
Citation: Alrumayh, A.; Khogeer,

H.A. A New Two-Parameter Discrete

Distribution for Overdispersed and

Asymmetric Data: Its Properties,

Estimation, Regression Model, and

Applications. Symmetry 2023, 15,

1289. https://doi.org/10.3390/

sym15061289

Academic Editor: Dmitry V. Dolgy

Received: 27 May 2023

Revised: 10 June 2023

Accepted: 15 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A New Two-Parameter Discrete Distribution for Overdispersed
and Asymmetric Data: Its Properties, Estimation, Regression
Model, and Applications
Amani Alrumayh 1,* and Hazar A. Khogeer 2

1 Department of Mathematics, College of Science, Northern Border University,
Arar P.O. Box 73312, Saudi Arabia

2 Department of Mathematical Sciences, College of Applied Sciences, Umm Al-Qura University,
Makkah P.O. Box 21955, Saudi Arabia; hakhogeer@uqu.edu.sa

* Correspondence: amani.ahmed@nbu.edu.sa

Abstract: A novel discrete Poisson mixing probability distribution with two parameters has been de-
veloped by combining the Poisson distribution with the transmuted moment exponential distribution.
It is possible to deduce several mathematical properties, such as the moment-generating function,
ordinary moments, moments about the mean, skewness, kurtosis, and the dispersion index. The
maximum likelihood estimation method is utilized to estimate the model’s parameters. A thorough
simulation study is utilized to determine the behavior of the generated estimators. Estimating model
parameters using a Bayesian methodology is another primary topic of this research. The behavior of
Bayesian estimates is evaluated by first charting the trace, then generating 1,005,000 iterations of the
Markov chain Monte Carlo method. In addition to this, we suggest a new count regression model
that uses Poisson and negative binomial models in an alternating fashion. In conclusion, asymmetric
datasets derived from various research areas are utilized for practical applications.

Keywords: Poisson mixture; transmuted moment exponential; inference; simulation; regression;
data analysis

1. Introduction

Researchers in a wide variety of sectors, including insurance, medicine, economics,
social sciences, and biometrics, have recently shown a growing interest in count data
modeling. Both symmetric and asymmetric representations of these data are possible. A
few examples of discrete random variables include the following: the number of spots
found on the lungs of mine workers; the number of deaths caused by particular diseases; the
number of deaths caused by earthquakes; the frequency with which a photocopier is used;
the frequency with which a light switch is turned on or off; the number of cigarettes smoked
on a daily basis; and the length of time that leukemia patients spend in an observation
ward (typically measured in days) or their survival (measured in weeks).

Continuous growth is being seen in the variety of data, which includes both explicit
and unstated information. It is still difficult to model these data using the current distri-
butions because of the limitations they have. Even though there are a number of discrete
distributions that can be used to explain this kind of data, researchers are always con-
ducting fresh studies to find new discrete distributions that are suitable for a variety of
situations. Over the past few years, researchers have developed new models to model count
data, which has led to the development of various methodologies. To represent discrete
survival data, one of these strategies involves discretizing a sizable number of continuous
life distributions. Examples of discrete distributions that were created from continuous
distributions include the discrete Weibull [1], discrete Burr and Pareto [2], discrete inverted
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Topp–Leone [3], discrete Ramos–Louzada [4], discrete power Ailamujia [5], discrete mo-
ment exponential [6], new discrete Ramos–Louzada [7], new discrete XLindley [8], and
discrete logistic exponential distributions [9].

The binomial decay transform is another method that has been proposed. Examples
of distributions that were produced using this method include the uniform Poisson [10],
uniform geometric [11], binomial discrete Lindley [12], and uniform Poisson–Ailamujia [13]
distributions.

Dispersion mixtures are a popular technique for modeling inhomogeneous popula-
tions. Some examples are the Poisson generalized Pareto [14], Poisson Lindley [15], Poisson
pseudo-Lindley [16], Poisson Xgamma [17], Poisson XLindley [18], Poisson moment expo-
nential [19,20], Poisson transmuted record type exponential [21], and Poisson weighted
exponential [22] distributions. Several mixed distributions have been proposed.

