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Abstract: The problem of strong edge coloring discusses assigning colors to the edges of a graph such
that distinct colors are assigned to any two edges which are either adjacent to each other or are
adjacent to a common edge. The least number of colors required to define a strong edge coloring of
a graph is called its strong chromatic index. This problem is equivalent to the problem of assigning
collision-free frequencies to the links between the elements of a wireless sensor network. In this article,
we discuss a novel way of generating new graphs from existing graphs. This graph construction is
known as inflating a graph. We discuss the strong chromatic index of graphs generated by inflating
some common classes of graphs and graphs derived from them. In particular, we consider the cycle
graph, which is symmetric in nature, and graphs such as the path graph and the star graph, which
are not symmetric. Further, we analyze the factors which influence the strong chromatic index of
these inflated graphs.

Keywords: strong chromatic index; strong edge coloring; inflated graphs; wireless sensor networks;
induced matchings

MSC: 05C15; 05C38

1. Introduction

A proper edge coloring of a graph assigns distinct colors to any two edges which are
adjacent to each other such that the color classes thus obtained partition the edge set of
the graph into matchings. We consider a special kind of edge coloring called strong edge
coloring in this article. Two edges e1 and e2 are said to be visible to each other if they are
adjacent to each other or are adjacent to a common edge. The strong edge coloring of a graph
assigns distinct colors to any two edges which are visible to each other. If the subgraph
induced by a subset of E(G) is a matching, the subgraph is called an induced matching.
The color classes generated as result of the strong edge coloring of the graph G partition
the edge set of G into induced matchings. The minimum number of color classes required to
define a strong edge coloring of a graph G is called the strong chromatic index of G and is
denoted by χ′s(G).

1.1. Factors Influencing χ′s(G)

The initial spark which kindled the interest of researchers was the article authored by
Hale [1] which discussed assigning frequencies to transceivers in a wireless sensor network.
This was followed by a significant contribution published by Erdős and Nešetřil [2], who
formally defined the problem. Over the past years, analysis of the parameter χ′s(G) has
focused on various attributes of graph G. Contributions by Lv et al. [3] and Huang et al. [4]
determined the bounds for χ′s(G) based on the maximum degree ∆G of the graph G.
In particular, the article by Huang et al. established an upper bound for χ′s(G) for every
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planar graph with a maximum degree 4. The article by Lv et al. obtained results for the
upper bound of χ′s(G) based on a new attribute called the maximum average degree of
graph G. This article established the proof using a partition of the vertex set of graph G.
The influence of the planar nature of graphs on χ′s(G) was explored in the article [5] by
Chang and Duh, and in the article [6] by Wang et al. The contributions made by Chang
and Duh classified graphs based on their girth and the maximum degree ∆ of the graph.
The results derived by Wang et al. proved that any graph with a maximum degree of 4
can be colored using a maximum of 19 colors by classifying certain vertices and faces as
interior vertices and interior faces. Conjectures on upper bounds of χ′s(G) for bipartite
graphs were explored by Bensmail and Huang. The results by Bensmail et al. [7] showed
that any (3, ∆)− bipartite graph can be colored using 4∆ colors. This bound was improved
to 3∆ in an article [8] published by Huang et al.

1.2. Graph Coloring and Communication Networks

Communication networks can be efficiently modeled using structures called graphs.
Problems of coloring the vertices and edges of a graph are known to have various ap-
plications in the design of networks. The survey of ref. [9] lists the most recent of such
contributions. The problem of coloring the vertices of a graph can be applied to assigning
frequencies in a Wi-Fi network. This was explored by Orden et al. in [10]. Dey et al.
studied the problem of coloring vertices and edges of vague graphs in [11] and included a
discussion on applying the results to solve problems related to traffic flow management.

Recently, there have been contributions which have applied the study performed on
strong edge coloring in the field of wireless sensor networks. A wireless sensor network
can be represented by an undirected simple graph with a vertex for every transceiver and
an edge between two vertices whenever two transceivers are in the transmission range of
each other.

The performance of a wireless sensor network can be affected if there is a primary
or secondary type of interference between two pairs of transceivers. A primary type of
interference is observed between edges (e1, e2) and (e3, e4) if the transceivers denoted by
e1, e2, e3 and e4 are not distinct. A secondary type of interference occurs when the edge
(e1, e4) or (e2, e3) is also part of the network. Barette et al. in their article [12] proved that
the problem of assigning interference-free frequencies to a wireless network is equivalent
to the problem of defining a strong edge coloring for the edges of the graph which models
this network.

1.3. Inflation Graphs—A New Method to Construct Graphs for Modeling Wireless
Sensor Networks

Generating new graphs from a given graph has contributed more toward understand-
ing the properties of graph structures. One such graph structure is a bipartite spanning
graph generated from a given graph G. Edge deletion is employed to generate spanning
bipartite graphs from a given graph. The articles [13,14] discussed the minimum num-
ber of colors to be deleted to generate bipartite spanning subgraphs from cactus chains,
carbon nanotubes and boron nanotubes. Carbon nanotubes (CNT) and boron nanotubes
(BNT) are employed in the field of electronics to build sensors and transistors. In this
paper, we consider the inflation of a graph as a procedure to generate new graphs from
existing graphs. The construction of the inflation graph G′ of a graph G was introduced
by Casselgren and Pedersen, who carried out an investigation of Hadwiger’s conjecture
on inflations of 3-chromatic graphs in their article [15]. Constructing larger graphs from a
given graph have contributed more toward understanding the properties of a given graph
G. One such method was discussed by Hayat et al. in [16]. This method generates new
graphs by replacing a vertex of a given graph by clique of size s, for a positive integer s.
However, the proposed method is different from the method of s-clique extension since
the method of inflating a graph G uses a more specific value of s, namely, the degree of
the vertices of the graph G. In the method of s-clique extension, every vertex is replaced
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by a clique of order s. On the other hand, while inflating a graph, a pendant vertex is not
replaced by a clique of a larger order. Further, any graph G can have only one graph G′

representing its inflated version but the s-clique extension of a graph can generate many
graphs from a given graph based on various values of s.

