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Abstract: This paper explores the numerical optimization of heat and mass transfer in the buoyancy-
driven Al2O3-water nanofluid flow containing electrified Al2O3-nanoparticles adjacent to a symmetrically-
vertical plane wall. The proposed model becomes a set of nonlinear problems through similarity
transformations. The nonlinear problem is solved using the bvp4c method. The results of the
proposed model concerning heat and mass transfer with nanoparticle electrification and buoyancy
parameters are depicted in the Figures and Tables. It was revealed that the electrification of nanopar-
ticles enhances the heat and mass transfer capabilities of the Al2O3 water nanoliquid. As a result,
the electrification of nanoparticles could be an important mechanism to improve the transmission
of heat and mass in the flow of Al2O3-water nanofluids. Furthermore, the numerical solutions of
the nanofluid model of heat/mass transfer using the deep neural network (DNN) along with the
procedure of Bayesian regularization scheme (BRS), DNN-BRS, was carried out. The DNN process
is provided by taking eight and ten neurons in the first and second hidden layers along with the
log-sigmoid function.

Keywords: nanofluid; heat and mass transfer; electrified nanoparticles; symmetrically-vertical heated
surface; neural network and BVP4

1. Introduction

Conventional working fluids cannot prevent overheating due to the increased heat
output in modern systems because they require higher heat transfer rates. It happens
due to the low thermal performance of the traditional fluids. The thermal performance of
the fluids can be improved by dispersing the solid nanoparticles in the base solvent. To
resolve this issue, a new kind of fluid, known as nanofluid, is defined by stably dispersing
nanoparticles in a size range of 1 to 50 nm in conventional fluids. Choi [1] has intro-
duced the term “nanofluid” to describe a new class of fluid, which incorporates nanoscale
metallic/non-metallic particles suspended in a conventional fluid, to provide an excellent
thermal improvement. The authors suspended Al2O3 nanoparticles in water. The enhanced
thermal-physical properties of nanofluids have a substantial impact on their efficiency
in convection operations. Researchers are now using these types of nanoparticles in a
single base fluid to achieve promising heat transfer efficiency in the scientific domain.
Thermophoresis and Brownian diffusion are defined by Buongiorno [2] for the perfection
of heat transfer employing the thermal conductivity concept. He introduced the correlation
between the mass, momentum, and heat transport of nanofluids. It should be noted that
the nanoparticle electrification due to the Brownian diffusion of nanosized particles in a
region of non-conductive fluid has been ignored. A nanofluid is a colloidal suspended
nanoparticle in a base fluid. The botanists Brown [3] and Einstein [4] explained the idea of
the incessant (random) motion of nanoparticles moving through molecules of a base fluid
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and colliding with each other by utilizing Brownian motion. Due to Brownian motion, the
particles remain suspended in the base fluid, do not settle due to gravity, and are often elec-
trically charged, Piazza, & Parola [5] and Oakley [6]. Burton [7], deBethune [8], Hunter [9],
Shaw [10], Hemsley et al. [11], Gul et al. [12,13], and Mahian et al. [14] have investigated
whether the colloidal particles, when immersed into a fluid, are electrically charged in
nature, owing to the preferential adsorption of common ions in the base fluid onto the
surface of the colloidal particles by Van der Waals forces. Accelerating these charged
particles produces both an electric and a magnetic field. Loeb [15] and Soo [16] pointed out
that the Brownian distribution of solid suspended particles within a non-conducting fluid
region of a particulate system creates the collision of particles and particle-wall interface,
thereby ensuing in fixed electrification of the solid particles. A slightly charged particle can
affect the dynamics of a particulate system. Kang and Wang [17] have suggested an appli-
ance for augmenting the thermal conductivity of nanofluids based on the cross-coupling
among the thermal motion of nanoparticles and the electric field produced nearby every
charged particle. Several investigations on the formation of buoyancy-driven nanofluid
flow past a vertical flat plate have already been performed (Kuznetsov and Nield [18],
Khan and Aziz [19], Gorla and Chamkha [20], Aziz and Khan [21], Ahmad et al. [22], Kay-
alvizhi et al. [23]). Several studies on the magnetohydrodynamic (MHD) buoyancy-driven
nanofluid flow along a vertical plate with several physical characteristics have been ex-
amined in recent years. Bouselsa et al. [24] examined the effects of an Al2O3 nanofluid
flow inside a heat exchanger for the improvement of heat transfer. Slimani et al. [25]
considered the inspiration of an Al2O3 nanofluid for energy transfer, using a conical en-
closer. Anwar et al. [26] scrutinized the impact of heat source/heat sink and radiation on
the flux of unstable nanofluids driven by MHD buoyancy over a moving vertical porous
plate. Chandel et al. [27] explored the impact of the thermal performance of the nanofluid
flow beyond a vertical surface. Arulmozhi et al. [28] looked at the effects of radiation
and chemical reaction on the nanofluid flow propelled by MHD on an infinite moving
vertical plate. Several researchers have studied the modeling of the buoyancy of magneto-
hydrodynamic (MHD)-induced nanofluids beyond a vertical plate with various physical
aspects [24–28]. In all those previous MHD, the base fluid was considered electrically
conducting. However, as suggested by refs. [5–17], hardly any attention has been given to
the nanoparticle electrification appliance in a non-conducting base fluid when modeling the
nanofluid flow. Again, research is still ongoing into increasing the thermal performance of
nanofluids, which is understood from the latest available literature by Mishra et al. [29]. In
polymer technology, the magnetic field strength and heat/mass transfer into the flow over
a symmetrically heated surface are important theoretically and practically. This includes
geothermal reservoirs, thermal insulation, porous solids drying, enhanced oil recovery,
thermal insulation, nuclear reactor cooling, subwoofer catalytic reactors, enhanced oil
recovery, and the rest of it. These all benefit from the joint convection device and heat flow
on the vertical symmetric surface.

