0544 Å, b = 5.6199 Å and c = 6.9873 Å) [3].
Therefore, the structural parameters r, R, and φ under high pressures could be obtained.
Figure 10a displays the decrease in r, R, and φ with pressure up to 100 GPa. Under certain
pressure, the matrix G is a constant matrix because of the known r, R, φ, m, and M. Iterate
repeatedly the force constants fr, fR, frR, frφ, fRφ, and fφ. According to Equations (6) and (7),
the vibration frequency under this pressure could be calculated. Equal the calculated
value to the experimental frequency value to achieve convergence to obtain a set of force
constants under pressure. Moreover, the force constants under pressures could be obtained.
Figure 10b shows the force constants as a function of pressure. All force constants increase
with increasing pressure, except that fφ remains basically unchanged. To verify the accuracy
of the calculated results, another Raman mode was simulated with the calculated force
constants. The result was consistent with the experimentally obtained Ag mode, as shown
in Figure 10c. In conclusion, the abnormal behavior of the B1g Raman mode under pressure
was caused by changes in the crystal structures and force constants. During the process
of pressurization, the reduced bond length and bond angle with increased force constants
made it more difficult for two B12 icosahedrons to drive the two boron atoms of the B2
dumbbell to stretch along the bond direction, resulting in the redshift of the B1g mode with
increasing pressure.
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Furthermore, the unit-cell parameters and relative volume of γ-boron as a function
of pressure could also be obtained through DFT calculations. Figure 11 shows the curves
of the unit-cell parameters (a, b, and c) and relative volume with pressure up to 100 GPa.
The unit-cell parameters (a, b, and c) of γ-Boron varied almost continuously from 1 atm
to 100 GPa. Additionally, the volume of γ-Boron also decreased smoothly with pressure.
Apparently, the compression behavior of the γ-Boron was almost the same at pressures
from 1 atm up to 100 GPa. The continuous variations in the unit-cell parameters, volume
(Figure 11), and bond length, as well as bond angle (Figure 10a), indicated no structural
transformations in γ-boron under high pressure.

Symmetry 2023, 15, x FOR PEER REVIEW 11 of 13 
 

 

Figure 10. (a) the bond length R and r, bond angle 𝜙, and (b) force constants varies as functions of 
pressure. (c) Comparison of the calculated Raman mode and the experimental Ag mode. 

Furthermore, the unit-cell parameters and relative volume of γ-boron as a function 
of pressure could also be obtained through DFT calculations. Figure 11 shows the curves 
of the unit-cell parameters (a, b, and c) and relative volume with pressure up to 100 GPa. 
The unit-cell parameters (a, b, and c) of γ-Boron varied almost continuously from 1 atm 
to 100 GPa. Additionally, the volume of γ-Boron also decreased smoothly with pressure. 
Apparently, the compression behavior of the γ-Boron was almost the same at pressures 
from 1 atm up to 100 GPa. The continuous variations in the unit-cell parameters, volume 
(Figure 11), and bond length, as well as bond angle (Figure 10a), indicated no structural 
transformations in γ-boron under high pressure.  

 
Figure 11. The unit-cell parameters and relative volume of γ-boron as a function of pressure. 

5. Conclusions 
We synthesized γ-boron at HPHT and reported its Raman spectra at pressures up to 

126 GPa at room temperature. The details of the evolution of the Raman spectrum with 
pressure were investigated, especially the Raman modes between 400 cm−1 and 500 cm−1, 
in which some peaks “split” intuitively at 63 GPa. All Raman modes changed continu-
ously with increasing pressure. The Raman mode “splitting” observed at high pressure 
was actually due to the different direction and rate of shift of the two Raman modes B1g 
and B3g under pressure, which resulted in the phenomenon of merging first and then sep-
arating. Then, we proposed a model to explain the above amusing phenomenon. B1g and 
B3g corresponded to the tilts of the B12 icosahedron around the c-axis and a-axis, respec-
tively. The crystal structures of γ-B28 under high pressure were calculated via first princi-
ples. The responses of the force constants to pressures were calculated by the method of 
internal coordinates, which resulted in the redshift of the B1g mode with increasing pres-
sure. However, the influence of pressure on the B3g mode was limited, with only a negligi-
ble blueshift. In addition, the unit-cell parameters (a, b, and c) and the volume of γ-Boron 
varied almost continuously from 1 atm to 100 GPa. The results of the continuous shifts for 
all Raman modes and the unit-cell parameters as well as volume with increasing pressure 
indicated that the γ-boron had no structural transformation under pressures up to 126 
GPa, and no new high-pressure phase was generated. 

Author Contributions: Conceptualization, C.Z. and D.M.; methodology, C.Z., D.M., X.L. and J.W.; 
software, J.W., X.S.; validation, C.Z., D.M. and Z.Z.; formal analysis, Z.Z.; investigation, X.L.; re-
sources, Z.W.; data curation, D.M. and R.D.; writing—original draft preparation, C.Z.; writing—
review and editing, C.Z. and D.M.; visualization, C.Z., D.M. and Z.Z.; supervision, Z.Z.; project 

Figure 11. The unit-cell parameters and relative volume of γ-boron as a function of pressure.

5. Conclusions

We synthesized γ-boron at HPHT and reported its Raman spectra at pressures up
to 126 GPa at room temperature. The details of the evolution of the Raman spectrum
with pressure were investigated, especially the Raman modes between 400 cm−1 and
500 cm−1, in which some peaks “split” intuitively at 63 GPa. All Raman modes changed
continuously with increasing pressure. The Raman mode “splitting” observed at high
pressure was actually due to the different direction and rate of shift of the two Raman
modes B1g and B3g under pressure, which resulted in the phenomenon of merging first and
then separating. Then, we proposed a model to explain the above amusing phenomenon.
B1g and B3g corresponded to the tilts of the B12 icosahedron around the c-axis and a-axis,
respectively. The crystal structures of γ-B28 under high pressure were calculated via first
principles. The responses of the force constants to pressures were calculated by the method
of internal coordinates, which resulted in the redshift of the B1g mode with increasing
pressure. However, the influence of pressure on the B3g mode was limited, with only a
negligible blueshift. In addition, the unit-cell parameters (a, b, and c) and the volume of
γ-Boron varied almost continuously from 1 atm to 100 GPa. The results of the continuous
shifts for all Raman modes and the unit-cell parameters as well as volume with increasing
pressure indicated that the γ-boron had no structural transformation under pressures up to
126 GPa, and no new high-pressure phase was generated.
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