Definition 1 ([17]). Let V(G) = {u1, u2, . . . , un} denote the vertex set of a graph G without
isolated vertices. Its inflation graph G′ is constructed by replacing each vertex ui of the graph G
by a clique Ai on d(ui) vertices, where d(ui) is the degree of the vertex ui, and replacing each edge
uiuj by an edge vivj where vi ∈ Ai and vj ∈ Aj. Any two different edges of G are replaced by
non-adjacent edges of G′.

Recent contributions on inflation graphs include a study on the square difference la-
beling, cube difference labeling and square multiplicative labeling of inflated triangle snake
graphs [18] and inflated ladder graphs [19] by Thirusangu et al. and the neighborhood-
prime labeling of inflations of some graphs [17] by Palani et al.

1.4. Novelty of the Article

In this paper, we explore the value of the parameter χ′s for graphs obtained by inflating
graphs, such as paths, cycles and star graphs and their derivatives. Similar studies on
analyzing derivatives of path graphs and cycle graphs have been discussed in the literature
before. The article [20] by Hayat et al. discusses a zero forcing number and the propagation
of oriented versions of graphs derived from path graphs and cycle graphs. We aimed
at identifying what factors other than ∆ influence the value of χ′s for inflating graphs
which are derivatives of path graphs, cycle graphs and star graphs. We believe that this
novel approach will contribute more toward modeling wireless sensor networks using
inflated graphs and assigning frequencies to the networks by using the results on the strong
chromatic index of such graphs.

We introduce the following classification of edges in an inflated graph G′ to establish
the various results on the strong chromatic index of inflated graphs. Further, we define the
lower bound for the strong chromatic index of any given inflated graph.

Definition 2. Inflating a vertex of degree d(ui) will yield a clique Ai on d(ui) vertices. This clique
will have (d(ui)

2 ) edges. The edges in such cliques are called clique edges. If the vertex is a pendant
vertex, inflating the vertex will yield a clique on only one vertex without any new edges.

Definition 3. Let ui and uj denote two adjacent vertices connected by an edge e in the graph G.
In the inflated graph G′, the edge e will connect a vertex in the clique Ai and a vertex in the clique
Aj. Such edges are called link edges. If G has |E| edges, the inflated graph G′ has |E| link edges.

Based on the above classifications, we propose the following results.

Theorem 1. Let ui denote a non-pendant vertex of degree, d(ui). Each of the (d(ui)
2 ) clique edges

in this clique Ai is visible to every other clique edge. Further, each clique edge is visible to exactly
d(ui) link edges which connect every vertex of Ai to a corresponding vertex in the cliques generated
by inflating the neighbors of ui.

Proof. Since there is an edge between any two vertices in a clique, any two clique edges
in the clique Ai are either adjacent or are adjacent to a common edge. Hence, any two
clique edges are visible to each other. Further, we know that a link edge e, incident with the
vertex w in the inflated graph G′, connects w to exactly 1 vertex in every clique generated
by inflating the neighbors of ui in G. Thus, all clique edges incident to w are visible to e
since they are adjacent to e. Every other clique edge in Ai is incident with some neighbor of
w. Thus, they are adjacent to the clique edges incident to w, which is incident to e. Thus,
every clique edge is visible to each of the d(ui) link edges of clique Ai.
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Corollary 1. Let v denote a vertex of graph G with maximum degree ∆. The strong chromatic index
of graph G′ obtained by inflating graph G is bounded below by (∆

2) + ∆, where ∆ is the maximum
degree of graph G.

Proof. Let v ∈ E(G) be a vertex with d(v) = ∆. We consider the (∆
2) + ∆ edges in the clique

generated by inflating the vertex v. From Theorem 1, each of these edges is visible to every
other edge. Thus, every edge must be assigned a different color. Hence (∆

2) + ∆ colors are
necessary. We have the inequality, χ′s(G′) ≥ (∆

2) + ∆.

Lemma 1. Let Ai and Aj denote two cliques obtained by inflating two adjacent vertices ui and uj
of graph G. Let e1 and e2 denote two clique edges in inflated graph G′. These edges are visible to
each other if and only if the following hold:

• e1 and e2 belong to the same clique Ai of order d(ui) generated by inflating a vertex ui.
• Alternatively, e1 and e2 belong to two different cliques Ai and Aj and are adjacent to a link

edge e.

Proof. Suppose e1 and e2 belong to the same clique Ai. The edges will be visible to each
other since they will be either adjacent to each other or will be adjacent to a common edge
in the same clique Ai.

Suppose e1 and e2 belong to different cliques Ai and Aj generated by inflating two adjacent
vertices ui and uj. If they are adjacent to a common link edge e between a vertex in clique
Ai and a vertex in clique Aj, they will be visible to each other, by definition.

Conversely, if two clique edges e1 and e2 are visible to each other, they are adjacent to
each other or are adjacent to a common edge. If e1 and e2 are adjacent to each other, they
certainly belong to the same clique Ai since only link edges connect vertices belonging to
cliques generated by inflating adjacent vertices. If they are not adjacent to each other, e1
and e2 can be visible to each other only if they are adjacent to a common clique edge in
clique Ai or if they are adjacent to link edge e between a vertex in clique Ai and a vertex in
clique Aj.