In this study, a new two-parameter extended Poisson distribution is proposed by
compounding a Poisson distribution with a transmuted moment exponential distribution.
This research has the following main goals:

• The first thing that needs to be accomplished is to create a new two-parameter Poisson
transmuted moment exponential distribution. This may be performed by combining
the Poisson distribution with the transmuted moment exponential distribution. When
compared to existing discrete distributions, the moments and related measures of
the new model may be determined analytically, and it possesses a high modeling
capability. Additionally, the new model is extremely flexible.

• The model parameters are estimated using the renowned maximum likelihood estima-
tion approach and a comprehensive simulation study to illustrate the pattern of these
derived ML estimators.

• A new count regression model is also proposed to replace some existing count regres-
sion models.

• Two asymmetric datasets from different real-life areas are utilized to show the flex-
ibility of the new distribution over some well-known probability distributions and
regression models.

• We also estimate the model parameters using the Bayesian approach.

The remainder of the article is structured as follows: Section 2 covers the derivation
of the mathematical features of a new discrete distribution. Section 3 discusses param-
eter estimation using the maximum likelihood (ML) approach and Bayesian estimation
techniques. In Section 4, simulation research is conducted to check the performance of the
ML estimation approach. Section 5 offers a new count regression model and compares
it to existing models’ performances. Real-world applications using asymmetric data are
described in Section 6. The findings of our investigation are presented in Section 7.

2. Derivation of New Model

Let a random variable, X, follow a transmuted moment exponential distribution, i.e.,
X ∼ TMEx(β, α). Then, its probability density function (PDF) is given by

f (x; β) =

(
1− α + 2α

(
1 +

x
β

)
exp

(
− x

β

))
x
β2 exp

(
− x

β

)
. (1)

If a random variable, X, has the stochastic form shown below, it is said to follow the
Poisson transmuted moment exponential distribution:

(X|λ) ∼ P0(λ)
(λ|β, α) ∼ TMEx(β, α)

λ > 0, β > 0, and 0 < α < 1. The unconditional distribution of X is known as the
Poisson transmuted moment exponential distribution and is denoted by PTMEx(β, α). Its
probability mass function (pmf) is calculated as follows:
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P(X = x) =
∫ ∞

0 P
(
X = x

λ

)
fΛ(λ; β, α)dλ,

=
∫ ∞

0
e−λλx

x!

(
1− α + 2α

(
1 + λ

β

)
exp

(
− λ

β

))
λ
β2 exp

(
− λ

β

)
dλ,

= (1 + x)

(
(1−α)

(
1+ 1

β

)−x

(1+β)2 +
2α
(

2+β
β

)−x
(4+x+β)

(2+β)3

)
,

= βx(1 + x)
(

(1−α)

(1+β)2+x + 2α(4+x+β)

(2+β)3+x

)
.

(2)

Plots of the pmf for the PTMEx distribution for different parameter selections are
displayed in Figure 1, which may be found below. The behavior of the pmf demonstrates
that the probabilities can take on a declining form and be unimodal. The parameter values
determine the geometry of the pmf, which may or may not be symmetrical.

Further, the cumulative distribution function (cdf) of the PTMEx distribution is

F(x) = β2x

(1+β)2+x(2+β)3+x

(
(2 + β)3

(
(1 + β)2

(
(1+β)(2+β)

β2

)x
− β

(
2+β

β

)x
(2 + x + β)

)
+αβ

(
(2 + β)3

(
2+β

β

)x
(2 + x + β)

−
(

1 + 1
β

)x
(1 + β)2(10 + x2 + β(6 + β) + x(7 + 2β)

))) . (3)

Moments and Associated Measures

In this subsection, some moment metrics are used to study some aspects of the PTMEx
distribution.

The moment-generating function can be derived as

MX(t) = E
(
etX),

=
∞
∑

x=0
etx

{
(1 + x)

(
(1−α)

(
1+ 1

β

)−x

(1+β)2 +
2α
(

2+β
β

)−x
(4+x+β)

(2+β)3

)}
,

= 1−α

(1+β−t β)2 +
2α

(2+β−t β)2 − 4α

(−2+(−1+t)β)3 .