Fluid flow over vertical geometries has significant applications in the field of engi-
neering. The drop in the liquid oil film is used in heavy equipment to reduce the friction
force and improve the life of the machine. The electric turbine also accelerates to generate
electricity due to the fluid drop. Recent problems have important implications for polymer
industries, plastic film production, fiberglass production, fiber spinning, polymer sheet ex-
traction, heat exchangers and oil production, and catalysts. The magnetic field and thermal
radiation impact on the fluid flow over a liquid falling beyond a vertical symmetrically
heating plate has been investigated by Ullah et al. [30], and Abbas et al. [31].

The novelty of this study was to include the concept of nanoparticle electrification
in Buongiorno’s model and to explore the effects of electrified Al-nanoparticles on the
optimization of heat and mass transfer in buoyancy-driven Al2O3-water nanofluid flow
past a vertical wall, which are limited in the existing literature. It is expected that the
nanoparticle electrification mechanism would not only be a new strategy for heat transport
enhancement in nanofluids but would also be of great importance in designing numerous



Symmetry 2023, 15, 1288 3 of 14

industrial applications for nanofluids. This would be useful to determine the quality of
finished products with desired properties, which highly rely on the heat transfer rate or
cooling rate between the solid surface and the fluid.

Current work also aims to provide solutions for the proposed model using the deep
neural network (DNN) learning process as well as the Bayesian regulation system (BRS).
The DNN method was adopted with the use of ten and twenty neurons in the first and
second hidden layers. The digital data set is provided with test performance, training, and
verification using percentages analysis. Over the past few years, stochastic computational
procedures based on neural networks have been explored using a variety of demands.
Some of them represent the thermal explosion theory, including neuron analysis presented
in [32] and neural networks used in fluid flow models [33,34].

• A DNN learning process was used to solve the model problem.
• The DNN training procedure is presented by taking ten and twenty neurons in the

first and second hidden layers as well as the log-sigmoid activation function.
• The correctness of the procedure was observed by using the comparison between the

obtained and reference results, while the negligible absolute error (AE) performances
for solving the fluid model were used to enhance the worth of the scheme.