Lemma 2. Let G′ denote the inflated graph of G. Let Ai and Aj denote two cliques generated by
inflating two adjacent vertices ui and uj. Clique edge e1 in Ai and link edge e are visible to each
other if and only if e is a link edge between one vertex in the clique Ai and another vertex in the
clique Aj.

Proof. Suppose ui and uj are adjacent vertices in graph G. Let Ai and Aj denote the cliques
generated by inflating ui and uj. Suppose e is a link edge between vertex w1 in clique Ai
and vertex w2 in clique Aj, and e1 is a clique edge incident with w1 in clique Ai. Then
e1 and e are adjacent. Thus, they are visible to each other. If e1 is not incident to w1, e1 is
adjacent to some clique edge e′, between w1 and one of the end vertices of e1. Thus, e is
visible to e1 since both e and e1 are adjacent to e′.

Conversely, if clique edge e1 and link edge e are visible to each other, they are adjacent
to each other or are adjacent to a common edge by definition. Let w denote the end vertices
of clique edge e1. If they are adjacent to each other, w is incident to the link edge e connecting
w with a vertex in another clique. If they are adjacent to a common edge, this common
edge must be a clique edge between w and another vertex in Ai, which is incident to link
edge e.

Lemma 3. Two link edges e and e′ are visible to each other in inflated graph G′ if and only if they
are two adjacent edges in graph G.

Proof. If e and e′ are adjacent to each other in graph G, they are incident to the same vertex
ui. Thus, they are the link edges each connecting a vertex of clique Ai with vertices in other
cliques obtained by inflating neighbors of ui. The two edges are visible to each other since
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they are adjacent to a common clique edge e1 connecting one end vertex of e in clique Ai
and another end vertex of e′ in the same clique.

Conversely, if e and e′ are visible to each other in G′, they can only be adjacent to a
common clique edge e1 of some clique Ai since no two link edges can be adjacent in the
inflated graph G′. Since they are adjacent to a common clique edge in Ai, they represent
two edges incident to vertex ui in graph G.

Lemma 4. Let u1 and u2 denote two non-adjacent vertices in graph G. The clique edges in cliques
A1 and A2 are not visible to each other.

Proof. Case (i): Let G be a connected graph. Then, there is a path from u1 to u2. Without loss
of generality, let us assume that Let P = u1uku2 denotes one such path. Inflating u1, uk and
u2 will result in cliques A1, Ak and A2 in the inflated graph G’. If e1 and e2 are two clique
edges in cliques A1 and A2, they are not adjacent to a common link edge e and hence they
cannot be visible to each other according to Lemma 1.

Case (ii): Let G be a disconnected graph. If u1 and u2 belong to different components,
the two clique edges A1 and A2 cannot be visible to each other. Supposing that they belong
to the same component of G, an argument similar to the one in Case (i) can be repeated to
establish the correctness of the result.

In the rest of the paper, we denote the vertices of graph G by u1, u2, . . . , un and the
vertices of inflated graph G′ by vk

j,i representing the ith vertex of the kth clique on j vertices.

2. Strong Chromatic Index of Inflations of Path Graphs and Its Derivatives

In this section, we discuss the strong chromatic index of path graphs and two graphs
which are derived from path graphs. Path graphs are one of the simplest forms of graphs
which are both connected and acyclic. A graph G(V, E) exhibits the property of symmetry
if a non-trivial automorphism can be defined on its vertex set V(G). Since the vertices of a
path graph follow a linear order, any automorphism which preserves this order of vertices
can only be trivial. Hence, path graphs are not symmetric in nature.

2.1. Inflation of the Path Graph

Theorem 2. χ′s(G′) = 3 when G′ is obtained by inflating a path on n ≥ 3 vertices is 3.

Proof. Let G denote a path u1u2u3 . . . un on n vertices. If n = 2, G′ is a path on 2 vertices too.
Hence, G′ can be colored using only one color. For n ≥ 3, G contains two pendant vertices
and n− 2 vertices of degree 2. Since ∆ = 2, by Corollary 1, at least (2

2) + 2 = 3 colors are
necessary. The inflated graph G′ is constructed by considering n− 2 cliques of order 2 and
two cliques of order 1. The two pendant vertices u1 and un are replaced by two cliques on
1 vertices v1

1,1 and v2
1,1. The remaining n− 2 vertices are replaced by n− 2 cliques of order

2 denoted by vk
2,1vk

2,2, 1 ≤ k ≤ n− 2. Thus, inflating the path u1u2u3 . . . un−1un results in a
path on 2n− 2 vertices with 2n− 3 edges denoted by

v1
1,1 − v1

2,1 − v1
2,2 − v2

2,1 − v2
2,2 − · · · − vn−2

2,1 − vn−2
2,2 − v2

1,1.

For n ≥ 3, 2n− 3 ≥ 3, we know three colors are sufficient to define a strong edge
coloring of a path containing at least three edges. Hence, we have χ′s(G′) = 3.

2.2. Inflation of the Comb Graph

Definition 4 ([21]). A comb graph on 2n vertices is constructed by joining a single pendant edge
to every vertex of a path on n vertices. It has 2n vertices and 2n− 1 edges.

(Figure 1) shows a comb graph (Figure 1a) and its inflated graph (Figure 1b). Recently,
the labeling of the square graph of comb graphs [21] and k-graceful labeling of comb
graphs [22] were discussed by the research community working on graph theory.
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Figure 1. A comb graph (a) and its inflated graph (b).

Theorem 3. χ′s(G′) = 6 when G′ is obtained by inflating a comb graph on 2n,≥ 3 vertices.