(4)

The first four moments of X can be derived as

E(X) = 1
4 (8β− 3αβ),

E
(
X2) = 1

4
(
8β− 3αβ + 24β2 − 15αβ2),

E
(
X3) = 1

4
(
8β− 3αβ + 72β2 − 45αβ2 + 96β3 − 75αβ3),

and

E
(

X4
)
=

1
4

(
8β− 3αβ + 168β2 − 105αβ2 + 576β3 − 450αβ3 + 480β4 − 420αβ4

)
.

The variance (var), dispersion index (DI), and coefficient of variation (CV) of the
PTMEx distribution are given by

Var(X) = 1
16 β(32(1 + β)− 3α(4 + (4 + 3α)β)),

DI(X) =
β(32(1+β)−3α(4+(4+3α)β))

4(8β−3αβ)
,

and
CV(X) =

(8−3α)β√
β(32(1+β)−3α(4+(4+3α)β))

.

The third and fourth moments about the mean are

µ3 = 1
32 β
(
−27α3β2 − 54α2β(1 + β) + 64(1 + β)(1 + 2β)− 24α(1 + β(3 + β))

)
,

µ4 = 1
256 β

(
−243α4β3 − 648α3β2(1 + β)− 576α2β

(
1 + 6β + 4β2)+ 512(1 + β)(1 + 12β(1 + β))

−192α(1 + β)(1 + 6β(3 + 2β))).
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Figure 1. The pmf plots of the PTMEx distribution for some parametric values. 
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Then, the coefficients of skewness and kurtosis are given by

CS = µ3

(µ2)
3
2

CS =
2β(−27α3β2−54α2β(1+β)+64(1+β)(1+2β)−24α(1+β(3+β)))

(β(32(1+β)−3α(4+(4+3α)β)))3/2 ,

and

CK = µ4

(µ2)
2

CK = − 243α4β3+648α3β2(1+β)+576α2β(1+6β+4β2)−512(1+β)(1+12β(1+β))+192α(1+β)(1+6β(3+2β))

β(32(1+β)−3α(4+(4+3α)β))2 .

Table 1 provides some numerical values for the PTMEx distribution’s mean, variance,
DI, skewness, and kurtosis for various parameter choices. The PTMEx model, with regard to
its mean and variance, is a decreasing function of α, while it increases when its β parameter
increases. The PTMEx distribution is overdispersed and asymmetrically right-skewed.

Table 1. Values of some computational statistics for PTMEx distribution.

Parameters Measures

β α Mean Variance Skewness Kurtosis CV DI

0.5

−0.8 1.3000 1.8600 1.3695 5.5696 1.0491 1.4308
−0.5 1.1875 1.7461 1.4609 5.9067 1.1128 1.4704
−0.2 1.0750 1.6069 1.5621 6.3336 1.1792 1.4948
0.0 1.0000 1.5000 1.6330 6.6667 1.2247 1.5000
0.2 0.9250 1.3819 1.7037 7.0283 1.2708 1.4939
0.5 0.8125 1.1836 1.7963 7.5506 1.3390 1.4567
0.8 0.7000 0.9600 1.8244 7.6852 1.3997 1.3714

1.0

−0.8 2.6000 4.8400 1.2464 5.2747 0.8462 1.8615
−0.5 2.3750 4.6094 1.3275 5.5368 0.9040 1.9408
−0.2 2.1500 4.2775 1.4267 5.9217 0.9620 1.9895
0.0 2.0000 4.0000 1.5000 6.2500 1.0000 2.0000
0.2 1.8500 3.6775 1.5751 6.6303 1.0366 1.9878
0.5 1.6250 3.1094 1.6735 7.2268 1.0851 1.9135
0.8 1.4000 2.4400 1.6813 7.3870 1.1157 1.7429

1.5

−0.8 3.9000 8.9400 1.2105 5.2069 0.7667 2.2923
−0.5 3.5625 8.5898 1.2847 5.4302 0.8227 2.4112
−0.2 3.2250 8.0119 1.3840 5.7992 0.8777 2.4843
0.0 3.0000 7.5000 1.4606 6.1333 0.9129 2.5000
0.2 2.7750 6.8869 1.5412 6.5368 0.9457 2.4818
0.5 2.4375 5.7773 1.6499 7.2096 0.9861 2.3702
0.8 2.1000 4.4400 1.6559 7.4460 1.0034 2.1143

3. Parameter Estimation

In this section, the parameters of the proposed distribution are estimated using maxi-
mum likelihood and Bayesian estimation techniques. Further, a comprehensive simulation
study is utilized to identify efficient estimation methods for the PTMEx distribution.

