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Abstract: Skewed probability distributions are important when modeling skewed data sets because
they provide a way to describe the shape of the distribution and estimate the likelihood of extreme
events. Asymmetric probability distributions have the potential to handle and assess problems in
actuarial risk assessment and analysis. To that end, we present a new right-skewed one-parameter dis-
tribution. In this work and for this purpose, a right-skewed probability distribution was derived and
analyzed. The new distribution outperformed the exponential distribution, the Pareto distribution,
the Chen distribution, and others in the field of actuarial risk analysis. Some useful key risk indicators
are considered and analyzed to analyze the risks and for comparison with the competitive model.
Several actuarial risk functions and indicators are evaluated and analyzed using the U.K. insurance
claims data set. The process of risk assessment and analysis was carried out using a comprehensive
simulation. For the purposes of distributional validity, a modified chi-squared type test is presented
and employed in the testing process. The new, modified chi-squared type test that is used is simply
an extension of the Rao–Robson–Nikulin test. In this work, the distributional validity is presented
and analyzed under right-skewed censored and uncensored data sets.

Keywords: characterizations; chi-square type test; insurance data; Rao–Robson–Nikulin; right
censored data; risk analysis; right-skewed models; skewed claims data sets; validation

MSC: 62N01; 62N02; 62E10

1. Introduction

Skewed distributions are important in insurance and the actuarial sciences because
they help insurers and actuaries to understand the frequency and severity of potential
losses. In the insurance industry, loss data are often modeled using a skewed distribution
such as the lognormal distribution, which is commonly used to model losses in areas
such as natural disasters, medical malpractice, and product liability. By using a skewed
distribution, insurers can better estimate the likelihood and potential magnitude of losses,
which is important for pricing policies and when managing risk. For this main purpose,
we present a new asymmetric distribution, called the right-skewed exponential (RSEx)
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distribution, which has high flexibility in terms of its probability density function (PDF)
and its failure rate function (FRF). The RSEx distribution is recommended as an adequate
alternative to the well-known exponential (Ex) distribution.

However, the traditional Ex distribution is a probability distribution that models
the time between events in a Poisson process, where the events occur continuously and
independently at a constant average rate. It is often used in actuarial risk analysis and
insurance due to its simplicity and applicability to various scenarios. It has the crucial
characteristic of being memoryless and it can be considered as the continuous version
of the geometric distribution theory proposed by Kemp [1]. One of the most important
characteristics of exponential distribution is its memoryless property. This means that the
distribution of time to the next event does not depend on how much time has already
passed. This property makes it suitable for modeling scenarios where past history does not
affect the future occurrence of events. The Ex distribution is employed in several different
applications, in addition to the study of Poisson point processes. The Ex distribution is the
only continuous probability distribution with a constant FRF.

The RSEx distribution is very similar to the exponential distribution in regard to some
properties and it has only one parameter. However, the mathematical form of the RSEx
distribution differs from the exponential distribution. Thus, statistical properties such as
moments, function-generating moments, etc., will be different and may need more effort
to derive them. In addition, the parameter range of the new distribution differs from the
parameter range of the exponential distribution. The parameter of the new distribution is θ,
the range of which depends on and is related to the random variable (RV). In this paper,
we do not pay much attention to the theoretical results or to the properties of mathematics
and algebraic derivations. This is because the main objective of the paper is to explore and
illustrate the importance of the new distribution in practice and its significance in the areas
of statistical modeling, as well as in the field of application to actuarial risks. However,
it may be easy to study any probability distribution theoretically, but it is not at all easy
to prove the importance of the new distribution from the practical perspective and from
the point of view of statistical modeling. By studying the statistical literature, we will
find many distributions that are a generalization of the exponential distribution. Most
of these extensions have a large number of parameters (often more than two). However,
the RSEx distribution contains only one parameter; this is the first advantage of the new
distribution, even before it has been studied. The survival function (SF) of the RSEx model
can be expressed as:

Sθ(x) = log(x− θ + e)exp
[
−
(

ex−θ − 1
)]∣∣∣x≥θ , (1)

where e is the base for the natural log. The corresponding PDF of the RSEx can be written as:

fθ(x) = exp
[
−
(

ex−θ − 1
)][

log(x− θ + e)ex−θ − 1
x− θ + e

]
|x>θ . (2)

The cumulative distribution function (CDF) corresponding to (1) can be expressed as
Fθ(x) = 1− Sθ(x). While the Ex distribution achieves the relationship Pr (T >
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ing, financial, insurance, and regulatory sectors frequently rely on it. The FRF represents 
the frequency with which an engineered system or component fails, expressed in terms of 

+ t|T >
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) = Pr (T > t) = eθt ∀ t ≥ 0, the memoryless capacity does not exist with the RSEx
model, where Pr (T >
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A special section is devoted to the characterization of the RSEx distribution: (i) based

on two truncated moments and (ii) in terms of the FRF. For characterization (i), the CDF does
not need to have a closed form. Characterizations (i) and (ii) will be presented in Section 2.
The FRF, which is sometimes referred to as the danger rate, solely relates to broken objects.
It is essential when creating secure software applications and the engineering, financial,
insurance, and regulatory sectors frequently rely on it. The FRF represents the frequency
with which an engineered system or component fails, expressed in terms of failures per
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unit of time, and is often used in reliability engineering. The failure rate of a system usually
depends on time. The FRF of the RSEx can be expressed as:

hθ(x) = ex−θ − [log(x− θ + e)(x− θ + e)]−1. (3)

Recently, actuaries have analyzed some actual insurance data using several new continu-
ous distributions (see, for example, Hamed et al. [2], Shrahili et al. [3], and Mohamed et al. [4–6].
The skewness of the insurance data sets can be left, right, or right with heavy tails. In this
study, we describe how a skewed U.K. insurance claims data set may be described using
the flexible continuous asymmetric heavy-tailed RSEx distribution. Despite its enormous
potential, using U.K. skewed insurance claims data is tricky. Moreover, identifying its
quality and calculating the number of incomplete or missing observations represent the
biggest challenge (see Stein et al. [7], Hogg and Klugman [8], Lane [9], and Ibragimov and
Prokhorov [10] for more details).

To model insurance payment data, and more specifically, to model huge insurance claim
payment data, many research studies have used the Pareto and lognormal distributions.
Several academics have employed a modified Pareto distribution (see Beirlant et al. [11]).

Usually, only one number is used to describe the level of risk exposure. These risk
exposure levels, sometimes known as key risk indicators (KRIs), are unmistakably the
actuarial functions of a certain model that are used in insurance, actuarial science, and
financial risk analysis for portfolios and securities. Actuaries and risk managers can learn
from such KRIs to identify how exposed a company is to various dangers. Value-at-risk
(VAR), conditional-value-at-risk (CVAR), tail variance (TV), tail-value-at-risk (TVAR), and
tail mean-variance (TMV) are just a few of the KRIs that can be taken into account. In
particular, the VAR is a quantile of the distribution of total losses. Actuaries and risk
managers typically focus on using the VAR indicator to show the probability of a poor
result at a specific probability/confidence level (see Artzner [12] and Figueiredo et al. [13]
for more details).

The process of assessing the actuarial risks or other risks, of course, requires validation
testing from another aspect of the analysis. This validation testing can be performed
through the well-known goodness-of-fit tests or by presenting a new or at least modified
goodness-of-fit test. In this work, the Barzilai–Borwein (BB) algorithm is used for this
purpose. The construction of the Rao–Robson–Nikulin (RRNU) statistic for the RSEx model
under uncensored case conditions is presented in detail; a simulation study for assessing
the RRNU statistics under uncensored case conditions is performed. Four real-world data
application scenarios are presented under uncensored case conditions: the first uncensored
data set comprises reliability data on carbon fibers, the second uncensored data set is of
the heat exchanger tube crack data, the third uncensored data set concerns the various
strengths of glass fibers, and the fourth uncensored data set comprises gene-based breast
cancer data. Moreover, the construction of the RRNU statistic for the RSEx model under
censored case conditions is presented in detail, and a simulation study for assessing the
RRNU statistics under censored case conditions is presented. Four censored real-world
data applications are analyzed under censored case conditions: the first one comprises data
on cancer of the lung, the second data set concerns capacitor reliability data, the third data
set is on aluminum cells under reduction conditions, and the fourth data set comprises
head and neck cancer data. In this paper, the RSEx distribution is examined from a different
angle. Using four different applications and a broad collection of simulation experiences,
we dealt with the numerous theoretical and applied aspects. We have not overlooked
the theory of statistical hypothesis testing and distributional verification in this context;
to prove it, we provided eight examples through study and analysis, four of which used
complete data sets and four of which used censored data sets. Moreover, two different
ways to characterize the RSEx distribution are discussed herein, such as characterization
using two truncated moments and characterization using the FRF. The innovations of this
study can be highlighted as follows:
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I. We present a new right-skewed one-parameter distribution, which can be consid-
ered as an alternative to the Chen distribution, Pareto type II (PaII) distribution,
and generalized gamma (GG) distribution.

II. We analyze an actuarial data set with the new model as well as with some compet-
ing models, such as the Chen distribution, PaII distribution, and GG distribution
due to certain risk indicators.

III. We present a new type test for uncensored data sets, with four applications for
uncensored distributional validation.

IV. We present a new, modified type test for censored data sets, with examples of
censored distributional validation.

V. The new model is characterized by a probability density function that is more
flexible than the probability density functions of its competing distributions; the
research indicated that it can be nominated as an alternative distribution.

VI. The new failure rate function includes many forms suitable for modeling real-world
data in various engineering, medical, and other fields, and nine examples have
been presented to support this finding.

2. Graphical Presentation and Some Mathematical Properties
2.1. Graphical Presentation

In probability theory, the concept of symmetry refers to the shape of a probability
distribution. A symmetric probability distribution is one in which the left and right sides of
the distribution are mirror images of each other. In other words, if a vertical line is drawn
at the center of the distribution, the left and right sides of the distribution will be identical.
The most well-known example of a symmetric distribution is normal distribution, which
is often used in statistics to model many real-world phenomena. A normal distribution
has a bell-shaped curve, with the mean and median located at the center of the curve.
Because the normal distribution is symmetric, the mean, median, and mode are all the
same. However, not all probability distributions are symmetric. Some distributions are
asymmetric, meaning that they do not have mirror-image left and right sides. Asymmetric
distributions are often referred to as skewed distributions. Skewed distributions also
have important applications in probability theory, as discussed in previous papers. In this
subsection, we present a graphical study of the new RSEx distribution from two different
perspectives. The first is a graphical study of the new density function, to explore the
flexibility of the new distribution. The second is a graphical study of the new failure rate
function, to explore the flexibility and importance of the new distribution. It should be
noted that the importance of the new distributions depends on several factors, including
these two factors. Figure 1 shows some possible PDF plots of RSEx distributions for selected
parameter values, while Figure 2 shows some possible FRF plots of RSEx distributions for
selected parameter values.

Based on Figure 1, it can be seen that the RSEx distribution has an asymmetric heavy
tail on the right and that the distribution always has one peak. Based on Figure 2, it is
clear that the FRF of the RSEx distribution shows important shapes and demonstrates new
patterns that are not found in the Ex distribution, including the monotonically increasing
FRF, J-FRF (constant–increasing FRF), and bathtub-FRF (decreasing–constant–increasing
FRF). The diversity in the forms included in the densities and the corresponding failure
rates represent one of the most important aspects that show the importance of the new
distribution and its high level of flexibility.
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2.2. Mathematical Properties
2.2.1. Asymptotics for CDF, PDF, and FRF

The importance of asymptotic properties lies in the fact that they allow us to make
statistical inferences using large sample sizes. Asymptotic results provide valuable informa-
tion about the behavior of a statistical estimator or test statistic as the sample size increases,
and this information can then be used to derive important statistical properties and make
inferences regarding the population. The asymptotics of CDF, PDF, and FRF for RSEx(θ) as
x → θ+ are given by:

F(x) ∼ x− θ, f (x) ∼ 1, h(x) ∼ 1
1− x + θ

.