Proof. For n = 2, the comb graph on 4 vertices is a path on 4 vertices. Hence, edges of G′

can be colored using 3 colors as per Theorem 2. For n ≥ 3, there are n pendant vertices,
2 vertices of degree 2 and n− 2 vertices of degree 3 in the graph G. Thus, the inflated comb
graph has n cliques on 1 vertex, 2 cliques on 2 vertices, and n− 2 cliques on 3 vertices. The
existence of a vertex of maximum degree 3 in G can be used to conclude that χ′s(G′) is
bounded below by 6 as per Corollary 1. Next, we show that these 6 colors are sufficient to
color the edges of the inflated comb graph.

The n− 2 vertices of degree 3 denoted by u2, u3, . . . , un−1 are replaced by n− 2 cliques
on 3 vertices. The vertices on these cliques on 3 vertices are denoted by vk

3,1, vk
3,2 and

vk
3,3, 1 ≤ k ≤ n− 2. The n pendant vertices of the graph G are replaced by n one-vertex

cliques. These are denoted by vk
1,1, 1, 2, . . . , n. The 2 vertices of degree 2 of the graph G are

replaced by 2 cliques on 2 vertices each. We denote these vertices by vk
2,1, vk

2,2, k = 1, 2. We
claim that the coloring scheme given in Table 1 colors all edges of the inflated comb graph
G′ using only 6 colors.

Table 1. Coloring scheme to color the edges of an inflated comb graph.

Color Edge Range of k, m

c1 vk
1,1vm

3,1
k = 2, 3, . . . , n− 1;
m = 1, 2, . . . , n− 2

c2 vk
3,1vk

3,3 k = 1, 2, . . . , n− 2

c3 vk
3,1vk

3,2 k = 1, 2, . . . , n− 2

The three other colors can be used to color the edges of the path defined by the
following sequence of vertices,

v1
1,1 − v1

2,1 − v1
2,2 − v1

3,3 − v1
3,2 − v2

3,3 − v2
3,2 . . . vn−2

3,3 − vn−2
3,2 − v2

2,1 − v2
2,2 − vn

1,1

Thus, it is established that the coloring of the edges in the inflated comb graph can be
performed using just six colors.

2.3. Inflation of the Y-Tree Graph

Definition 5. The Y − tree graph is constructed by choosing a vertex v adjacent to a pendant
vertex of a path on n vertices and introducing a new vertex v′ adjacent to v through a new edge
e = vv′ [23].

(Figure 2) shows a Y-tree graph (Figure 2a) and its inflated graph (Figure 2b).
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Figure 2. A Y-tree graph (a) and its inflated graph (b).

Theorem 4. χ′s(G′) = 6 when G′ is obtained by inflating Y-tree graph G on n + 1 vertices.

Proof. Let the n + 1 vertices of the Y-tree graph be denoted by u1, u2, . . . un−1, un, un+1,
with un+1 denoting the newly introduced vertex adjacent to vertex un−1. Hence, there are
n− 3 vertices, u2, u3, . . . un−2 of degree 2 , 3 vertices u1, un, un+1 of degree 1 and one vertex,
un−1 of degree ∆ = 3. By Corollary 1, 6 colors are necessary to color the edges generated by
inflating the vertex un−1. The remaining edges of the inflated Y− tree graph form a path as
described below:

v1
1,1 − v1

2,1 − v1
2,2 − v2

2,1 − v2
2,2 − · · · − vn−2

2,1 − vn−2
2,2 .

From Theorem 2, three colors are sufficient to color the edges of an inflated path graph.
These three colors can be chosen optimally from the colors used so far to complete the
coloring of the edges in G′.

3. Strong Chromatic Index of Inflations of the Cycle Graph and Its Derivatives

In this section, we discuss the strong chromatic index of cycle graphs and two graphs
which are derived from cycle graphs. cycle graphs are one of the simplest examples of
graphs which are regular in nature. Since all vertices of a cycle graph are of degree 2, we
can define a non-trivial automorphism mapping any vertex of the cycle graph to any other
vertex. Hence, cycle graphs are symmetric in nature.

3.1. Inflation of the Cycle Graph

Theorem 5. χ′s(G′) = χ′s(C2n) when G is a cycle on n vertices.

Proof. Since every vertex of a cycle on n vertices is of degree 2, inflated graph G′ will have
n cliques of order 2 and size 1 joined by n edges. Hence, the inflated graph G′ will be a
cycle on 2n vertices. Thus, the edges of G′ can be colored using χ′s(C2n) colors.

3.2. Inflation of the Wheel Graph

Definition 6. The wheel graph Wn is obtained by connecting each vertex of the cycle Cn =
u1u2 . . . unu1 to a common vertex u0 called the apex. It has 2n + 1 vertices and 2n edges.

(Figure 3) shows a wheel graph (Figure 3a) and its inflated graph (Figure 3b). Re-
cently, the distance matrices of wheel graphs with odd vertices were discussed by Bal-
aji et al. [24]. The article by Kapuhennayake and Perera explored the anti-magic labeling of
wheel graphs [25].
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Figure 3. A wheel graph (a) and its inflated graph (b).

Theorem 6. χ′s(G′) = (n
2) + n when G is a wheel graph Wn on n + 1 vertices.

Proof. The inflated wheel graph G′ will have 1 clique on n vertices denoted by v0
n,i where

1 ≤ i ≤ n and n cliques on 3 vertices, denoted by vk
3,i, 1 ≤ k ≤ n, 1 ≤ i ≤ 3. These vertices

u1, u2, . . . , un are inflated into cliques containing three edges connecting vertices denoted
by vk

3,1, vk
3,2 and vk

3,3, 1 ≤ k ≤ n. The apex vertex u0 is inflated into a clique A0 containing n
vertices denoted by v0

n,i, 1 ≤ i ≤ n and (n
2) edges.