3.1. Maximum Likelihood Estimation
Let X1, X2, . . . , Xn be a random sample of size n from the PTMEx distribution and

x1, x2, . . . , xn be the observations of X1, X2, . . . , Xn. The log-likelihood function is

l(α, β) =
n

∑
i=1

xilog(β) +
n

∑
i=1

(1 + x i) +
n

∑
i=1

log

{
(1− α)

(1 + β)2+xi
+

2α(4 + x + β)

(2 + β)3+xi

}
. (5)

The maximum likelihood estimates (MLEs) can be derived from Equation (5) by
differentiating for parameters. Now, by solving ∂l(α,β)

∂α = 0 and ∂l(α,β)
∂β = 0, we obtain the

following non-linear equations:
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n

∑
i=1

2(2 + β)−3−xi (4 + xi + β)− (1 + β)−2−xi

(1− α)(1 + β)−2−xi + 2α(2 + β)−3−xi (4 + xi + β)
= 0, (6)

and

n

∑
i=1

xi
β
+

n

∑
i=1

(2 + xi)
(
(α− 1)(1 + β)−3−xi − 2α(2 + β)−4−xi (5 + x + β)

)
(1− α)(1 + β)−2−xi + 2α(2 + β)−3−xi (4 + x + β)

= 0. (7)

The solution of Equations (6) and (7) gives the MLEs. As we can see, obtaining the
exact solution to these equations is not possible, so we solve them using iterative procedures.
For this purpose, we use the “optim” command using R software.

3.2. Bayesian Estimation

A Bayesian estimation procedure is also utilized to estimate the PTMEx distribution
parameters. For a Bayesian estimation, it is essential to specify a prior distribution for each
parameter of the PTMEx distribution. We can assume a gamma distribution for β and a
uniform distribution for the α parameter. The pdfs of the gamma and uniform distributions,
with parameters, are as follows:

β ∼ Gamma(a, b), a, b > 0, (8)

and
α ∼ Uni f orm(c, d), c, d > 0 (9)

where a, b, c, and d are known as the hyperparameters.
The joint posterior density is given by

ψ(a, b, c, d|x) ∝ Ln × ψ(β)× ψ(α). (10)

where Ln is the likelihood function of the PTMEx distribution, ψ(β) is the pdf of the gamma
distribution, and ψ(α) is the pdf of the uniform distribution. Equation (10) makes it clear
that there is no analytical way to obtain Bayesian estimates. As a result, we use the R (4.3.0)
program to implement the Metropolis–Hastings algorithm of the Markov chain Monte
Carlo (MCMC) methodology, a fantastic simulation tool.

For the Bayesian estimation, we generate 1,005,000 samples from the joint posterior
distribution. To eliminate the effect of the initial values in the iterative procedure, we use
a burn-in phase of 5000. A thinning interval of 200 is considered to have approximately
independent samples. The Bayes parameter estimates are calculated as the means of
samples chosen from the joint posterior distribution. Further, trace plots and the Geweke
diagnostic are used to monitor the convergence of the simulated sequences.

Metropolis–Hastings (M-H) algorithm

Since the marginal posterior density lacks a closed form, Bayesian estimates cannot
be obtained analytically. It is sampled using the Metropolis–Hastings (M-H) method. The
M-H algorithm operates as follows:

1. Start with the initial parameter values
(
α0, β0).

2. Set the iteration counter to j = 1.

3. Simulate the
∼
α and

∼
β from the normal proposal distribution N

(
α(j−1), var

(
α(j−1)

))
and N

(
β(j−1), var

(
β(j−1)

))
, respectively.