The asymptotics of CDF, PDF, and FRF for RSEx(θ) as x → +∞ are given by:

1− F(x) ∼ e−ex
log(x), f (x) ∼ e−ex

log(x), h(x) ∼ 1.

Asymptotic theory is used to approximate the distribution of statistical estimators and
test statistics when the sample size grows very large. This allows for an approximation of
the exact distribution of the statistic, which may otherwise be difficult to derive.

2.2.2. Moments

Let X ∼ RSEx(θ); then, the CDF of Y = X− θ is given by:

FY(
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The nth moment of Y is given by:

E(Yn) = n
∫ +∞

0
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The last integral can be obtained numerically:
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ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 

Theorem 1. Let (ꙍ, 𝐹, 𝑃) be a given probability space and let 𝐻[ , ] = [𝑑, 𝑒] be an interval for 
some 𝑑 < 𝑒 (𝑑 = − + ∞, 𝑤ℎ𝑒𝑛 𝑒 = +∞ might also be allowed). 
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The last integrals can be obtained numerically. Finally,

E(Xn) = E(Y− θ) =
n

∑
k=0

(
n
k

)
(−θ)kE

(
Yn−K

)
.

3. Characterization Results
3.1. Characterizations Based on Two Truncated Moments

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It
offers robustness, facilitates parameter estimation, enables distributional modeling, aids in
risk assessment, supports hypothesis testing, and assists in model selection and goodness-
of-fit evaluations. These mathematical properties make truncated moments a powerful tool
for analyzing and interpreting data that are subject to truncation or fall within a restricted
interval. In this subsection, we characterize the RSEx distribution based on a simple re-
lationship between two truncated moments. The first characterization applies a theorem
developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result holds just
as well when the H[d,e] is not a closed interval. This characterization is stable in the sense of
weak convergence (see Glanzel [15]).

Theorem 1. Let (ω, F, P) be a given probability space and let H[d,e] = [d, e] be an interval for
some d < e (d = −+ ∞, when e = +∞ might also be allowed).

Let X : ω→ H[d,e] be a continuous random variable (CRV), with the distribution function
F, and let Q and h be two real functions defined on H[d,e], such that:

E[Qθ(X) | X ≥ x] = E[hθ(X) | X ≥ x]Gθ(x)
∣∣∣x∈H[d,e]

,

is defined with a real function, G. Assume that Q(·), h(·) ∈ C1
(

H[d,e]

)
, G ∈ C2

(
H[d,e]

)
, and F

is twice the continuously differentiable and strictly monotone function on the set H[d,e]. Finally,
assume that the equation Gh = Q has no real solution in the interior of H[d,e]. Then, F is uniquely
determined by the functions Q(·), h(·) and G(·), particularly:

F(x) =
∫ x

a
C
∣∣∣∣ G ′(u)
G(u)h(u)−Q(u)

∣∣∣∣exp(−
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we present a new asymmetric distribution, called the right-skewed exponential (RSEx) 
distribution, which has high flexibility in terms of its probability density function (PDF) 
and its failure rate function (FRF). The RSEx distribution is recommended as an adequate 
alternative to the well-known exponential (Ex) distribution. 

However, the traditional Ex distribution is a probability distribution that models the 
time between events in a Poisson process, where the events occur continuously and inde-
pendently at a constant average rate. It is often used in actuarial risk analysis and insur-
ance due to its simplicity and applicability to various scenarios. It has the crucial charac-
teristic of being memoryless and it can be considered as the continuous version of the 
geometric distribution theory proposed by Kemp [1]. One of the most important charac-
teristics of exponential distribution is its memoryless property. This means that the distri-
bution of time to the next event does not depend on how much time has already passed. 
This property makes it suitable for modeling scenarios where past history does not affect 
the future occurrence of events.  The Ex distribution is employed in several different ap-
plications, in addition to the study of Poisson point processes. The Ex distribution is the 
only continuous probability distribution with a constant FRF. 

The RSEx distribution is very similar to the exponential distribution in regard to some 
properties and it has only one parameter. However, the mathematical form of the RSEx 
distribution differs from the exponential distribution. Thus, statistical properties such as 
moments, function-generating moments, etc., will be different and may need more effort 
to derive them. In addition, the parameter range of the new distribution differs from the 
parameter range of the exponential distribution. The parameter of the new distribution is 𝜃, the range of which depends on and is related to the random variable (RV). In this paper, 
we do not pay much attention to the theoretical results or to the properties of mathematics 
and algebraic derivations. This is because the main objective of the paper is to explore and 
illustrate the importance of the new distribution in practice and its significance in the areas 
of statistical modeling, as well as in the field of application to actuarial risks. However, it 
may be easy to study any probability distribution theoretically, but it is not at all easy to 
prove the importance of the new distribution from the practical perspective and from the 
point of view of statistical modeling. By studying the statistical literature, we will find 
many distributions that are a generalization of the exponential distribution. Most of these 
extensions have a large number of parameters (often more than two). However, the RSEx 
distribution contains only one parameter; this is the first advantage of the new distribu-
tion, even before it has been studied. The survival function (SF) of the RSEx model can be 
expressed as: 𝑆 (𝓍) = 𝑙𝑜𝑔(𝓍 − 𝜃 + 𝑒) 𝑒𝓍𝑝 − 𝑒𝓍 − 1 |𝓍 , (1)

where 𝑒 is the base for the natural log. The corresponding PDF of the RSEx can be written 
as: 𝑓 (𝓍) = 𝑒𝓍𝑝 − 𝑒𝓍 − 1 𝑙𝑜𝑔(𝓍 − 𝜃 + 𝑒) 𝑒𝓍 − 1𝓍 − 𝜃 + 𝑒 |𝓍 . (2)

The cumulative distribution function (CDF) corresponding to (1) can be expressed as 𝐹 (𝓍) = 1 − 𝑆 (𝓍). While the Ex distribution achieves the relationship Pr (𝒯 > 𝓈 + 𝑡|𝒯 >𝓈) =  Pr (𝒯 > 𝑡) = 𝑒   ∀  𝑡 ≥ 0 , the memoryless capacity does not exist with the RSEx 
model, where Pr (𝒯 > 𝓈 + 𝑡|𝒯 > 𝓈) = 𝑙𝑜𝑔(𝓈 )(𝓈 + 𝑡 − 𝜃 + 𝑒) 𝑒𝓍𝑝 𝑒𝓈 − 𝑒𝓈 ≠  Pr (𝒯 > 𝑡). 

A special section is devoted to the characterization of the RSEx distribution: (i) based 
on two truncated moments and (ii) in terms of the FRF. For characterization (i), the CDF 
does not need to have a closed form. Characterizations (i) and (ii) will be presented in 
Section 2. The FRF, which is sometimes referred to as the danger rate, solely relates to 
broken objects. It is essential when creating secure software applications and the engineer-
ing, financial, insurance, and regulatory sectors frequently rely on it. The FRF represents 
the frequency with which an engineered system or component fails, expressed in terms of 

(u)) du,
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′ = G ′ h
G h−Q and C is the normalization

constant, such that
∫

H[d,e]
dF = 1.

Proposition 1. Suppose the RV X : ω→ (θ,+∞) is continuous, and assume:

hθ(x) =
{

log(x− θ + e)− (x− θ + e)−1e−(x−θ)
}−1

,

and:
Qθ(x) = hθ(x)exp

{
1− e(x−θ)

}
for x > θ. Then, the density of X is given in (2) if and only if Gθ(x) is defined in Theorem 1 as:

Gθ(x) =
1
2

exp
{

1− e(x−θ)
}
|x>θ .

Proof. If X has the new PDF in (2), then:

(1− F(x))E[hθ(X) | X ≥ x] = exp
{
−
[
e(x−θ) − 1

]}
|x>θ ,

and:
(1− F(x))E[Qθ(X) | X ≥ x] =

1
2

exp
{
−2
[
e(x−θ) − 1

]}
|x>θ ,

and finally:

Gθ(x)hθ(x)−Qθ(x) = −1
2

hθ(x)exp
{
−
[
e(x−θ) − 1

]}
< 0|x>θ .

Conversely, if G takes the above form, then:
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′(x) =
G ′θ(x)hθ(x)

Gθ(x)hθ(x)−Qθ(x)
= e(x−θ),

and hence:
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(x) = e(x−θ), x > θ.

In view of Theorem 1, X has PDF (2). �

Corollary 1. If X : ω→ (θ,+∞) is a CRV and hθ(x) is as in Proposition 1, therefore, X has the
new PDF in (2) if, and only if, there exist two functions, Q(·) and G(·), as defined in Theorem 1,
and satisfying the following first-order differential equation:

1
hθ(x)Gθ(x)−Qθ(x)

G ′θ(x)hθ(x) = ex−θ .

Corollary 2. The general solution of the above differential equation is:

Gθ(x) = exp
{[

e(x−θ) − 1
]}[
−
∫

e(x−θ)exp
{
−
[
e(x−θ) − 1

]}Qθ(x)
hθ(x)

+ D
]

,

where D is a constant.

3.2. Characterization Results Based on FRF

The FRF is a mathematically important characterization found in survival analysis,
providing a comprehensive understanding of the risks of events over time. Its mathematical
properties and interpretations facilitate the analysis, modeling, and prediction of time-to-
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event data in various fields, including medical research, engineering, economics, and social
sciences. The FRF, hF, of a twice-differentiable distribution function, F, with density f ,
satisfies the following trivial first differential equation:

f ′(x)
f (x)

=
h′F(x)
hF(x)

− hF(x).

As we mentioned in our previous works, for many univariate continuous distributions,
this is the only characterization based on FRF. Proposition 2, presented below, provides a
non-trivial characterization of RSEx distribution.

Proposition 2. Suppose X : ω→ (θ,+∞) is a CRV. The density of X is (2) if, and only if, the
differential equation holds:

h′F(x)− hF(x) =
(x− θ + e + 1)log(x− θ + e) + 1

[(x− θ + e)log(x− θ + e)]2
, x > θ,

with the initial condition, hF(θ) =
e−1

e .

Proof. This is straightforward and, hence, is omitted. �

4. The KRIs
4.1. The VAR

The VARq indicator is a widely used measure in financial risk management and has
numerous applications in actuarial risk analysis and insurance. The VARq provides an
estimate of the potential loss that an institution or portfolio may experience within a given
confidence level over a specific time horizon. In actuarial risk analysis, VARq is used
to assess the potential downside risk of insurance portfolios. It helps actuaries and risk
managers to quantify the likelihood and severity of losses that could be incurred by an
insurance company, due to various factors such as natural disasters, accidents, or other
unforeseen events. The VaR of the loss RV X at the 100q% level, say, VARq(X) or π(q), is
the 100q% quantile (or percentile) of the distribution of X. Then, we have:

Pr
{

X > Qu

∣∣∣Qu = F−1
θ (x)

}
=


1%|q=99%
5%|q=95%
...