Further, the edges connecting vertices on the cycle u1u2 . . . unu1 are replaced by link
edges. Edge uiui+1 is replaced by vi

3,3vi+1
3,2 for all i = 1, 2 . . . n− 1. Edge unu1 is replaced by

vn
3,3v1

3,2.
n edges connecting the apex vertex to n vertices on the cycle are replaced by n edges

connecting the vertices of the clique on n vertices to vertices on the cliques on three vertices.
We denote these edges as follows. Edges u0ui, 1 ≤ i ≤ n are replaced by v0

n,iv
i
3,1, 1 ≤ i ≤ n.

We establish the correctness of the result stated by considering three different values
of n.

Case (i): n = 3
By Corollary 1, a minimum of (3

2) + 3 colors is essential to color the three clique edges
in the clique v0

3,1, v0
3,2 v0

3,3v0
3,1 and the three link edges v0

3,1vk
3,1, k = 1, 2, 3 incident to

the vertices of this clique. We claim that these six colors are sufficient to color the
remaining edges based on the following coloring scheme defined in Table 2.

Table 2. Coloring scheme to color the edges of inflated wheel graph on 4 vertices.

Color Edge

c1 v0
3,1v0

3,3, v3
3,3v1

3,2, v2
3,2v3

3,3

c2 v0
3,1v2

3,2, v3
3,2v3

3,3, v1
3,3v2

3,2

c3 v0
3,2v0

3,3, v1
3,2v1

3,3, v2
3,3v3

3,2

c4 v0
3,1v3

3,1, v1
3,1v1

3,3, v2
3,1v2

3,3

c5 v3
3,1v3

3,3, v1
3,1v1

3,2, v0
3,3v2

3,1

c6 v2
3,1v2

3,2, v3
3,1v3

3,2, v0
3,2v1

3,1

Case (ii): n = 4
By Corollary 1, a minimum of (4

2) + 4 colors are essential to color the edges since there
is one vertex of maximum degree 4. Table 3 defines a coloring scheme demonstrating
that these 10 colors are sufficient to color the remaining edges of G′.
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Table 3. Coloring scheme to color the edges of inflated wheel graph on 5 vertices.

Color Edge

c1 v0
4,1v0

4,2, v3
3,3v2

3,2, v4
3,1v4

3,3, v3
3,1v3

3,3

c2 v0
4,2v0

4,3, v3
3,3v2

3,2, v4
3,1v4

3,2, v1
3,1v1

3,3

c3 v0
4,4v0

4,1, v4
3,3v1

3,2, v2
3,1v2

3,3, v3
3,1v3

3,2

c4 v0
4,3v0

4,4, v3
3,3v4

3,2, v2
3,1v2

3,2, v1
3,1v1

3,2

c5 v4
3,2v4

3,3, v0
4,4v0

4,2, v2
3,2v2

3,3

c6 v1
3,2v1

3,3, v0
4,1v0

4,3, v3
3,2v3

3,3

c7 v4
3,1v0

4,4

c8 v1
3,1v0

4,1

c9 v0
4,2v2

3,1

c10 v0
4,3v3

3,1

Case (iii): n ≥ 5
The apex vertex of the wheel graph has degree n. Therefore, a minimum of (n

2) + n
colors are necessary by Corollary 1. We claim that the remaining edges of G which
are inflated can be colored using no additional colors. Following the convention
established earlier, we observe that the cycle u1u2 . . . unu1 is inflated to form a cycle C
on 2n vertices.

v1
3,2 − v1

3,3 − v2
3,2 − v2

3,3 . . . vn
3,2 − vn

3,3 − v1
3,2

The edges of this cycle are either clique edges or are link edges connecting two clique
edges. These edges are not visible to the edges in the cycle by Lemmas 1 and 2. According
to the result established in [26], χ′s(C2n) = 3 or 4. Hence the cycle edges can be colored
using any of the four colors from the (n

2) colors used to color the edges in the clique.
Consider vertex ui of degree 3 in G. Inflating this vertex generates clique Ai on three

vertices and three edges. One of these edges is part of cycle C and its coloring is well
defined above. The other two edges are visible to exactly three link edges as per Theorem 1.
Two of these edges are the edges in cycle C. The color assigned to the other link edge cannot
be assigned to these two edges since they are visible to each other. However, the remaining
n − 1 link edges incident to the vertices of clique A0 are not visible to these two clique
edges. Hence, two of those colors can be optimally chosen to color these edges. The same
argument can be repeated to the n − 1 vertices of degree 3. Thus, no new colors are
essential to complete the strong edge coloring of the edges in the inflated wheel graph. This
establishes the result that exactly (n

2) colors are sufficient to color all the edges in inflated
graph G′.

3.3. Inflation of the Kite Graph

Definition 7. An (n, t)−kite graph is constructed joining a t−edge path to a vertex of a cycle
Cn = u1u2 . . . unu1. It has order n + t and size n + t.

(Figure 4) shows a kite graph (Figure 4a) and its inflated graph (Figure 4b). Re-
cently, the total edge irregularity of the (n, t)−kite graph was discussed by Winarsih and
Indriati [27].
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Figure 4. A kite graph (a) and its inflated graph (b).

Theorem 7. χ′s(G′) = 6 when G is an (n, t)−Kite graph n + t vertices.

Proof. Let us denote the cycle in the kite graph by u1u2 . . . unu1. There are n+ t− 3 vertices
of degree 2, n− 1 of them lie on the cycle, 1 of them is the terminal vertex of the t− edge
path and the remaining t− 2 of them are on the path which has just a solitary pendant
vertex. Without loss of generality, let us assume that the t−edge path is attached to vertex
u2 of the cycle on n vertices. Vertex u2 is of degree 3. From Corollary 1, a different color is
necessary to color the six edges generated by inflating u2. Three of these six colors can be
chosen optimally to color the edges of the path defined below:

v2
3,2 − v3

2,1 − v3
2,2 · · · − vn−1

2,1 − vn−1
2,2 − vn

2,1 − vn
2,2 − v1

2,1

Further, the edges obtained by inflating the edges of the t−edge path are not visible
to the edges of the path listed above. Hence, no additional colors are necessary. This
establishes the proof that no more than six colors are essential to complete the strong edge
coloring of the edges of the inflated kite graph.