4. Then, evaluate the acceptance probability:

ψ(α) = min

1,
π∗
(∼

α
∣∣∣β(j−1)

)
π∗
(

α(j−1)
∣∣∣β(j−1)

)
 and ψ(β) = min

1,
π∗
(∼

β

∣∣∣∣β(j−1)
)

π∗
(

β(j−1)
∣∣∣α(j−1)

)
 (11)
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5 Then, generate u1 and u2 from the uniform distribution Uni f orm(0, 1).
6 If u1 < ψ(α), we consider α(j) = α∗; otherwise, set α(j) = α(j−1).
7 If u2 < ψ(β), we consider β(j) = β∗; otherwise, set β(j) = β(j−1).
8 Change the counter from j to j + 1.
9 To obtain an accurate approximation for the estimates, we must repeat the procedures

from (3)–(8). N = 10000 repetitions to obtain values for the parameters, and this
sample can be stated as follows:

(
α(1), β(1)

)
, . . . ,

(
α(N), β(N)

)
.

4. Simulation

In this section, we conduct a comprehensive Monte Carlo simulation study to evaluate
the performances of derived estimators. The absolute average estimates (AEs), mean relative
errors (MREs), and mean square errors (MSEs) of five estimators are calculated in a simulation
study with 10,000 iterations for sample sizes of n = 20, 50, 100, and 200. The following
parameter settings are considered: set I : (β = 0.5; α = −0.8), set II : (β = 0.5; α = −0.5),
set III : (β = 0.5; α = −0.2), set IV : (β = 0.5; α = 0.5), set V : (β = 1.5; α = 0.5), and set VI :
(β = 1.5; α = −0.5). All simulations generate samples from the PTMEx distribution. Table 2
provides the AEs, MREs, and MSEs of the estimators. The results show that the MREs and
MSEs for the combination of parameters tend toward zero as the sample size increases.

Table 2. Parameter estimates, MSEs, and MREs of θ based on the maximum likelihood method.

Parameter n AE MRE MSE

β̂ α̂ β̂ α̂ β̂ α̂

β = 0.5
α = −0.8

50 0.5542 −0.5740 0.1083 −0.2825 0.0233 0.3661
100 0.5448 −0.6135 0.0896 −0.2332 0.0175 0.2813
200 0.5252 −0.6892 0.0504 −0.1385 0.0084 0.1649
500 0.5129 −0.7327 0.0259 −0.0841 0.0038 0.0923

1000 0.5025 −0.7884 0.0049 −0.0145 0.0012 0.0395

β = 0.5
α = −0.5

50 0.5262 −0.4536 0.0524 −0.0928 0.0209 0.3593
100 0.5415 −0.3757 0.0830 −0.2486 0.0198 0.3749
200 0.5284 −0.4502 0.0567 −0.0996 0.0135 0.2745
500 0.5222 −0.4367 0.0444 −0.1266 0.0096 0.2053

1000 0.5058 −0.4864 0.0117 −0.0273 0.0031 0.0846

β = 0.5
α = −0.2

50 0.4960 −0.3877 0.0079 −0.9385 0.0199 0.4136
100 0.5086 −0.2877 0.0172 −0.4385 0.0156 0.3724
200 0.5186 −0.2150 0.0371 −0.0751 0.0139 0.3089
500 0.5213 −0.1594 0.0425 −0.2032 0.0096 0.2134

1000 0.5159 −0.1697 0.0317 −0.1514 0.0066 0.1415

β = 0.5
α = 0.5

50 0.5262 −0.4536 0.0524 −0.0928 0.0209 0.3593
100 0.5415 −0.3757 0.083 −0.2486 0.0198 0.3749
200 0.5284 −0.4502 0.0567 −0.0996 0.0135 0.2745
500 0.5222 −0.4367 0.0444 −0.1266 0.0096 0.2053

1000 0.5058 −0.4864 0.0117 −0.0273 0.0031 0.0846

β = 1.5
α = 0.5

50 1.5044 0.4211 0.0029 0.1578 0.0998 0.2871
100 1.4681 0.3977 0.0213 0.2046 0.0831 0.2145
200 1.4856 0.4152 0.0096 0.1695 0.0675 0.1776
500 1.4949 0.4434 0.0034 0.1133 0.0509 0.1112