. (4)

Insurance companies often have large portfolios comprising various policies and
contracts. VAR allows actuaries to assess the overall risk exposure of the portfolio by
estimating the potential losses within a specific confidence level. This information is
crucial for setting appropriate reserves, determining premiums, and ensuring the financial
stability of the company (see Wirch [16]). Actuaries use VAR to evaluate the effectiveness
of risk mitigation strategies. By analyzing the impact of different risk-reducing measures,
such as the diversification of portfolios, reinsurance arrangements, or hedging strategies,
actuaries can assess their potential to lower the VAR and improve the overall risk profile of
the company.
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4.2. The TVAR

The TVAR, at a certain 100q% confidence level (say, TVARq(X)), refers to the expected
losses, given that the total losses exceed the 100q% of Z. Then, the TVARq(X) can be
expressed as:

TVARq(X) = E(X|X > π(q)) =

∫ +∞
π(q) x fθ(x)dx

1− Fθ(π(q))
=

1
1− q

∫ +∞

π(q)
x fθ(x)dx. (5)

Moreover, the TVARq(X) can also be expressed as:

TVARq(X) = VARq(X) + l(VARq(X)), (6)

where l(VARq(X)) refers to the function of the mean excess losses (ELq(X)), which were
evaluated at the 100q%th quantile. Therefore, TVARq(X) is usually larger than the value
of the corresponding VARq(X) by the amount of average excess of all those losses that
exceed the ELq(X) value. The TVARq is a valuable tool for quantifying and managing
risks in insurance portfolios. It helps insurers to understand the potential magnitude
of losses in extreme scenarios and assists them in setting risk limits and diversification
strategies. Insurers often transfer a portion of their risks to reinsurers. The TVAR can aid
in determining the appropriate level of reinsurance coverage. This enables insurers to
evaluate the potential losses beyond the VaR threshold and negotiate reinsurance contracts
accordingly (see Wirch [16], Tasche [17], and Acerbi and Tasche [18] for more details).

4.3. The TV

The TV indicator is a measure commonly used in actuarial risk analysis and insurance
to assess the risk associated with extreme events or tail risks. It provides a quantification of
the volatility or variability of losses that occur beyond a certain threshold or percentile. The
TV indicator calculates the variance of losses that exceed a specified threshold. It focuses
on the tail-end of the loss distribution, where rare and severe events occur. By considering
only the extreme losses, the tail variance indicator provides a more accurate assessment of
the potential losses in extreme scenarios. The TV risk indicator TVq(X) can be expressed as:

TVq(X) = E
(

X2|X > π(q)
)
− [TVARq(X)]2. (7)

The TV indicator helps in evaluating the potential losses associated with extreme
events, such as natural disasters or large-scale accidents. It provides insurers and actuaries
with a measure by which to define the financial impact of these rare events, allowing them
to assess the adequacy of their risk management strategies.

4.4. The TMV

The TMV risk indicator is a statistical measure used in actuarial risk analysis and
insurance to assess the risks associated with extreme events, particularly those in the tails
of the distribution. It combines the concepts of mean and variance to provide a more
comprehensive measure of risk in the tails of a distribution. In traditional mean-variance
analysis, the focus is on the mean and variance of the distribution. However, this approach
may not capture the risks associated with extreme events, such as catastrophic losses in
terms of insurance. The TMV indicator addresses this limitation by incorporating the tail
behavior of the distribution (see Acerbi and Tasche [18] for more details). The TMV risk
indicator can then be expressed as:

TMVq(X, ς) = TVARq(X) + ςTVq(X)
∣∣0<ς<1. (8)

Then, for any LRV, TMVq(X, ς) > TVq(X), and, for ς = 0, TMVq(X) = TVARq(X).
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5. Maximum Likelihood Risk Assessment

In this section, we consider the maximum likelihood estimation (MLE) for calcu-
lating the KRIs. The quantities of the KRIs are estimated using N = 1000 with differ-
ent sample sizes (n = 50, 150, 300, 500) and their corresponding confidence levels (CLs)
(q = (70%, 75%, 80%, 85%, 90%, 99%)). All results of the risk analysis are reported in Table 1
(n = 50), Table 2 (n = 150), Table 3 (n = 300), and Table 4 (n = 500). Table 1 gives the five
KRIs under the influence of artificial data for n = 50. Table 2 lists the five KRIs under the
influence of artificial data for n = 150. Table 3 lists the five KRIs under the influence of
artificial data for n = 300. Table 3 lists the five KRIs under the influence of artificial data for
n = 500. Based on Tables 1–4, the following results can be highlighted:

• VARq(X), TVARq(X), and TMVq(X) increase when q increases, for all sample sizes
and initial parameter values.

• TVq(X) and ELq(X) decrease when q increases, for all sample sizes and initial param-
eter values.

• For n = 50|6 VARq (X) ∈ (6.92807, 7.82418). For n = 50|6 TVARq(X) ∈ (7.25189,
7.97182). For n = 50|6 TMVq(X) ∈ (7.28452, 7.98036). However, TVq(X) started with
0.06527 and ended with 0.01708, while ELq(X) started with 0.32382 and ended with
0.14764. For n = 50|100 VARq(X) ∈ (100.92807, 101.82418).

• For n = 50|100 TVARq(X) ∈ (101.25189, 101.97182). For n = 50|100 TMVq(X) ∈
(101.28452, 101.9803). However, TVq(X) started with 0.06527 and ended with 0.01708,
while ELq(X) started with 0.32382 and ended with 0.14764.

• For n = 150|6 VARq(X) ∈ (6.90866, 7.80478). For n = 150|6 TVARq(X) ∈ (7.23249,
7.95226). For n = 150|6 TMVq(X) ∈ (7.26512, 7.96206). However, TVq(X) started with
0.06527 and ended with 0.0196, while ELq(X) started with 0.32382 and ended with
0.14748. For n = 150|100 VARq(X) ∈ (100.90846, 101.80457).

• For n = 150|100 TVARq(X) ∈ (101.23228, 101.95221). For n = 150|100 TMVq(X) ∈
(101.26491, 101.96075). However, TVq(X) started with 0.06527 and ended with 0.01708,
while ELq(X) started with 0.32382 and ended with 0.14764.

• For n = 300|6 VARq(X)∈ (6.9033, 7.79941). For n = 300|6 TVARq(X)∈ (7.22712, 7.9469).
For n = 300|6 TMVq(X) ∈ (7.25975, 7.95669). However, TVq(X) started with 0.06527
and ended with 0.0196, while ELq(X) started with 0.32382 and ended with 0.14748.

• For n = 300|100 VARq(X) ∈ (100.90343, 101.79954). For n = 300|100 TVARq(X)
∈ (101.22725, 101.94718). For n = 300|100 TMVq(X) ∈ (101.25988, 101.95572). How-
ever, TVq(X) started with 0.06527 and ended with 0.01708, while ELq(X) started with
0.32382 and ended with 0.14764.

• For n = 500|6 VARq(X) ∈ (6.90130, 7.79742). For n = 500|6 TVARq(X) ∈ (7.22513,
7.9449). For n = 500|6 TMVq(X) ∈ (7.25776, 7.9547). However, TVq(X) started with
0.06527 and ended with 0.0196, while ELq(X) started with 0.32382 and ended with 0.14748.

• For n = 500|100 VARq(X) ∈ (100.90134, 101.79745). For For n = 500|100 TVARq(X)
∈ (101.22516, 101.94509). For n = 500|100 TMVq(X) ∈ (101.2578, 101.95364). How-
ever, TVq(X) started with 0.06527 and ended with 0.01708, while ELq(X) started with
0.32382 and ended with 0.14764.

• It is clear that the results of some actuarial risk assessments have stabilized with an
increase in the sample size. For example:

(1) TVq(X) started with 0.06527 and ended with 0.01708 for all sample sizes and
θ̂ = 100.

(2) ELq(X) started with 0.32382 and ended with 0.14764 for all sample sizes and
θ̂ = 100.
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Table 1. KRIs under artificial data for n = 50.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

q↓θ→ 6
70% 6.92807 7.25189 0.06527 7.28452 0.32382
75% 7.00591 7.30899 0.05866 7.33832 0.30308
80% 7.09275 7.37413 0.05195 7.40011 0.28138
85% 7.19364 7.45161 0.04497 7.47409 0.25796
90% 7.31929 7.55058 0.03742 7.56929 0.23129
95% 7.50127 7.69838 0.02843 7.7126 0.19711
99% 7.82418 7.97182 0.01708 7.98036 0.14764

q↓θ→ 0.9
70% 1.82807 2.15189 0.06527 2.18452 0.32382
75% 1.90591 2.20899 0.05866 2.23832 0.30308
80% 1.99275 2.27413 0.05195 2.30011 0.28138
85% 2.09364 2.35161 0.04497 2.37409 0.25796
90% 2.21929 2.45058 0.03742 2.46929 0.23129
95% 2.40127 2.59838 0.02843 2.6126 0.19711
99% 2.72418 2.87182 0.01708 2.88036 0.19711

q↓θ→ 2.5
70% 3.42807 3.75189 0.06527 3.78452 0.32382
75% 3.50591 3.80899 0.05866 3.83832 0.30308
80% 3.59275 3.87413 0.05195 3.90011 0.28138
85% 3.69364 3.95161 0.04497 3.97409 0.25796
90% 3.81929 4.05058 0.03742 4.06929 0.23129
95% 4.00127 4.19838 0.02843 4.2126 0.19711
99% 4.32418 4.47182 0.01708 4.48036 0.14764

q↓θ→ 100
70% 100.92807 101.25189 0.06527 101.28452 0.32382
75% 101.00591 101.30899 0.05866 101.33832 0.30308
80% 101.09275 101.37413 0.01717 101.38272 0.28138
85% 101.19364 101.45161 0.04497 101.47409 0.25796
90% 101.31929 101.55058 0.03742 101.56929 0.23129
95% 101.50127 101.69838 0.02842 101.71259 0.19711
99% 101.82418 101.97182 0.01708 101.98036 0.14764

Table 2. KRIs under artificial data for n = 150.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

q↓θ→ 6
70% 6.90866 7.23249 0.06527 7.26512 0.32382
75% 6.98651 7.28959 0.05866 7.31892 0.30308
80% 7.07335 7.35473 0.05195 7.3807 0.28138
85% 7.17424 7.4322 0.04497 7.45469 0.25796
90% 7.29989 7.53118 0.03742 7.54989 0.23129
95% 7.48187 7.67898 0.02843 7.6932 0.19711
99% 7.80478 7.95226 0.0196 7.96206 0.14748

q↓θ→ 0.9
70% 1.8082 2.13202 0.06527 2.16466 0.32382
75% 1.88604 2.18912 0.05866 2.21845 0.30308
80% 1.97288 2.25427 0.05195 2.28024 0.28138
85% 2.07378 2.33174 0.04497 2.35423 0.25796
90% 2.19942 2.43071 0.03742 2.44942 0.23129
95% 2.3814 2.57852 0.02843 2.59273 0.19711
99% 2.70432 2.85196 0.01708 2.8605 0.14764
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Table 2. Cont.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

q↓θ→ 2.5
70% 3.40877 3.73259 0.06527 3.76523 0.32382
75% 3.48662 3.7897 0.05866 3.81903 0.30308
80% 3.57346 3.85484 0.05195 3.88081 0.28138
85% 3.67435 3.93231 0.04497 3.9548 0.25796
90% 3.79999 4.03129 0.03742 4.04999 0.23129
95% 3.98198 4.17909 0.02843 4.19331 0.19711
99% 4.30489 4.45253 0.01708 4.46107 0.14764

q↓θ→ 100
70% 100.90846 101.23228 0.06527 101.26491 0.32382
75% 100.9863 101.28938 0.05866 101.31871 0.30308
80% 101.07314 101.35452 0.01717 101.36311 0.28138
85% 101.17404 101.43200 0.04497 101.45448 0.25796
90% 101.29968 101.53097 0.03742 101.54968 0.23129
95% 101.48166 101.67877 0.02842 101.69299 0.19711
99% 101.80457 101.95221 0.01708 101.96075 0.14764