4. Strong Chromatic Index of Inflations of the Star Graph and Its Derivatives

In this section, we examine the strong chromatic index of graphs obtained by inflating
the star graph and two graphs derived from the star graph. Like path graphs, star graphs
are acyclic and connected graphs. They do not exhibit either vertex symmetry or edge
symmetry since only the trivial automorphism can be defined on its vertex set.

4.1. Inflation of the Star Graph

Theorem 8. χ′s(G′) = (n
2) + n when G is the Star graph K1,n on n + 1 vertices.

Proof. Inflating the graph K1,n results in one clique A0 on n vertices and n cliques on
1 vertex. This results in graph G’ having just (n

2) + n edges. Since there is only one vertex
of maximum degree n in G, we observe that the (n

2) + n colors identified as a lower bound
in the Corollary 1 are just sufficient to color the (n

2) + n edges in inflated graph G′.

4.2. Inflation of the Coconut Tree Graph

Definition 8. The coconut tree graph T(m, k) with parameters m and k can be constructed by
identifying one vertex of degree m in the graph K1,m and a pendant vertex of path graph Pk.

(Figure 5) shows a coconut tree graph (Figure 5a) and its inflated graph (Figure 5b).
Extensive research has been carried out on the family of coconut tree graphs by exploring
the aspects of properly even harmonious labeling [28] and equitable irregular coloring [29].

Theorem 9. χ′s(G′) = (m+1
2 ) + m + 1 when G is coconut tree graph T(m, k) on m + k vertices,

m ≥ 2.

Proof. Inflating graph T(m, k) results in one clique A0 on m + 1 vertices, k − 1 cliques
on two vertices and m + 1 pendant vertices. We establish the correctness of the result by
considering the following cases of m and k:
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Figure 5. A coconut tree graph (a) and its inflated graph (b).

Case (i) m ≥ 2, k = 2:
When k = 2, coconut tree graph T(m, 2) generated is the star graph K1,m+1. The result
follows from Theorem 8.
Case (ii) m ≥ 2, k ≥ 3:
By Corollary 1, (m+1

2 ) + m + 1 colors are essential to color the edges of the inflated
graph G′. The other edges of the graph form a path. The three colors required to color
the edges of this path can be chosen optimally from the (m+1

2 ) + m + 1 colors used to
color the edges of the clique on m + 1 vertices. This proves the result.

4.3. Inflation of the Banana Tree Graph

Definition 9. The banana tree graph Bn,m is generated by linking one pendant vertex from n copies
of the star graph K1,m−1 with a single root vertex. There are nm+ 1 vertices and nm edges in banana
tree graph Bn,m. Figure 6 shows a banana tree graph B3,5, and Figure 7 shows its inflated graph.

Figure 6. Banana tree graph B(3, 5).

The family of banana tree graphs has been studied in depth for the properties exhibited
by them in the area of topological indices. Sardar et al. computed topological indices of
the line graphs of banana tree graphs [30] in 2017. Ajmal et al. analyzed the forgotten
polynomial and the forgotten index for the line graphs of banana tree graphs [31] in 2017.
Recently, this family of graphs was explored in the aspect of Peg solitaire games by JH de
Wiljes [32] in 2020.
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Theorem 10. χ′s(G′) = (N
2 ) + N, where N = max.{n, m− 1}, when G is the banana tree graph,

Bn,m−1.

Figure 7. The inflated graph of a banana tree

Proof. Banana tree graph G has one vertex of degree n, n vertices of degree m− 1, n vertices
of degree 2 and nm− 2n pendant vertices. We denote the solitary vertex of degree n by u0
and each of the n vertices of degree m− 1 by ui, 1 ≤ i ≤ n.

Case (i): n ≥ m− 1

Let A0 denote the clique obtained by inflating the vertex u0. By Corollary 1, (n
2) + n

colors are necessary to color the clique edges in A0 and the n link edges connecting vertices
of A0 to cliques of adjacent vertices. Let A1, A2, . . . , An denote the cliques generated by
inflating the n vertices u1, u2, . . . , un, each of degree m− 1. Considering one such vertex u1,
we observe that it is not adjacent to u0. Hence, by Lemma 4, the (n

2) colors used so far are
sufficient to color the (m−1

2 ) edges in clique A1.
Next, we consider the m− 1 link edges incident to the vertices of clique Ai. Since

n ≥ m− 1, the n colors assigned to the link edges incident to the vertices of clique A0 can
be optimally chosen to color these m− 1 edges.

The same argument can be repeated for the remaining n− 1 vertices of degree m− 1
since these n vertices are pairwise non-adjacent and none of them is adjacent to u0. Thus,
the (n

2) colors are sufficient to color the edges in the n cliques of order m− 1 and the link
edges incident to the vertices of these cliques. This coloring scheme covers the inflations
of the nm − 2n pendant vertices. Each of the remaining n vertices of degree 2, which
are pairwise non-adjacent, is inflated to n copies of 1 edge in inflated graph G′. Thus
by Lemma 4, a single color can be assigned to each of these n edges. This color can be
optimally chosen from the (n

2) colors used thus far. Since n ≥ m− 1, the availability of this
color is guaranteed since (n

2) ≥ (m−1
2 ).

Thus, we establish that (n
2) + n colors are sufficient to define a proper strong edge

coloring of the inflated banana tree graph.