1000 1.5066 0.4720 0.0044 0.0560 0.0383 0.0841

β = 1.5
α = −0.5

50 1.5703 −0.4694 0.0469 −0.0611 0.1397 0.2699
100 1.5543 −0.4627 0.0362 −0.0747 0.0826 0.1893
200 1.5438 −0.4605 0.0292 −0.0790 0.0633 0.1381
500 1.5131 −0.4930 0.0088 −0.0140 0.0265 0.0659

1000 1.5019 −0.5030 0.0013 −0.0060 0.0064 0.0209
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5. PTMEx Regression Model

As was stated previously, the PTMEx distribution is regarded as having an excessively
high degree of dispersion because the value of its dispersion parameter is greater than
one. When dealing with datasets that have an excessive level of dispersion, the Poisson (P),
negative binomial (NB), and Poisson quasi-Lindley (PQL) distributions can be replaced by
the PTMEx distribution. This is due to the fact that the PTMEx distribution satisfies all three
of these distributions’ criteria. In the following section of this paper, a new count regression
model that is based on the PTMEx distribution is described. Let β = 4µ/(8− 3α). Then,
the pdf of the PTMEx distribution is given by

p(yi; α, µi) = (4µi/(8− 3α))yi × (1 + yi)×
(

(1− α)

(1 + (4µi/(8− 3α)))2+yi
+

2α(4 + yi + (4µi/(8− 3α)))

(2 + (4µi/(8− 3α)))3+yi

)
, (12)

where µ > 0, α > 0, and E(Yi|α, µi) = µi.
We assume that the relationship between the response variable and the explanatory

variables is in log-linear form, i.e.,

µi = exp
(

ηxT
i

)
, i = 1, 2, . . . , n, (13)

where xT
i =

(
xi1, xi2, . . . , xip

)
is the vector of the covariates and η =

(
η0, η1, η2, . . . , ηp

)T is
the unknown vector of the regression coefficients. Substituting Equation (13) into Equation
(12), the pmf of

(
Yi
∣∣xT

i
)
∼ PTMEx(α, µi) is defined as a linear model form.

p(yi; α, µi) =
(
4exp

(
ηxT

i
)
/(8− 3α)

)yi × (1 + yi)

×
(

(1−α)

(1+(4exp(ηxT
i )/(8−3α)))

2+yi

+
2α(4+yi+(4exp(ηxT

i )/(8−3α)))

(2+(4exp(ηxT
i )/(8−3α)))

3+yi

) , (14)

The unknown model parameters can be estimated using the MLE method.

6. Empirical Study

In this section, two datasets are analyzed to prove the usefulness of the PTMEx distri-
bution compared with the Poisson (Poi), Poisson moment exponential (PMEx) [19], discrete
Burr (DBurr) [2], discrete Bilal (DB) [23], and discrete inverted Topp–Leone (DITL) [3] distri-
butions. The maximum likelihood estimates (MLEs) are provided with adequacy measures
such as the negative maximum log-likelihood (−l), AIC, BIC, goodness-of-fit statistic

(
χ2),

respective degrees of freedom (df), and p-values. Using the second and third datasets, the
efficiency of the PTMEx regression model is examined by comparing the model with the
Poisson (P), negative binomial (NB), Poisson generalized Lindley (PGL) [24], and Poisson
transmuted record type exponential (PTRTE) [21] regression models.

6.1. European Corn Borer Data

The first dataset, with 120 observations, is associated with a biological experiment on
a European corn borer [25], and the observations are presented in Table 3. The experiment
was performed randomly on 8 hills in 15 replications, and the examiner counted the number
of borers per hill of corn. The estimates, along with the comparison measures of the PTMEx
distribution and the other competitive distributions, are listed in Table 3. The estimated
pmfs of the fitted models over the observed data are presented in Figure 2. From Table 3
and Figure 2, we can infer that the PTMEx distribution yields a better fit compared to the
other distributions.
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Table 3. The MLEs and goodness-of-fit measures of all fitted models for the first dataset.