Table 3. KRIs under artificial data for n = 300.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

q↓θ→ 6
70% 6.9033 7.22712 0.06527 7.25975 0.32382
75% 6.98114 7.28422 0.05866 7.31355 0.30308
80% 7.06798 7.34936 0.05195 7.37534 0.28138
85% 7.16888 7.42684 0.04497 7.44932 0.25796
90% 7.29452 7.52581 0.03742 7.54452 0.23129
95% 7.4765 7.67361 0.02843 7.68783 0.19711
99% 7.79941 7.9469 0.0196 7.95669 0.14748

q↓θ→ 0.9
70% 1.80356 2.12738 0.06527 2.16002 0.32382
75% 1.8814 2.18448 0.05866 2.21381 0.30308
80% 1.96825 2.24963 0.05195 2.2756 0.28138
85% 2.06914 2.3271 0.04497 2.34959 0.25796
90% 2.19478 2.42608 0.03742 2.44478 0.23129
95% 2.37677 2.57388 0.02843 2.58809 0.19711
99% 2.69968 2.84732 0.01708 2.85586 0.14764

q↓θ→ 2.5
70% 3.40334 3.72716 0.06527 3.75979 0.32382
75% 3.48118 3.78426 0.05866 3.81359 0.30308
80% 3.56802 3.8494 0.05195 3.87538 0.28138
85% 3.66891 3.92687 0.04497 3.94936 0.25796
90% 3.79456 4.02585 0.03742 4.04456 0.23129
95% 3.97654 4.17365 0.02843 4.18787 0.19711
99% 4.29945 4.44709 0.01708 4.45563 0.14764

q↓θ→ 100
70% 100.90343 101.22725 0.06527 101.25988 0.32382
75% 100.98127 101.28435 0.05866 101.31368 0.30308
80% 101.06811 101.34949 0.01717 101.35808 0.28138
85% 101.16901 101.42697 0.04497 101.44945 0.25796
90% 101.29465 101.52594 0.03742 101.54465 0.23129
95% 101.47663 101.67374 0.02842 101.68796 0.19711
99% 101.79954 101.94718 0.01708 101.95572 0.14764
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Table 4. KRIs under artificial data for n = 500.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

q↓θ→ 6
70% 6.9013 7.22513 0.06527 7.25776 0.32382
75% 6.97915 7.28223 0.05866 7.31156 0.30308
80% 7.06599 7.34737 0.05195 7.37335 0.28138
85% 7.16688 7.42484 0.04497 7.44733 0.25796
90% 7.29253 7.52382 0.03742 7.54253 0.23129
95% 7.47451 7.67162 0.02843 7.68584 0.19711
99% 7.79742 7.9449 0.0196 7.9547 0.14748

q↓θ→ 0.9
70% 1.80138 2.12521 0.06527 2.15784 0.32382
75% 1.87923 2.18231 0.05866 2.21164 0.30308
80% 1.96607 2.24745 0.05195 2.27342 0.28138
85% 2.06696 2.32492 0.04497 2.34741 0.25796
90% 2.19261 2.4239 0.03742 2.44261 0.23129
95% 2.37459 2.5717 0.02843 2.58592 0.19711
99% 2.6975 2.84514 0.01708 2.85368 0.14764

q↓θ→ 2.5
70% 3.40131 3.72513 0.06527 3.75777 0.32382
75% 3.47915 3.78223 0.05866 3.81156 0.30308
80% 3.56599 3.84738 0.05195 3.87335 0.28138
85% 3.66689 3.92485 0.04497 3.94734 0.25796
90% 3.79253 4.02382 0.03742 4.04253 0.23129
95% 3.97451 4.17163 0.02843 4.18584 0.19711
99% 4.29742 4.44506 0.01708 4.45361 0.14764

q↓θ→ 100
70% 100.90134 101.22516 0.06527 101.2578 0.32382
75% 100.97918 101.28226 0.05866 101.31159 0.30308
80% 101.06602 101.34741 0.01717 101.35599 0.28138
85% 101.16692 101.42488 0.04497 101.44737 0.25796
90% 101.29256 101.52385 0.03742 101.54256 0.23129
95% 101.47454 101.67166 0.02842 101.68587 0.19711
99% 101.79745 101.94509 0.01708 101.95364 0.14764

6. Risk Analysis Using U.K. Insurance Claims Data

Skewed distributions are also important in data modeling, where they are used to
model data that are not normally distributed. For example, in finance, the distribution of
stock returns is often positively skewed, with a longer tail on the right-hand side. By using
a skewed distribution, financial analysts can better estimate the risks and potential returns
of investments. The RSEx distribution can be used to model the severity and frequency
of insurance losses. Actuarial risk analysis involves assessing and managing the risks
associated with insurance products. The RSEx distribution could aid in quantifying these
risks by providing a mathematical framework to model the occurrence and timing of events.
It will allow actuaries to calculate probabilities, develop risk mitigation strategies, and make
informed decisions. In this section, we explore the structure of claims for insurance payment
from a U.K. motor non-comprehensive account in this paper, as a practical illustration. We
chose the 2007–2013 origin period for practical reasons. The U.K. insurance claims payment
data frame presents the claims data in the manner in which a database would normally
keep it. The origin year, which ranges from 2007 to 2013, the development year, and the
incremental payments are all listed in the first column. It is worth mentioning that these
U.K. insurance claims data sets are first analyzed under a probability-based distribution (see
Hamed et al. [2], Shrahili et al. [3], and Mohamed et al. [4–6] for the relevant applications).
Table 5 (first part) gives the KRIs for the U.K. insurance claims data and MLE method for
the RSEx model, where θ̂ = 340, q = (70%, 75%, 80%, 85%, 90%, 99%) and 99%. Table 5
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(second part) gives the KRIs for the U.K. insurance-claims data and MLE method for the
Ex model, where θ̂ = 0.00037, q = (70%, 75%, 80%, 85%, 90%, 99%) and 99%. Table 5 also
presents the risk analysis under other common distributions, such as the Chen distribution,
PaII distribution, and GG distribution. Based on Table 5 (first part), for the RSEx model:

VARq
(

X|1−q=0.3

)
< VARq

(
X|1−q=0.25

)
< . . . < VARq

(
X|1−q=10%

)
< VARq

(
X|1−q=1%

)
,

TVARq
(

X|1−q=0.3

)
< TVARq

(
X|1−q=0.25

)
< . . . < TVARq

(
X|1−q=10%

)
< TVARq

(
X|1−q=1%

)
,

TMVq(
(

X|1−q=0.3

)
< TMVq(

(
X|1−q=0.25

)
< . . . < TMVq(

(
X|1−q=10%

)
< TMVq(

(
X|1−q=1%

)
,

TV
(

X|1−q=0.3

)
> TV

(
X|1−q=0.25

)
> . . . > TV

(
X|1−q=10%

)
> TV

(
X|1−q=1%

)
,

and:

ELq
(

X|1−q=0.3

)
> ELq

(
X|1−q=0.25

)
> . . . > ELq

(
X|1−q=0.1

)
> ELq

(
X|1−q=1%

)
.

The VARq is monotonically increasing, starting with 340.898174 and ending with
341.794290; the TVARq in monotonically increasing, starting with 341.221996 and ending
with 341.941930; the TVq, the TMVq, and the MEL are monotonically increasing from
341.254631 to 341.950471. However, the TVq is monotonically decreasing, starting with
0.06527 and ending with 0.017083, while the TVq is monotonically decreasing, starting with
0.323822 and ending with 0.14764.

Table 5. KRIs for the U.K. insurance claims data for the RSEx and Ex models.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

RSEx; q ↓ θ̂→ 340
70% 340.898174 341.221996 0.065270 341.254631 0.323822
75% 340.976019 341.279098 0.058659 341.308428 0.30308
80% 341.062859 341.344241 0.051949 341.370215 0.281381
85% 341.163752 341.421714 0.044975 341.444201 0.257962
90% 341.289399 341.520689 0.037420 341.539399 0.231290
95% 341.471379 341.668491 0.028435 341.682709 0.197112
99% 341.794290 341.941930 0.017083 341.950471 0.147640

Ex; q ↓ θ̂→ 0.00037

70% 3253.822502 5956.39411 7303890.179716 3657901.483968 2702.571608
75% 3746.559532 6449.131141 7303889.986944 3658394.124613 2702.571609
80% 4349.620918 7052.192529 7303889.747701 3658997.066379 2702.571611
85% 5127.102268 7829.67388 7303889.433890 3659774.390825 2702.571612
90% 6222.900684 8925.472299 7310217.716185 3664034.330392 2702.571615
95% 8096.180450 10798.75207 7303888.179811 3662742.841975 2702.571620
99% 12445.80137 15148.372999 7303886.183256 3667091.464627 2702.571631

Chen; q ↓ θ̂, β̂→ 0.25197, 0.00049

70% 3018.15114 4228.50442 895,307.4237 451,882.21629 1210.35329

75% 3476.19141 4557.14429 755,914.93665 382,514.61261 1080.95288

80% 4018.19508 4967.15111 617,382.04437 313,658.17330 948.956031

85% 4771.39214 5568.55644 448,149.30644 229,643.20960 797.164333

90% 5388.71252 6083.13747 369,667.95180 190,917.11340 694.424993

95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920

99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441
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Table 5. Cont.

KRIs→ VARq(X;
ˆ
θ) TVARq(X;

ˆ
θ) TVq(X;

ˆ
θ) T MVq(X;

ˆ
θ) ELq(X;

ˆ
θ)

PaII; q ↓ θ̂, β̂→ 941.397,1.00008

70% 3111.073814 5021.84633 3603201.421 1806622.557 1910.7725

75% 3463.603492 5369.795921 3595282.615 1803011.103 1906.1924

80% 3892.708942 5794.719753 3586988.902 1799289.166 1902.0108

85% 4443.266082 6341.237823 3579959.560 1796321.017 1897.9718

90% 5215.885110 7110.030851 3571410.804 1792815.429 1894.1457

95% 6531.315081 8421.415024 3562554.546 1789698.686 1890.0999

99% 9573.577212 11459.39600 3552197.802 1787558.297 1885.8187

GG; q ↓ θ̂, β̂→ 0.00015, 0.28234

70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723

75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861

80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123

85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141

90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163

95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152

Generally, we report the following main results:

1. VARq
(

X|1−q=0.3,...,0.01

)
for the RSEx < VARq

(
X|1−q=0.3,...,0.01

)
for the Ex.

2. TVARq
(

X|1−q=0.3,...,0.01

)
for the RSEx < TVARq

(
X|1−q=0.3,...,0.01

)
for the Ex.

3. TVq
(

X|1−q=0.3,...,0.01

)
for the RSEx < TVq

(
X|1−q=0.3,...,0.01

)
for the Ex.

4. TMVq
(

X|1−q=0.3,...,0.01

)
for the RSEx < TMVq

(
X|1−q=0.3,...,0.01

)
for the Ex.

5. ELq
(

X|1−q=0.3,...,0.01

)
for the RSEx < ELq

(
X|1−q=0.3,...,0.01

)
for the Ex.

6. The results of the RSEx model are better than the corresponding results for the Chen
model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%.

7. The results of the RSEx model are better than the corresponding results for the PaII
model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%.

8. The results of the RSEx model are better than the corresponding results for the GG
model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%.