Case (ii): n < m− 1

There are n vertices, each having a degree m− 1, the maximum degree amongst the
vertices of the graph. We choose one such vertex u1. By Corollary 1, (m−1

2 )+m− 1 colors are
necessary to color the clique edges in clique A1 and m− 1 link edges between the vertices
in clique A1 and the vertices in the cliques generated by inflating the vertices adjacent to
u1. Since u1 is not adjacent to the remaining n− 1 vertices of degree m− 1, the same set of
(m−1

2 ) + m− 1 colors can be used to define a strong edge coloring of the edges obtained by
inflating these n− 1 vertices. The only vertex of degree n, namely u0, is another vertex not
adjacent with u1. Since n < m− 1, we have (n

2) + n < (m−1
2 ) + m− 1; thus, (n

2) clique edges
in the clique A0 can be colored with the (m−1

2 ) + m− 1 colors introduced thus far. n link
edges incident to n vertices of clique A0 can be colored by optimally choosing a different
color from the colors introduced thus far. Hence, no additional colors are necessary.
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n edges obtained by inflating n vertices of degree 2 can be colored using a similar
procedure described in the previous case.

Thus, we conclude that no additional colors are required. Summing up, we observe
that χ′s(G′) = (N

2 ) + N, where N is the greatest of the two values n and m− 1 when G is
banana tree graph B(n, m− 1).

5. Strong Chromatic Index of Inflation of Complete Bipartite Graphs and Complete
Multipartite Graphs

Theorem 8 deals with a particular case of complete bipartite graphs in which m = 1 or
n = 1. In this section, we discuss the graph obtained by inflating the complete bipartite
graph Km,n, where m, n ≥ 2, and derive its strong chromatic index.The generalized form
of complete bipartite graphs is multipartite graphs, which are used to model probabilistic
neural networks (PNNs), cellular neural networks (CNNs) and Tickysym spiking neural
networks (TSNNs) by Khan et al. in their article [33].

Inflation of a Complete Bipartite Graph

Let G denote a complete bipartite graph Km,n, m, n ≥ 2 with partitions X and Y such
that |X| = m and |Y| = n. Figure 8 shows a complete bipartite graph K2,3 (Figure 8a) and
its inflated graph (Figure 8b).

Figure 8. Complete bipartite graph K2,3 (a) and its inflated graph (b).

Let u1, u2, . . . , um and v1, v2, . . . vn denote the vertices in the partitions X and Y. Each
ui ∈ X has a degree n and each vi ∈ Y has a degree m. The edge set of G has mn edges.
The inflated graph G′ obtained from G has m cliques of order n and size (n

2) and n cliques
of order m and size (m

2 ). Let A1, A2, . . . Am and B1, B2, . . . , Bn denote the cliques replacing
the vertices of sets X and Y in inflated graph G′. Following the nomenclature established
in Section 1, we observe that there are n(m

2 ) + m(n
2) clique edges and mn link edges in the

inflated graph. When m, n = 2, graph G is a cycle on four vertices. Its strong chromatic
index is discussed in Theorem 5. The following theorem determines the strong chromatic
index of bipartite graphs for values of m and n, where at least one of them is greater than 2.

Theorem 11. Let G denote a complete bipartite graph Km,n, where at least one of m or n is greater
than 2 and m 6= n. Then χ′s(G′) = (N

2 ) + N, where N = Max.{n, m}

Proof. We build this proof based on the following two cases.

Case (i): n > m

We consider a vertex ui ∈ X, 1 ≤ i ≤ m. In G′, this vertex is replaced by a clique Ai of
order n and size (n

2). By Corollary 1, we observe that (n
2) colors are necessary to color the

edges in clique Ai. Since X is one of the partitions of bipartite graph G, no vertex ui ∈ X
is adjacent to any of the remaining m− 1 vertices in X. Hence, by Lemma 4, the clique
edges in Ai are not visible to the clique edges in any of the remaining m− 1 cliques Aj, j 6= i.
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Hence, the same set of (n
2) colors are sufficient to color the edges in the other cliques:

Aj, j 6= i.
Next we consider a vertex vj ∈ Y, 1 ≤ j ≤ n. In inflated graph G′, this vertex is

replaced by clique Bj of order m and size (m
2 ). By Corollary 1, (m

2 ) colors are necessary.
Since ui and vj are adjacent in G, there exists link edge e connecting vertex w in clique Ai
to vertex w′ in clique Bj. It can be noted that a clique edge in clique Bj is visible to exactly
n− 1 clique edges in clique Ai. In particular, m− 1 clique edges which are incident to w′

are visible to n− 1 clique edges incident to w. Hence, n− 1 colors of the (n
2) assigned to

clique edges in Ai are not available for coloring m− 1 clique edges in Bj. We observe that

(n
2)− (n− 1) ≥ m− 1.

As long as n > m, the largest value of m is n− 1. Therefore m− 1 = n− 2, which implies

(n
2)− (n− 1) ≥ n− 2.

For all n ≥ 3, we see that exactly one color is available for each of the m− 1 edges.
Hence, whenever n > m, the colors for these m− 1 edges can be chosen from the remaining
(n

2)− (n− 1) colors. Hence, the same set of (n
2) colors is sufficient to color the edges of

clique Bj. Since set Y is one of the partitions of the bipartite graph, vertices vi and vj are
no adjacent. Hence, by Lemma 4, the clique edges in Bj are not visible to the clique edges
in other cliques Bk, k 6= j. Therefore, the same set of (n

2) colors is sufficient to color the
edges in every clique, which replaces the vertices in partition Y without including any
additional colors.