Count Observed
Expected

PTMEx DBurr PMEx DB DITL Poisson

0 43 40.417 33.438 39.558 32.741 52.189 27.226

1 35 33.658 31.574 33.691 39.589 30.424 40.385

2 17 21.052 22.360 21.521 24.275 14.112 29.951

3 11 11.818 14.076 12.220 12.505 7.4663 14.809

4 5 6.3101 8.3071 6.5047 5.9678 4.3900 5.4915

5 4 3.2874 4.7064 3.3240 2.7359 2.7906 1.6291

6 1 1.6923 2.5924 1.6514 1.2256 1.8811 0.4027

7 2 0.8660 1.3988 0.8037 0.5414 1.3271 0.0853

8 2 0.8978 1.5473 0.7259 0.4193 5.4195 0.0188

Total n = 120 120 120 120 120 120 120

MLE
β̂ 0.89444 0.51916 0.74161 2.3767 1.9840 1.4833

α̂ 0.46514 2.35785 - - - -

G
O

F
M

ea
su

re
s

−l 200.82 204.29 201.22 204.68 205.15 219.19

AIC 405.64 412.59 404.44 411.35 412.30 440.38

BIC 411.22 418.16 407.23 414.14 415.09 443.16

χ2 2.0825 6.5310 2.7268 9.6431 6.9771 21.761

df 3.0 3.0 4.0 4.0 4.0 3.0

p-value 0.72058 0.08845 0.60450 0.04689 0.13710 <0.0001
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The next step is to estimate the parameters of the PTMEx distribution using the
previously given corn borer dataset using the Bayesian approach. The distributions of the
posterior samples for both parameters are illustrated in Figure 3. The trace plots depict
the development of the MCMC drawings across iterations, suggesting that the produced
samples converge well. The autocorrelation function (ACF) plots reveal that the posterior
samples are uncorrelated. The corresponding Geweke z-scores for β and α are 0.2148 and
0.4915, also suggesting the satisfactory convergence of the samples to a stable distribution.
The posterior means for β and α are β̂ = 0.8582 (95% HDI: 0.5457 to 1.1705) and α̂ = 0.2974
(95% HDI: −0.4441 to 0.9997). We can note that the ML and Bayesian estimates are fairly
close to each other.
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6.2. Length of Hospital Stay Data

The second dataset contains AZPRO data related to cardiovascular patients. This
dataset comes from the COUNT package in R software. The observations were taken from
Arizona cardiovascular patients’ files. The details of the variables are as follows:

yi = length of patients’ stays at the hospital.
x1i = cardiovascular procedure (1 = CABG, 0 = PTCA).
x2i = gender (1 = male, 0 = female).
x3i = admission type (1 = urgent, 0 = elective).
x4i = age (1 = age > 75, 0 = age ≤ 75).

The systematic components of the regression models are defined by

µi = exp(η0 + η1x1i + η2x2i + η3x3i + η4x4i).

The mean and variance of the dependent variable are calculated as 8.8309 and 47.973,
stating clear overdispersion. Table 4 gives the parameter estimates and results of the
information criteria.

Table 4 indicates that all parameter estimates are significant at the 5% level of sig-
nificance because the p-values for all parameter estimates are less than 5%. Further, the
table makes it abundantly evident that the PTMEx regression model has the highest log-
likelihood value, and the model’s AIC also shows that it fits the data better than the other
two models.
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Table 4. The findings of fitted count regression models of AZPRO data.