7. RRNU Statistic Construction

The RRNU statistic is a chi-squared type test, which was originally introduced by
Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and
Nikulin [23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic
to take into account random right-filtering (for more information on the topic and its
applications, see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26]
and Yousof et al. [27]). Here, we need to establish:

H0 : Pr{x
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3. Characterization Results 
3.1. Characterizations Based on Two Truncated Moments 

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It 
offers robustness, facilitates parameter estimation, enables distributional modeling, aids 
in risk assessment, supports hypothesis testing, and assists in model selection and good-
ness-of-fit evaluations. These mathematical properties make truncated moments a power-
ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 
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where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 

)
, with:

B
(
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75% 3476.19141 4557.14429 755,914.93665 382,514.61261 1080.95288 
80% 4018.19508 4967.15111 617,382.04437 313,658.17330 948.956031 
85% 4771.39214 5568.55644 448,149.30644 229,643.20960 797.164333 
90% 5388.71252 6083.13747 369,667.95180 190,917.11340 694.424993 
95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920 
99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441 

PaII; q↓𝜃, 𝛽→   941.397,1.00008   
70% 3111.073814 5021.84633 3603201.421 1806622.557 1910.7725 
75% 3463.603492 5369.795921 3595282.615 1803011.103 1906.1924 
80% 3892.708942 5794.719753 3586988.902 1799289.166 1902.0108 
85% 4443.266082 6341.237823 3579959.560 1796321.017 1897.9718 
90% 5215.885110 7110.030851 3571410.804 1792815.429 1894.1457 
95% 6531.315081 8421.415024 3562554.546 1789698.686 1890.0999 
99% 9573.577212 11459.39600 3552197.802 1787558.297 1885.8187 

GG; q↓𝜃, 𝛽→   0.00015, 0.28234   
70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723 
75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861 
80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123 
85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141 
90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163 
95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152 

Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
6. The results of the RSEx model are better than the corresponding results for the Chen 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
7. The results of the RSEx model are better than the corresponding results for the PaII 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
8. The results of the RSEx model are better than the corresponding results for the GG 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 

7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 

)
=

[
1
√
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Now, we compute 𝐼 , (𝓎) and 𝐼 , (𝓎). Note that for 0 < 𝓎 < 𝑒, 

log( 𝓎 + 𝑒) = 𝑙𝑜𝑔 𝑒 1 + 𝓎𝑒 = 1 + 𝑙𝑜𝑔 1 + 𝓎𝑒 = 1 + 𝓎𝑒 𝓌
𝓌

1𝓌 + 1 = 𝒶𝓌𝓌 𝓎𝓌, 
where 𝒶 = 1 and 𝒶𝓌 = 𝓌 𝓌 for 𝓌 ≥ 1. Then: 

𝐼 , (𝓎) = 𝒶𝓌𝓌 𝓎 𝓌 𝑒 𝓎𝑑𝓎. 
By changing 𝑢 = 𝑒𝓎, we obtain: 

𝐼 , (𝓎) = 𝒶𝓌𝓌 [𝑙𝑜𝑔( 𝑢)] 𝓌  𝑒𝑢 𝑑𝑢. 
The last integral can be obtained numerically: 𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎 + 𝑒)𝑒 𝓎 𝑑𝓎. 
Note that for 𝓎 > 𝑒, 

𝑙𝑜𝑔( 𝓎 + 𝑒) = 𝑙𝑜𝑔 𝓎 1 + 𝑒𝓎 = 𝑙𝑜𝑔( 𝓎) + 𝑙𝑜𝑔 1 + 𝑒𝓎 = 𝑙𝑜𝑔( 𝓎) + 𝑒𝓎 𝓌
𝓌

1𝓌 + 1. 
Then: 

𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎) + 𝑒𝓎 𝓌
𝓌

1𝓌 + 1 𝑒 𝓎 𝑑𝓎, 
which implies: 

𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎)𝑒 𝓎 𝑑𝓎 + 𝑒𝓌𝓌 + 1𝓌
𝑒 𝓎𝓎𝓌 . 

The last integrals can be obtained numerically. Finally, 

𝐸(𝑋 ) = 𝐸(𝑌 − 𝜃) = 𝑛𝑘 (−𝜃) 𝐸(𝑌 ). 
3. Characterization Results 
3.1. Characterizations Based on Two Truncated Moments 

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It 
offers robustness, facilitates parameter estimation, enables distributional modeling, aids 
in risk assessment, supports hypothesis testing, and assists in model selection and good-
ness-of-fit evaluations. These mathematical properties make truncated moments a power-
ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 

Theorem 1. Let (ꙍ, 𝐹, 𝑃) be a given probability space and let 𝐻[ , ] = [𝑑, 𝑒] be an interval for 
some 𝑑 < 𝑒 (𝑑 = − + ∞, 𝑤ℎ𝑒𝑛 𝑒 = +∞ might also be allowed). 

∂
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𝐸(𝑋 ) = 𝐸(𝑌 − 𝜃) = 𝑛𝑘 (−𝜃) 𝐸(𝑌 ). 
3. Characterization Results 
3.1. Characterizations Based on Two Truncated Moments 

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It 
offers robustness, facilitates parameter estimation, enables distributional modeling, aids 
in risk assessment, supports hypothesis testing, and assists in model selection and good-
ness-of-fit evaluations. These mathematical properties make truncated moments a power-
ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 

Theorem 1. Let (ꙍ, 𝐹, 𝑃) be a given probability space and let 𝐻[ , ] = [𝑑, 𝑒] be an interval for 
some 𝑑 < 𝑒 (𝑑 = − + ∞, 𝑤ℎ𝑒𝑛 𝑒 = +∞ might also be allowed). 
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75% 3476.19141 4557.14429 755,914.93665 382,514.61261 1080.95288 
80% 4018.19508 4967.15111 617,382.04437 313,658.17330 948.956031 
85% 4771.39214 5568.55644 448,149.30644 229,643.20960 797.164333 
90% 5388.71252 6083.13747 369,667.95180 190,917.11340 694.424993 
95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920 
99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441 

PaII; q↓𝜃, 𝛽→   941.397,1.00008   
70% 3111.073814 5021.84633 3603201.421 1806622.557 1910.7725 
75% 3463.603492 5369.795921 3595282.615 1803011.103 1906.1924 
80% 3892.708942 5794.719753 3586988.902 1799289.166 1902.0108 
85% 4443.266082 6341.237823 3579959.560 1796321.017 1897.9718 
90% 5215.885110 7110.030851 3571410.804 1792815.429 1894.1457 
95% 6531.315081 8421.415024 3562554.546 1789698.686 1890.0999 
99% 9573.577212 11459.39600 3552197.802 1787558.297 1885.8187 

GG; q↓𝜃, 𝛽→   0.00015, 0.28234   
70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723 
75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861 
80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123 
85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141 
90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163 
95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152 

Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
6. The results of the RSEx model are better than the corresponding results for the Chen 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
7. The results of the RSEx model are better than the corresponding results for the PaII 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
8. The results of the RSEx model are better than the corresponding results for the GG 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 

7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 

)]
r×
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we present a new asymmetric distribution, called the right-skewed exponential (RSEx) 
distribution, which has high flexibility in terms of its probability density function (PDF) 
and its failure rate function (FRF). The RSEx distribution is recommended as an adequate 
alternative to the well-known exponential (Ex) distribution. 

However, the traditional Ex distribution is a probability distribution that models the 
time between events in a Poisson process, where the events occur continuously and inde-
pendently at a constant average rate. It is often used in actuarial risk analysis and insur-
ance due to its simplicity and applicability to various scenarios. It has the crucial charac-
teristic of being memoryless and it can be considered as the continuous version of the 
geometric distribution theory proposed by Kemp [1]. One of the most important charac-
teristics of exponential distribution is its memoryless property. This means that the distri-
bution of time to the next event does not depend on how much time has already passed. 
This property makes it suitable for modeling scenarios where past history does not affect 
the future occurrence of events.  The Ex distribution is employed in several different ap-
plications, in addition to the study of Poisson point processes. The Ex distribution is the 
only continuous probability distribution with a constant FRF. 

The RSEx distribution is very similar to the exponential distribution in regard to some 
properties and it has only one parameter. However, the mathematical form of the RSEx 
distribution differs from the exponential distribution. Thus, statistical properties such as 
moments, function-generating moments, etc., will be different and may need more effort 
to derive them. In addition, the parameter range of the new distribution differs from the 
parameter range of the exponential distribution. The parameter of the new distribution is 𝜃, the range of which depends on and is related to the random variable (RV). In this paper, 
we do not pay much attention to the theoretical results or to the properties of mathematics 
and algebraic derivations. This is because the main objective of the paper is to explore and 
illustrate the importance of the new distribution in practice and its significance in the areas 
of statistical modeling, as well as in the field of application to actuarial risks. However, it 
may be easy to study any probability distribution theoretically, but it is not at all easy to 
prove the importance of the new distribution from the practical perspective and from the 
point of view of statistical modeling. By studying the statistical literature, we will find 
many distributions that are a generalization of the exponential distribution. Most of these 
extensions have a large number of parameters (often more than two). However, the RSEx 
distribution contains only one parameter; this is the first advantage of the new distribu-
tion, even before it has been studied. The survival function (SF) of the RSEx model can be 
expressed as: 𝑆 (𝓍) = 𝑙𝑜𝑔(𝓍 − 𝜃 + 𝑒) 𝑒𝓍𝑝 − 𝑒𝓍 − 1 |𝓍 , (1)

where 𝑒 is the base for the natural log. The corresponding PDF of the RSEx can be written 
as: 𝑓 (𝓍) = 𝑒𝓍𝑝 − 𝑒𝓍 − 1 𝑙𝑜𝑔(𝓍 − 𝜃 + 𝑒) 𝑒𝓍 − 1𝓍 − 𝜃 + 𝑒 |𝓍 . (2)

The cumulative distribution function (CDF) corresponding to (1) can be expressed as 𝐹 (𝓍) = 1 − 𝑆 (𝓍). While the Ex distribution achieves the relationship Pr (𝒯 > 𝓈 + 𝑡|𝒯 >𝓈) =  Pr (𝒯 > 𝑡) = 𝑒   ∀  𝑡 ≥ 0 , the memoryless capacity does not exist with the RSEx 
model, where Pr (𝒯 > 𝓈 + 𝑡|𝒯 > 𝓈) = 𝑙𝑜𝑔(𝓈 )(𝓈 + 𝑡 − 𝜃 + 𝑒) 𝑒𝓍𝑝 𝑒𝓈 − 𝑒𝓈 ≠  Pr (𝒯 > 𝑡). 

A special section is devoted to the characterization of the RSEx distribution: (i) based 
on two truncated moments and (ii) in terms of the FRF. For characterization (i), the CDF 
does not need to have a closed form. Characterizations (i) and (ii) will be presented in 
Section 2. The FRF, which is sometimes referred to as the danger rate, solely relates to 
broken objects. It is essential when creating secure software applications and the engineer-
ing, financial, insurance, and regulatory sectors frequently rely on it. The FRF represents 
the frequency with which an engineered system or component fails, expressed in terms of 

|(
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𝓌
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which implies: 

𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎)𝑒 𝓎 𝑑𝓎 + 𝑒𝓌𝓌 + 1𝓌
𝑒 𝓎𝓎𝓌 . 