Next, there are n link edges incident to the vertices of clique Ai, and all these n edges
are incident to the (n

2) clique edges in clique Ai and are visible to each other. Therefore, n
new colors are necessary. In addition, these n link edges incident to the vertices of Ai are
not visible to the n link edges incident to the vertices of clique Aj since ui and uj are not
adjacent. Therefore, by Lemma 3, the n colors used to color the link edges incident to the
vertices of the clique Ai can be used to color the remaining (m− 1)n link edges.

Summing up, we observe that (n
2) + n colors are necessary and sufficient to color the

edges of the graph obtained by inflating the complete bipartite graph Km,n.

Case (ii): m > n

The argument for the case when m > n can be extended in a manner similar to Case
(i). The correctness of the result is thus established.

Theorem 12. Let G denote a complete bipartite graph Km,n, where m, n ≥ 2 and m = n. Then
χ′s(G′) = n2.

Proof. Repeating an argument from Theorem 11, (n
2) + n colors are sufficient to color the

edges in each of the n cliques, replacing the vertices of partition X. Considering vertex
vj ∈ Y, we note that it is adjacent to ui ∈ X and hence a clique incident to vertex w′ in
clique Bj is visible to n− 1 edges incident to vertex w in clique Ai.

Case (i): n = 3

For n = m = 3, we observe that only one color used to color the edges in Ai is
available for coloring the two edges in Bj. Hence one extra color is necessary. Repeating
this observation for each of the remaining n− 1 cliques, we note that three additional colors
are necessary. To complete the coloring of these edges, a coloring scheme can be defined by
choosing a second set of (3

2) colors for coloring the edges in clique Bj, 1 ≤ j ≤ 3. Since vj is
not adjacent to any of the other vertices in the partitions Y, the same set of (3

2) colors can
be used for the cliques in the remaining cliques. Summing up, we see that two sets of (3

2)
colors are sufficient to color all the clique edges, and one set of three colors is sufficient for
all of the link edges. Therefore, if G = K3,3, we have χ′s(G′) = 9.

Case (ii): n ≥ 4
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For values of n greater than 3, we observe that (n
2)− (n− 1) ≥ n− 1. Therefore no

extra colors are necessary to color the n− 1 edges incident at w′. However, since the same
set of (n

2) colors is used for coloring all n cliques A1, A2, . . . , An, at least one new color is
necessary for each of the cliques B1, B2, . . . , Bn based on the values of n. Hence, we suggest
an alternate coloring scheme. Under this scheme, we use (n

2) additional colors to color
the edges in each of the n cliques B1, B2, . . . , Bn. Since no two vertices of partition Y are
adjacent to each other, this second set of (n

2) colors is sufficient. Repeating an argument
similar to the one in Theorem 11, we see that n colors are necessary and sufficient to color
all the link edges in inflated graph G′.

Summing up, we see that 2(n
2) + n = n2 colors are necessary and sufficient to complete

a strong edge coloring of the complete bipartite graph Kn,n. Hence, χ′s(G′) = n2.

We observe that the value established by the theorem is the upper bound of the result
conjectured by Brualdi and Massey [34]. A similar argument can be extended for the strong
chromatic index of the inflation of a complete multipartite graph Kn1,n2,...,nk .

6. Comparison of Factors Influencing the Strong Chromatic Index of Inflated Graphs

The construction of inflated graph G′ of given graph G is based on replacing every
vertex vi by a clique on d(vi) vertices where d(vi) denotes the degree of vertex vi. However,
we observe that the lower bound of χ′s(G′) is (∆

2) + ∆ when the graph has a vertex with
maximum degree ∆. For graphs such as paths, cycles, Y-tree graphs and comb graphs,
we observe that the strong chromatic index does not vary as a function of n, the number
of vertices. On the other hand, the values of χ′s(G′) for the wheel graph, the star graph,
the coconut tree graph and the banana tree graph vary as a quadratic function of n. We
tabluate the results in Table 4 obtained to demonstrate this in detail. We attribute this to
the presence of the star graph K1,n as a subgraph of graph G. Inflating a vertex of degree n
in the the star graph K1,n results in a clique containing (n

2) clique edges and n link edges.
Thus, a minimum of (n

2) + n colors is necessary to complete the coloring of the edges in
G′ whenever G has K1,n as its subgraph. Thus, the value of χ′s(G′) varies as a quadratic
function of the number of vertices in the graph.

Table 4. Comparison of the strong chromatic index of various inflated graphs.

Graph G χ′
s(G′) of the Inflated Graph Variation of χ′

s(G)

Path on n ≥ 3 vertices 3 Independent of n

Comb graph on 2n 6 Independent of n
vertices, n ≥ 3 the Inflated graph

Cycle on n vertices χ′s(C2n) Independent of n

Wheel on (n
2) + n Quadratic function

n + 1 vertices of n

Star graph on (n
2) + n Quadratic function

n + 1 vertices of n

Coconut tree graph (m+1
2 ) + m + 1 Quadratic function

on m + k vertices of m + 1

Banana tree graph (N
2 ) + N + 1 Quadratic function

on nm + 1 vertices where N = max{N, m− 1} of N

7. Conclusions

In this paper, we explored the strong chromatic index of graphs generated from existing
classes of graphs using a novel operation called inflation of the graph. We determined the
exact values of χ′s(G) for graphs obtained by inflating popular classes of graphs, such as
paths, cycles, star graphs and their derivatives. The results obtained indicate how the strong
chromatic index of the inflated graph G′, namely χ′s(G′), varies as a quadratic function of n
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whenever K1,n is a subgraph of the parent graph G. We believe that the knowledge of the
exact values of parameter χ′s(G) for various graphs discussed in this paper will contribute
toward the design of interference-free wireless networks, which will accommodate more
transceivers and channels. Future research can be extended by identifying other factors
that influence χ′s for graphs, such as circulant networks, which do not have star graph K1,n
as its subgraph.
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