Para.
P NB PQL PTMEx

MLEs (SE) p-Value MLEs (SE) p-Value MLEs (SE) p-Value MLEs (SE) p-Value

η0
1.4560

(0.0158) <0.0001 1.0780
(0.0298) <0.0001 1.3624

(0.0402) <0.0001 1.3907
(0.0331) <0.0001

η1
0.9603

(0.0122) <0.0001 1.0866
(0.0243) <0.0001 0.9746

(0.0317) <0.0001 0.9877
(0.0260) <0.0001

η2
−0.1239
(0.0118) <0.0001 0.0724

(0.0249) 0.0030 −0.1273
(0.0332) 0.0001 −0.1275

(0.0272) <0.0001

η3
0.3266

(0.0121) <0.0001 0.5319
(0.0249) <0.0001 0.3961

(0.0329) <0.0001 0.3909
(0.0270) <0.0001

η4
0.1222

(0.0124) <0.0001 0.3161
(0.3161) <0.0001 0.1180

(0.0353) <0.0001 0.1224
(0.0289) <0.0001

α - - - - 0.8893
(0.0016) - 0.9843

(0.0109) -

−l 11,190 10,578 10,919 10,352
AIC 22,390 21,169 21,849 20,714
BIC 22,421 21,206 21,880 20,745

7. Conclusions

In the event that there is overdispersion, it is unavoidable to locate new counting
models. These models will offer a greater number of opportunities to better fit the actual
datasets by selecting the appropriate models in accordance with the circumstances. In
light of this, a novel two-parameter overdispersed distribution known as the “Poisson
transmuted moment exponential distribution” is presented and researched here. The
explicit expressions of the moment-generating function, moments, and others are among the
fundamental qualities that were derived. Other fundamental properties that were derived
include the mean, variance, and kurtosis. Both a classical and a Bayesian approach were
utilized in order to estimate the model parameters. We also developed a new regression
model for count data that was based on the PTMEx distribution. We compared this
model to previous regression models that were based on actual data. This development
is substantially more important. The first real-world asymmetric dataset, consisting of
biological experiment data, was used to highlight the usage of the new methodology. The
second real-world asymmetric dataset, consisting of information on the length of hospital
stays, was also used.

8. Future Work

In the future, there may be several potential areas of work related to the new two-
parameter discrete distribution. Here are some possibilities:

Further investigation of distribution properties: Researchers may delve deeper into
exploring the mathematical properties of the proposed distribution. This could involve
deriving additional moments, investigating the shape of the probability mass function, or
exploring relationships with other existing distributions.

1. Estimation methods: Future work could focus on developing efficient and accurate
estimation methods for the parameters of the proposed distribution. This could
involve maximum likelihood estimation, Bayesian estimation, or robust estimation
techniques. Researchers may also explore the properties of the estimators, such as
their asymptotic behavior and efficiency.

2. Regression modeling: The new discrete distribution could be incorporated into regres-
sion models to analyze its performance in predicting or explaining the relationships
between variables. This could involve developing regression frameworks, such as
generalized linear models or zero-inflated models, that utilize the proposed distribu-
tion as the response variable. Researchers could also explore model selection criteria
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and compare the performance of the new distribution with existing ones in regression
settings.

3. Simulation studies: Future research could involve conducting extensive simulation
studies to evaluate the behavior of the proposed distribution under various scenarios.
This could include examining its robustness to violations of assumptions, assessing
the accuracy of parameter estimation methods, and comparing the performances of
statistical tests based on the new distribution.

4. Applications: Further exploration of practical applications could be an area of focus.
Researchers may investigate real-world datasets with overdispersed and asymmetric
characteristics to assess the adequacy of the proposed distribution in modeling such
data. This could include applications in fields such as finance, epidemiology, ecology,
or social sciences.

5. Software development: To facilitate the adoption and usage of the new distribu-
tion, researchers may develop software packages or functions in statistical software
platforms (e.g., R and Python) for estimating parameters, conducting inference, and
implementing regression models based on the proposed distribution. This would
make it easier for practitioners to apply the distribution in their own research or data
analysis.

Overall, future work on the new two-parameter discrete distribution could involve a
combination of theoretical investigations, methodological developments, empirical studies,
and practical applications to establish its properties, estimation procedures, regression
modeling capabilities, and usefulness in various fields.
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7. Aljohani, H.M.; Akdoğan, Y.; Cordeiro, G.M.; Afify, A.Z. The uniform Poisson–Ailamujia distribution: Actuarial measures and

applications in biological science. Symmetry 2021, 13, 1258. [CrossRef]
8. Altun, E. A new one-parameter discrete distribution with associated regression and integer-valued autoregressive models. Math.

Slovaca 2020, 70, 979–994. [CrossRef]
9. Altun, E. A new two-parameter discrete poisson-generalized Lindley distribution with properties and applications to healthcare

data sets. Comput. Stat. 2021, 36, 2841–2861. [CrossRef]
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