The last integrals can be obtained numerically. Finally, 

𝐸(𝑋 ) = 𝐸(𝑌 − 𝜃) = 𝑛𝑘 (−𝜃) 𝐸(𝑌 ). 
3. Characterization Results 
3.1. Characterizations Based on Two Truncated Moments 

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It 
offers robustness, facilitates parameter estimation, enables distributional modeling, aids 
in risk assessment, supports hypothesis testing, and assists in model selection and good-
ness-of-fit evaluations. These mathematical properties make truncated moments a power-
ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 

Theorem 1. Let (ꙍ, 𝐹, 𝑃) be a given probability space and let 𝐻[ , ] = [𝑑, 𝑒] be an interval for 
some 𝑑 < 𝑒 (𝑑 = − + ∞, 𝑤ℎ𝑒𝑛 𝑒 = +∞ might also be allowed). 
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95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920 
99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441 
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70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723 
75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861 
80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123 
85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141 
90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163 
95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152 

Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
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7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 
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[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
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The mathematical characterization, which is based on two truncated moments, pro-
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some 𝑑 < 𝑒 (𝑑 = − + ∞, 𝑤ℎ𝑒𝑛 𝑒 = +∞ might also be allowed). 
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75% 3476.19141 4557.14429 755,914.93665 382,514.61261 1080.95288 
80% 4018.19508 4967.15111 617,382.04437 313,658.17330 948.956031 
85% 4771.39214 5568.55644 448,149.30644 229,643.20960 797.164333 
90% 5388.71252 6083.13747 369,667.95180 190,917.11340 694.424993 
95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920 
99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441 

PaII; q↓𝜃, 𝛽→   941.397,1.00008   
70% 3111.073814 5021.84633 3603201.421 1806622.557 1910.7725 
75% 3463.603492 5369.795921 3595282.615 1803011.103 1906.1924 
80% 3892.708942 5794.719753 3586988.902 1799289.166 1902.0108 
85% 4443.266082 6341.237823 3579959.560 1796321.017 1897.9718 
90% 5215.885110 7110.030851 3571410.804 1792815.429 1894.1457 
95% 6531.315081 8421.415024 3562554.546 1789698.686 1890.0999 
99% 9573.577212 11459.39600 3552197.802 1787558.297 1885.8187 

GG; q↓𝜃, 𝛽→   0.00015, 0.28234   
70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723 
75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861 
80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123 
85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141 
90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163 
95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152 

Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
6. The results of the RSEx model are better than the corresponding results for the Chen 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
7. The results of the RSEx model are better than the corresponding results for the PaII 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
8. The results of the RSEx model are better than the corresponding results for the GG 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 

7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 
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)
,

Consider b refers to subintervals are mutually disjoint where Ij =
[

aj,b − 1; aj,b

]
. Then:

pj
(
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aj,b−1
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j
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|(j=1,··· ,b−1).
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ς j =
n
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8. Uncensored Distributional Validation

8.1. Uncensored Simulation Study under the Influence of the RRNU Statistic Y2

With the RRNU statistics, there are a number of reasons to undertake an uncensored
simulation study. Examining the NRR tests’ statistical power in various situations is a
significant driver. A test’s statistical power, which is affected by elements such as sample
size and effect size, indicates how well the test will be able to identify a real effect or
difference. Researchers can analyze the effect of various variables on test performance
and establish the minimal sample size necessary to achieve a given level of statistical
power by conducting a simulation study. In order to test the null hypothesis, H0, we
generate N = 12, 000, with n = 25, n = 50, n = 150, n = 350, n = 600, and n = 1000.
For the different theoretical levels (ε = 1%, 2%, 0.05, 0.1), we calculate the average of the
non-rejection numbers for the null hypothesis Y2 ≤ χ2

ε (b− 1). The matching empirical and
theoretical levels are displayed in Table 6. It is clear that the determined empirical level
value and its equivalent theoretical level value are fairly similar. As a result, we can draw
the conclusion that the suggested test offers excellent performance for the RSEx distribution.

Table 6. Simulation results when assessing the RRNU statistic, using different sample sizes and
different theoretical levels.

n↓&ε→ ε = 1% ε = 2% ε = 5% ε = 10%

n = 25 0.9939 0.9828 0.9522 0.9023
n = 50 0.9924 0.9819 0.9511 0.9020

n = 150 0.9918 0.9815 0.9509 0.9016
n = 350 0.9908 0.9809 0.9506 0.9010
n = 600 0.9904 0.9805 0.9503 0.9004

n = 1000 0.9902 0.9801 0.9502 0.9001

8.2. Uncensored Applications under the Influence of the RRNU Statistic Y2 and the BB Algorithm

The BB algorithm is an optimization algorithm that is commonly used for solving
unconstrained optimization problems. This algorithm is an iterative method that utilizes
information from the gradient of the objective function to approximate the step size for
each iteration. The BB algorithm is widely used in optimization because of its simplicity
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and effectiveness in many practical applications. It has been found to converge quickly for
a wide range of optimization problems, making it a popular choice for various optimization
tasks. Generally, the BB algorithm is a popular optimization method that can be used in a
variety of applications, including:

I. Machine learning: The BB algorithm is commonly used in machine learning applica-
tions such as linear regression, logistic regression, and support vector machines. It
can be used to optimize the parameters of these models to minimize the loss function.

II. Image processing: The BB algorithm is often used in image-processing applications
such as image denoising and image segmentation. It can be used to optimize the
parameters of these algorithms to produce high-quality images.

III. Engineering design: The BB algorithm is widely used in engineering design appli-
cations such as structural optimization and control system design. It can be used to
optimize the design parameters of these systems to meet set performance criteria.

IV. Financial modeling: The BB algorithm can be used in financial modeling applica-
tions such as portfolio optimization and option pricing. It can be used to optimize
the allocation of assets or to calculate the fair value of financial instruments.

V. Robotics: The BB algorithm is used in robotics applications such as motion planning
and trajectory optimization. It can be used to optimize the motions of robots to
achieve the desired tasks or to avoid obstacles.

8.2.1. Example 1: Reliability Data Regarding Carbon Fibers

Assuming that our RSEx model can fit the strength data of 1.5 cm glass fibers (see
Nichols and Padgett [28]), then, using the BB algorithm, the MLE value is θ̂ = 3.006425.
Using the value of θ̂, it is noted that I

(
ˆ
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)
= 2.684922; then, Y2 = 12.442635. Conversely,

the critical value χ2
0.01(7− 1) = 12.59159, which means that:

Y2 = 12.442635 < χ2
0.01(6) = 12.59159.

This means that the RSEx model is able to model reliability data regarding the carbon
fibers’ breaking stress, or else the reliability data of the carbon fibers can be represented
and modeled using the RSEx distribution.

8.2.2. Example 2: Heat Exchanger Tube Crack

Here, we will consider the crack reliability data that were reported by Meeker and Esco-
bar [29], which records testing being performed until fractures appeared in 167 comparable
turbine components at 8 predetermined intervals, where the times of inspection were 186,
606, 902, 1077, 1209, 1377, 1592, and 932, and the number of fans found to have cracks were 5,
16, 12, 18, 18, 2, 6, and 17. Using the BB approach yields θ̂ = 2.321102 and I

(
ˆ
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)
= 2.3785406.

Then, Y2 = 18.904681. Conversely, the critical value χ2
0.01(13− 1) = 21.02607, which

means that:
Y2 = 18.904681 < χ2

0.01(12) = 21.02607.

This means that the RSEx model is able to model a heat exchanger tube crack, or that
the heat exchanger tube crack data can be represented and modeled using this distribution.

8.2.3. Example 3: Strength of Glass Fibers

Following Smith and Naylor [30], and using the BB approach, we computed the MLE
θ̂ = 5.745861, then I

(
ˆ
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)
= 1.9906782, and, hence, the value of Y2 = 11.77123. Conversely,

the critical value χ2
0.01(7− 1) = 12.59159. Then:

Y2 = 12.442635 < χ2
0.05(6) = 12.59159.

This means that the RSEx model is able to model the strengths in the glass fiber data, or
that the strengths of glass fiber data can be represented and modeled using this distribution.
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8.2.4. Example 4: Gene-Based Breast Cancer Data

In this example, we consider the data of Van’t Veer et al. [31]. Using the BB approach
will yield θ̂ = 4.37912 and I

(
ˆ
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)
= 1.6604896. However, the value of the new rest is

Y2 = 16.64932, where the critical value χ2
0.05(10− 1) = 16.91898. Then,

Y2 = 16.64932 < χ2
0.05(9) = 16.91898.

This means that the RSEx model is able to model the gene-based breast cancer data, or
the gene-based breast cancer data can be represented and modeled using this distribution.

9. Censored Distributional Validation

When our data sets have been censored and the parameters of the model are unknown,
we can use the statistic type test, based on a variation of the RRNU statistic proposed by
Bagdonavičius and Nikulin [23], as well as by Bagdonavičius et al. [24] to confirm the
adequacy of the RSEx model. Here, we adjust this test for an RSEx model since the failure
rate, x i, follows an RSEx distribution. Consider the following coupled notions:

H0 : F(x) ∈ F0 =
{

F0
(
x,
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, x ∈ R1,
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model, where Pr (𝒯 > 𝓈 + 𝑡|𝒯 > 𝓈) = 𝑙𝑜𝑔(𝓈 )(𝓈 + 𝑡 − 𝜃 + 𝑒) 𝑒𝓍𝑝 𝑒𝓈 − 𝑒𝓈 ≠  Pr (𝒯 > 𝑡). 

A special section is devoted to the characterization of the RSEx distribution: (i) based 
on two truncated moments and (ii) in terms of the FRF. For characterization (i), the CDF 
does not need to have a closed form. Characterizations (i) and (ii) will be presented in 
Section 2. The FRF, which is sometimes referred to as the danger rate, solely relates to 
broken objects. It is essential when creating secure software applications and the engineer-
ing, financial, insurance, and regulatory sectors frequently rely on it. The FRF represents 
the frequency with which an engineered system or component fails, expressed in terms of 

}
.

The cumulative FRF of the RSEx distribution can be expressed as:

ΛRSEx
(

x,
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75% 3476.19141 4557.14429 755,914.93665 382,514.61261 1080.95288 
80% 4018.19508 4967.15111 617,382.04437 313,658.17330 948.956031 
85% 4771.39214 5568.55644 448,149.30644 229,643.20960 797.164333 
90% 5388.71252 6083.13747 369,667.95180 190,917.11340 694.424993 
95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920 
99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441 

PaII; q↓𝜃, 𝛽→   941.397,1.00008   
70% 3111.073814 5021.84633 3603201.421 1806622.557 1910.7725 
75% 3463.603492 5369.795921 3595282.615 1803011.103 1906.1924 
80% 3892.708942 5794.719753 3586988.902 1799289.166 1902.0108 
85% 4443.266082 6341.237823 3579959.560 1796321.017 1897.9718 
90% 5215.885110 7110.030851 3571410.804 1792815.429 1894.1457 
95% 6531.315081 8421.415024 3562554.546 1789698.686 1890.0999 
99% 9573.577212 11459.39600 3552197.802 1787558.297 1885.8187 

GG; q↓𝜃, 𝛽→   0.00015, 0.28234   
70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723 
75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861 
80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123 
85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141 
90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163 
95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152 

Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
6. The results of the RSEx model are better than the corresponding results for the Chen 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
7. The results of the RSEx model are better than the corresponding results for the PaII 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
8. The results of the RSEx model are better than the corresponding results for the GG 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 

7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 

)
= −ln[Sθ(x)] = −ln

{
log(x− θ + e)exp

[
−
(

ex−θ − 1
)]}

.

With this selection of intervals, we have a constant value of ej,X = Ek/k for every j. The
intervals can be computed repeatedly since the inverse FRF of the RSEx distribution lacks
a defined shape. Let us split the finite time interval [0, τ] into k >
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we present a new asymmetric distribution, called the right-skewed exponential (RSEx) 
distribution, which has high flexibility in terms of its probability density function (PDF) 
and its failure rate function (FRF). The RSEx distribution is recommended as an adequate 
alternative to the well-known exponential (Ex) distribution. 
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The cumulative distribution function (CDF) corresponding to (1) can be expressed as 𝐹 (𝓍) = 1 − 𝑆 (𝓍). While the Ex distribution achieves the relationship Pr (𝒯 > 𝓈 + 𝑡|𝒯 >𝓈) =  Pr (𝒯 > 𝑡) = 𝑒   ∀  𝑡 ≥ 0 , the memoryless capacity does not exist with the RSEx 
model, where Pr (𝒯 > 𝓈 + 𝑡|𝒯 > 𝓈) = 𝑙𝑜𝑔(𝓈 )(𝓈 + 𝑡 − 𝜃 + 𝑒) 𝑒𝓍𝑝 𝑒𝓈 − 𝑒𝓈 ≠  Pr (𝒯 > 𝑡). 

A special section is devoted to the characterization of the RSEx distribution: (i) based 
on two truncated moments and (ii) in terms of the FRF. For characterization (i), the CDF 
does not need to have a closed form. Characterizations (i) and (ii) will be presented in 
Section 2. The FRF, which is sometimes referred to as the danger rate, solely relates to 
broken objects. It is essential when creating secure software applications and the engineer-
ing, financial, insurance, and regulatory sectors frequently rely on it. The FRF represents 
the frequency with which an engineered system or component fails, expressed in terms of 

as shorter intervals.
Here, is the study’s maximum runtime and Ij =

(
aj−1, aj,b

]
:

0 =< a0,b < a1,b . . . < ak−1,b < ak,b = ++ ∞.

According to Bagdonavičius and Nikulin [23], as well as Bagdonavičius et al. [24], the
estimated value of ˆaj,b can be derived as:

ˆaj,b = Λ−1
{

1
n−
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Now, we compute 𝐼 , (𝓎) and 𝐼 , (𝓎). Note that for 0 < 𝓎 < 𝑒, 

log( 𝓎 + 𝑒) = 𝑙𝑜𝑔 𝑒 1 + 𝓎𝑒 = 1 + 𝑙𝑜𝑔 1 + 𝓎𝑒 = 1 + 𝓎𝑒 𝓌
𝓌

1𝓌 + 1 = 𝒶𝓌𝓌 𝓎𝓌, 
where 𝒶 = 1 and 𝒶𝓌 = 𝓌 𝓌 for 𝓌 ≥ 1. Then: 

𝐼 , (𝓎) = 𝒶𝓌𝓌 𝓎 𝓌 𝑒 𝓎𝑑𝓎. 
By changing 𝑢 = 𝑒𝓎, we obtain: 

𝐼 , (𝓎) = 𝒶𝓌𝓌 [𝑙𝑜𝑔( 𝑢)] 𝓌  𝑒𝑢 𝑑𝑢. 
The last integral can be obtained numerically: 𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎 + 𝑒)𝑒 𝓎 𝑑𝓎. 
Note that for 𝓎 > 𝑒, 

𝑙𝑜𝑔( 𝓎 + 𝑒) = 𝑙𝑜𝑔 𝓎 1 + 𝑒𝓎 = 𝑙𝑜𝑔( 𝓎) + 𝑙𝑜𝑔 1 + 𝑒𝓎 = 𝑙𝑜𝑔( 𝓎) + 𝑒𝓎 𝓌
𝓌

1𝓌 + 1. 
Then: 

𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎) + 𝑒𝓎 𝓌
𝓌

1𝓌 + 1 𝑒 𝓎 𝑑𝓎, 
which implies: 

𝐼 , (𝓎) = 𝓎 𝑙𝑜𝑔( 𝓎)𝑒 𝓎 𝑑𝓎 + 𝑒𝓌𝓌 + 1𝓌
𝑒 𝓎𝓎𝓌 . 

The last integrals can be obtained numerically. Finally, 

𝐸(𝑋 ) = 𝐸(𝑌 − 𝜃) = 𝑛𝑘 (−𝜃) 𝐸(𝑌 ). 
3. Characterization Results 
3.1. Characterizations Based on Two Truncated Moments 

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It 
offers robustness, facilitates parameter estimation, enables distributional modeling, aids 
in risk assessment, supports hypothesis testing, and assists in model selection and good-
ness-of-fit evaluations. These mathematical properties make truncated moments a power-
ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 

Theorem 1. Let (ꙍ, 𝐹, 𝑃) be a given probability space and let 𝐻[ , ] = [𝑑, 𝑒] be an interval for 
some 𝑑 < 𝑒 (𝑑 = − + ∞, 𝑤ℎ𝑒𝑛 𝑒 = +∞ might also be allowed). 

+ 1

[
Ej,k −∑
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𝐸(𝑋 ) = 𝐸(𝑌 − 𝜃) = 𝑛𝑘 (−𝜃) 𝐸(𝑌 ). 
3. Characterization Results 
3.1. Characterizations Based on Two Truncated Moments 

The mathematical characterization, which is based on two truncated moments, pro-
vides valuable insights into the behavior and distribution of RVs within specific ranges. It 
offers robustness, facilitates parameter estimation, enables distributional modeling, aids 
in risk assessment, supports hypothesis testing, and assists in model selection and good-
ness-of-fit evaluations. These mathematical properties make truncated moments a power-
ful tool for analyzing and interpreting data that are subject to truncation or fall within a 
restricted interval. In this subsection, we characterize the RSEx distribution based on a 
simple relationship between two truncated moments. The first characterization applies a 
theorem developed by Glanzel [14], Theorem 1, which is given below. Clearly, the result 
holds just as well when the 𝐻[ , ] is not a closed interval. This characterization is stable in 
the sense of weak convergence (see Glanzel [15]). 

Theorem 1. Let (ꙍ, 𝐹, 𝑃) be a given probability space and let 𝐻[ , ] = [𝑑, 𝑒] be an interval for 
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−1
l=1 Λ

(
x(l),

ˆ

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 25 
 

 

75% 3476.19141 4557.14429 755,914.93665 382,514.61261 1080.95288 
80% 4018.19508 4967.15111 617,382.04437 313,658.17330 948.956031 
85% 4771.39214 5568.55644 448,149.30644 229,643.20960 797.164333 
90% 5388.71252 6083.13747 369,667.95180 190,917.11340 694.424993 
95% 6523.60475 7069.40074 243,602.67980 128,870.74060 545.795920 
99% 7749.24104 8177.12548 157,453.69710 86,903.974017 427.884441 

PaII; q↓𝜃, 𝛽→   941.397,1.00008   
70% 3111.073814 5021.84633 3603201.421 1806622.557 1910.7725 
75% 3463.603492 5369.795921 3595282.615 1803011.103 1906.1924 
80% 3892.708942 5794.719753 3586988.902 1799289.166 1902.0108 
85% 4443.266082 6341.237823 3579959.560 1796321.017 1897.9718 
90% 5215.885110 7110.030851 3571410.804 1792815.429 1894.1457 
95% 6531.315081 8421.415024 3562554.546 1789698.686 1890.0999 
99% 9573.577212 11459.39600 3552197.802 1787558.297 1885.8187 

GG; q↓𝜃, 𝛽→   0.00015, 0.28234   
70% 3496.50393 4558.57623 699524.8015 354320.977 1062.0723 
75% 3753.40310 4745.68200 628280.2448 318885.801 992.27861 
80% 4038.69390 4958.81501 556528.2668 283222.948 920.12123 
85% 4368.96622 5212.06731 482468.7281 246446.432 843.10141 
90% 4779.27921 5535.60102 402705.2214 206888.212 756.32163 
95% 5373.20032 6019.48194 308229.5957 160134.278 646.28152 

Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
6. The results of the RSEx model are better than the corresponding results for the Chen 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
7. The results of the RSEx model are better than the corresponding results for the PaII 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
8. The results of the RSEx model are better than the corresponding results for the GG 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 

7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 

)]
, ˆ
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Generally, we report the following main results: 
1. VARq 𝑋| . ,…, .  for the RSEx < VARq(𝑋| . ,…, . ) for the Ex. 
2. TVARq 𝑋| . ,…, .  for the RSEx < TVARq(𝑋| . ,…, . ) for the Ex. 
3. TVq 𝑋| . ,…, .  for the RSEx < TVq(𝑋| . ,…, . ) for the Ex. 
4. TMVq 𝑋| . ,…, .  for the RSEx < TMVq(𝑋| . ,…, . ) for the Ex. 
5. ELq 𝑋| . ,…, .  for the RSEx < ELq(𝑋| . ,…, . ) for the Ex. 
6. The results of the RSEx model are better than the corresponding results for the Chen 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
7. The results of the RSEx model are better than the corresponding results for the PaII 

model for all risk indicators | q = (70%,75%,80%,85%,90%,99%) and 99%. 
8. The results of the RSEx model are better than the corresponding results for the GG 
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7. RRNU Statistic Construction 
The RRNU statistic is a chi-squared type test, which was originally introduced by 

Nikulin [19–21] and Rao and Robson [22]. One the other hand, Bagdonavičius and Nikulin 
[23], as well as Bagdonavičius et al. [24], suggested changing the RRNU statistic to take 
into account random right-filtering (for more information on the topic and its applications, 
see Nikulin [19–21] and Rao and Robson [22], as well as Yadav et al. [25,26] and Yousof et 
al. [27]). Here, we need to establish: 𝐻   :  Pr 𝓍𝓌 ≤ 𝓍 = 𝐹ϒ(𝓍),  𝓍 ∈ 𝑅, ϒ = (ϒ , ϒ , ⋯ , ϒ𝓈) , 
where: 

𝑋 (ϒ) = 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ) , ⋯ , 𝜍 − 𝑛𝑝 (ϒ)𝑛𝑝 (ϒ)  

and 𝑝(ϒ)  refers to the information matrix under the influence of the tabulated data, 
where 𝑝(ϒ) = 𝐵(ϒ) 𝐵 ϒ , with: 

}
,

where:
Ej,k = (n−
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where aj,b. Then, the statistic proposed by Bagdonavičius and Nikulin [23] and Bagdonav-
ičius et al. [24] can be expressed as:

Y2
n = ZT(Ŝ)−1Z,

where:
Z = (Z1, . . . , Zk)

x, Zj =
1√
n
(
Uj,X − ej,X

)
|( j=1,2,...,k),

and Uj,X reflects the total number of failures that have been observed over these times,
which can be used to test for hypothesis H0. The test statistic can be written as follows:

Y2
n =

k

∑
j=1

1
Uj,X

(Uj,X − ej,X)
2 + QW,G,
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where the components of the test are given by Nikulin [19–21] and by Rao and Robson [22].
The major element of the Y2

n statistic test of the RSEx model is the matrix K̂l j, which is given
by Yadav et al. [25,26] and Yousof et al. [27] in further detail.

9.1. Censored Simulation Study with the RRNU Statistics Y2
n

Conducting a censored simulation study using the NRR statistics involves generating
data from a known distribution and then introducing censoring to simulate the types of
censoring that may occur in real-world data. The censored data are then tested against
a hypothesized distribution, using one or more of the RRNU statistics. The performance
of the statistics is evaluated based on their ability to correctly identify the underlying
distribution, as well as their sensitivity to sample size, parameter values, and other factors.
In order to test H0, we considered N = 12, 000 at 25% and that DOF = 5 grouping intervals
will be utilized to determine whether the sample fits the RSEx model’s null hypothesis, H0.
We calculated the average value of the null hypothesis’ non-rejection numbers for different
theoretical levels (ε = 1%, 2%, 0.05, 0.1), where Y2 ≤ χ2

ε (b− 1). Table 7, which compares
the theoretical and empirical levels, shows how closely the value of the calculated empirical
level equals the value of the corresponding theoretical level. As a result, we infer that the
custom test is perfectly matched to the RSEx model.

Table 7. Empirical levels and corresponding theoretical levels, where N = 12, 000.

n↓&ε→ ε = 1% ε = 2% ε = 5% ε = 10%

n = 25 0.9933 0.9827 0.9529 0.9025
n = 50 0.9927 0.9817 0.9521 0.9019

n = 150 0.9920 0.9811 0.9515 0.9011
n = 350 0.9913 0.9806 0.9506 0.9007
n = 600 0.9904 0.9803 0.9504 0.9003

n = 1000 0.9901 0.9801 0.9502 0.9001

The results presented herein support the notion that the theoretical level of the chi-
square distribution regarding degrees of freedom corresponds to the empirical significance
level of the new statistics at which it is statistically significant. The censored data de-
rived from the RSEx distribution can, thus, be satisfactorily fitted using the proposed test,
according to this evidence.

9.2. Censored Applications Using the RRNU Statistics Y2
n

9.2.1. Example 1: The Cancer Data

According to Loprinzi et al. [32], the survival of patients with advanced lung cancer
can be expressed as n = 228, where the censored items = 63. Then, θ̂ = 2.038804 and, as in
the work of Bagdonavičius and Nikulin [23] and Bagdonavičius et al. [24], the test statistic
Y2

n elements are displayed as follows.

ˆaj,b 92.099 171.602 216.127 283.176 355.435 456.487 685.199 1022.3174
Uj,X 29 30 35 31 32 25 28 18
ej,X 5.0473 5.0473 5.0473 5.0473 5.0473 5.0473 5.0473 5.0473

The estimated matrix K̂1j and the estimated fisher matrix are as given as follows.

K̂1j 0.5039 −0.4556 0.8437 0.7772 0.4315 −0.2804 0.5140 0.2631

Conversely, the critical value is χ2
0.05(8) = 15.50731. Then, using the previous re-

sults, we find that the calculated statistic of the proposed test is Y2
n = 15.00436. Since

Y2
n = 15.00845 < χ2

0.05(8) = 15.50731, then we can say that our hypothesis H0 is accepted.
This leads us to conclude that the data regarding cancer of the lung can follow the RSEx
distribution with a 5% risk of error.
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9.2.2. Example 2: The Reliability Data Set

Following the example of Meeker and Escobar [29], n = 64 and censored items = 32.
Assuming that the data are distributed using the RSEx distribution, the maximum likeli-
hood estimator for the parameter vector is θ̂ = 2.8063305. The statistical test Y2

n has the
following components, below.

ˆaj,b 346.1493 469.359 587.708 679.112 1078.876 1089.365 1102.169 1106.444
Uj,X 11 15 6 10 6 5 6 5
ej,X 4.85103 4.85103 4.85103 4.85103 4.85103 4.85103 4.85103 4.85103

The estimated matrix K̂1j and the estimated fisher matrix are given as follows.

K̂1j −0.3236 0.78247 −0.40357 0.26059 0.29613 0.84759 0.600021 0.263458

Then, χ2
0.05(8) = 15.50731 and Y2

n = 15.00436. Then, since Y2 = 15.00436 < χ2
0.05(8) =

15.50731, then we can say that our hypothesis H0 can be accepted. This leads us to conclude
that the reliability data can follow the RSEx distribution, with a 5% risk of error.

9.2.3. Example 3: Aluminum Cells under Reduction Data

According to the data reported by Whitmore [33], who considered the times of failures
for 20 aluminum cells under reduction, the numbers of failures in 1000 days, in terms
of units are: 0.725, 0.838, 0.468, 0.853, 1.139, 0.965, 1.142, 1.317, 1.304, 1.427, 2.244*, 1.658,
1.554, 1.764, 1.990, 2.010, 2.224, 1.776, 2.279*, and 2.286*, where those values with “*” are
the censored items. Assuming that these data are distributed in accordance with the RSEx
distribution, the maximum likelihood estimator of the parameter vector is θ̂ = 1.56643. The
element of the statistic test Y2

n is given as follows.

ˆaj,b 0.9607 1.19075 1.7002 2.2945
Uj,X 4 3 5 8
ej,X 2.5381 2.5381 2.5381 2.5381

The estimated matrix K̂1j and the estimated fisher matrix are given as follows:

K̂1j −0.73894 0.26137 0.44579 0.10068

Then, we have χ2
0.05(4) = 9.4877 and Y2

n = 8.738462. Since Y2 = 8.738462 < χ2
0.05(4) =

9.4877, then, we observe that our hypothesis H0 is accepted. This leads us to conclude that
the aluminum cells under reduction data can follow the RSEx distribution with a 5% risk
of error.

9.2.4. Example 4: The Head and Neck Cancer Data

Consider the data reported by Efron [34] which represents the survival times in days
for those patients where the data are: 7, 225, 42, 34,63, 64, 440, 160, 74*, 84, 91, 83, 108, 112,
133, 129, 133, 139, 140, 146, 140, 149, 154, 185*, 157, 160, 165, 1101, 173, 176, 1226*, 218, 241,
248, 273, 277, 279*, 297, 1146, 319*, 405, 417, 1417, 420, 523*, 523, 583, 594, 1116*, 1349*,
and 1412*, where the values with “*” are the censored items. Here, θ̂ = 3.82547, and the
elements of the test statistic Y2

n can be presented as follows:

ˆaj,b 2.768 5.102 9.784 21.008 37.10087 44.464 46.903
Uj,X 7 7 20 10 2 3 2
ej,X 1.9764 1.9764 1.9764 1.9764 1.9764 1.9764 1.9764

The estimated matrix K̂1j and the estimated fisher matrix are given as follows:

K̂1j 0.3425 0.4183 0.3647 −0.1648 0.3465 −0.4137 0.0499

Since χ2
0.05(7) = 14.06714 and Y2

n = 12.948765, first, Y2 = 12.948765 < χ2
0.05(7) =

14.06714; then, we note that our hypothesis H0 can be accepted. This leads us to conclude
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that aluminum cells under the influence of reduction data can follow the RSEx distribution
with a 5% risk of error.

10. Concluding Remarks

Asymmetric probability-based distributions might be able to explain risk exposure
effectively. Usually, one main value, or, at the very least, a limited number of values are
used to describe the level of risk exposure. This work is focused on the present task of
analyzing an asymmetric probability-based distribution for the purposes of risk analysis
and distributional validation. The new distribution can be considered an alternative
distribution, with merit to some of the more well-known distributions used in the actuarial
literature, such as the Chen distribution, exponential distribution, Pareto type II distribution,
and the generalized gamma distribution.

The value-at-risk (VAR), tail-value-at-risk (TVAR), conditional-value-at-risk (CVAR),
tail variance (TV), and tail mean-variance (TMV) are just a few of the KRIs that can be
utilized as the most popular key risk indicators. For this purpose (and for other purposes
including distributional verification), in this paper, we introduce a new distribution called
the quasi-exponential model. Some mathematical characterizations of the new distribution
are derived with simplicity, in order to focus on the applied aspects of the model. Two
different ways to characterize the RSEx distribution are discussed, such as characterization
using two truncated moments and characterization using the FRF. The parameter of the new
distribution is estimated using the maximum likelihood method. For the estimating and
evaluating processes using uncensored samples and the uncensored maximum likelihood
method, the BB algorithm is utilized. A simulation study is conducted to evaluate the
Rao–Robson–Nikulin (RRNU) statistics used in the uncensored case. The building of
the RRNU statistic for the RSEx model in light of the uncensored case is discussed in
detail. The first uncensored data represent the breaking stress of fibers, the second is the
heat exchanger tube crack data, the third is the strengthening of fibers, and the fourth
is the gene-based breast cancer data. Four real-world data applications are provided in
response to an uncensored situation. Additionally, a simulation study for evaluating RRNU
statistics according to the censored case is presented, along with the construction of the
RRNU statistic for the RSEx model in the censored case. Four censored real-world data
applications are also analyzed in terms of the censored case, including data on lung cancer,
capacitors, aluminum cells under reduction, and head and neck cancer.

We expect that the RSEx distribution will have a major role in many potential studies,
including presenting a new discrete distribution based on the RSEx distribution, offering a
new and discrete G family of distribution based on the RSEx distribution, presenting some
continuous G families based on this, and presenting new generalizations by adding new
features to the RSEx baseline model.

Regarding the results of the analysis and the assessment of actuarial risks using the
RSEx distribution, we highlight the following main findings:

• VARq(X), TVARq(X), and TMVq(X) increase when q increases for all sample sizes
and initial parameter values.

• TVq(X) and ELq(X) decrease when q increases for all sample sizes and initial param-
eter values.

• It is clear that the results of some actuarial risk assessments have stabilized with the
increase in the sample size. For example, TVq(X) started with 0.06527 and ended with
0.01708, while ELq(X) started with 0.32382 and ended with 0.14764.

Regarding the risk assessment under the influence of the insurance data:

(1) VARq

(
X|1−q=0.3

)
< . . . < VARq

(
X|1−q=1%

)
, TVARq

(
X|1−q=0.3

)
< . . . < TVARq

(
X|1−q=1%

)
;

(2) TMVq(
(

X|1−q=0.3

)
< . . . < TMVq(

(
X|1−q=1%

)
, TV

(
X|1−q=0.3

)
> . . . > TV

(
X|1−q=1%

)
;

(3) ELq
(

X|1−q=0.3

)
> . . . > ELq

(
X|1−q=1%

)
.
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(4) The VARq is monotonically increasing, starting with 340.898174 and ending with
341.794290; the TVARq is monotonically increasing, starting with 341.221996 and end-
ing with 341.941930; the TVq, the TMVq, and the MEL are monotonically increasing
from 341.254631 to 341.950471. However, the TVq is monotonically decreasing, start-
ing with 0.06527 and ending with 0.017083, while the TVq is monotonically decreasing,
starting with 0.323822 and ending with 0.14764.

With regard to the results of the distributional validation using the RSEx distribution,
we highlight the following main findings:

(1) For the uncensored reliability data of the carbon fibers: Y2 = 12.442635 < χ2
0.01(6) =

12.59159. This means that the RSEx model can model the reliability data of the carbon
fibers, or the reliability data of the carbon fibers can be represented and modeled
using the RSEx distribution.

(2) For the uncensored reliability heat data: Y2 = 18.904681 < χ2
0.01(12) = 21.02607.

This means that the RSEx model can model a heat exchanger tube crack or the heat
exchanger tube crack data can be represented and modeled using this distribution.

(3) For the uncensored reliability strengths data: Y2 = 12.442635 < χ2
0.05(6) = 12.59159.

This means that the RSEx model is able to model data on the strength of glass fibers,
or the data on the strength of glass fibers can be represented and modeled using
this distribution.

(4) For the uncensored gene-based breast cancer data: Y2 = 16.64932 < χ2
0.05(9) =

16.91898. This means that the RSEx model can model the gene-based breast cancer
data or the gene-based breast cancer data can be represented and modeled using
this distribution.

(5) For the uncensored lung cancer data: Y2
n = 15.00845 < χ2

0.05(8) = 15.50731; then,
hypothesis H0 is accepted, which leads us to conclude that the data on lung cancer
can follow an RSEx distribution with a 5% risk of error.

(6) For the uncensored lung cancer data: Y2
n = 15.00436 < χ2

0.05(8) = 15.50731, then, H0
is accepted, which means that the reliability data can follow an RSEx distribution with
a 5% risk of error.

(7) For the uncensored lung cancer data: Y2
n = 8.738462 < χ2

0.05(4) = 9.4877; then, we
accept H0, which leads us to conclude that the aluminum cells under reduction data
can follow an RSEx distribution with a 5% risk of error.

(8) For the uncensored lung cancer data: Y2
n = 12.948765 < χ2

0.05(7) = 14.06714; then,
hypothesis H0 is accepted, which leads us to conclude that the aluminum cells under
the influence of reduction data can follow an RSEx distribution with a 5% risk of error.
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Abbreviations

RSEx right-skewed exponential distribution
FRF failure rate function
PDF probability density function
Ex exponential distribution
RV random variable
CDF cumulative distribution function
KRIs key risk indicators
VAR the value-at-risk
CVAR conditional-value-at-risk
TV tail variance
TVAR tail-value-at-risk
TMV tail mean-variance
BB Barzilai–Borwein algorithm
RRNU Rao–Robson–Nikulin statistic
PaII Pareto type II distribution
GG generalized gamma distribution
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