2. Materials and Methods

A steady laminar flow of buoyancy-driven Al2O3-water nanofluid containing electri-
fied alumina nanoparticles past a vertical plane wall was studied. The surface wall was
taken vertically along the x-axis. Tw and Cw present the temperature and concentration of
the nanofluids at the wall surface. Where C∞ and T∞ are the free stream components of C
and T. Tw− T∞ > 0 and Cw− C∞ > 0 imply that the temperature and wall concentrations
exceed the temperature and ambient concentration. The physical scheme is depicted in
Figure 1. According to the above norms, the governing equations of the flow field in a
two-dimensional cartesian coordinate system are derived from Equation (4) to Equation (8)
and after boundary layer simplification following Ullah et al. [30], and Abbas et al. [31],
and Pati et al. [35], are respectively expressed as.
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+
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∂Ey

∂y
=

qρs

m ∈0
, (5)

with suitable boundary conditions:

u(0) = v(0) = 0, T(0)− Tw = 0, C(0)− Cw = 0,
u(∞)→ 0, v(∞)→ 0, T(∞)→ T∞, C(∞)→ C∞.

(6)

Here u and v are the velocity components, g stands for the gravitational acceleration,
β is the thermal expansion, µ is the dynamic viscosity, ρ is the density, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion coefficient, (Ex, Ey) are the electric
intensity components, (ρc) is the specific heat. u(0), v(0), T(0), C(0) are the initial velocity,
temperature, and concentration conditions. u(∞), v(∞), T(∞), C(∞) are the boundary
conditions for velocity, temperature, and concentration.
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Figure 1. The geometry of the problem.

The Equations (1)–(6) are transformed using the concept of stream function as sug-
gested by Soo [16]. Equation (1) is satisfied by the introduction of the stream function

ψ(x, y) = α f (Rax)
1
4 f (η). Whereas, the velocity components u = ∂ψ

∂y , and v = − ∂ψ
∂x are

selected from the stream function for the transformation of the rest of the Equations (2)–(6).

Moreover, Rax =
B f g(Tw−T∞)(1−C∞)x3

v f α f
denotes the local Rayleigh number. These similar-

ity variables are also used by Kuznetsov and Nield [18] for the transformations and are
defined as:

η = y
x (Rax)

1
4 , u =

(Rax)
0.5α f

x f ′, v =
−(Rax)

0.5α f
x [η f ′ − 3 f ],

S(η)(Cw − C∞) = C− C∞, θ(η)(Tw − T∞) = T − T∞.
(7)

The non-dimensional Equations (2)–(4) and the boundary Equation (5) are expressed
as the following equations:
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)
− 1

4
M Sc

Pr
ηS′ +

Nt
Nb

θ′′ +
3
4

Sc
Pr

f S′ = 0, (10)

with the boundary conditions:

η = 0 : f = f ′ = 0, θ = 1, S = 1,
η → ∞ : f ′ → 0, θ → 0, S→ 0.

(11)
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The preceding equations are the form of transformation of the suggested model.
The embedded parameters appearing in Equations (8)–(10) are demonstrated below and
mentioned in (Maharukh et al., [36]):

Pr =
v f
α f

, Sc =
v f
DB

, Nr = (ρs−ρ f )(Cw−C∞)

(1−C∞)ρ f β f (Tw−T∞)
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,

1
NRe

=
( q

m
)2 ρs
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x2

(
x

α f (Rax)
1
2

)2

, N f = Fx

(
α f (Rax)

1
2

x

)
, Nc = C∞

(Cw−C∞)
,

M = 1
F
( q

m
)( x

α f (Rax)
1
2

)
Ex, Nt = (pc)s(Tw−T∞)DT

(pc) f v f T∞
,

(12)

here Pr, Sc, Nr, Nb, NRe, N f , Nc, M, Nt, are the Prandtl number, Schmidt number, buoy-
ancy ratio, Brownian motion parameter, momentum transfer number, concentration ratio,
nanoparticle ionization parameter, and thermophoresis parameter, respectively.

The thermophysical properties are defined as:

ϕ1 = µ f
µn f

ρn f
p f − = (1− c∞)2.5

[
c∞

ρs
ρ f

+ (1− c∞)
]
, ϕ2 = c f
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[
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ρ f

+ (1− c∞)
]−1
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(ρc)s
(ρc) f

,

ϕ3 =
(ρc) f
(ρc)n f

= 1
c∞τ+(1−c∞), , ϕ4 =

kn f
k f

=
2k f +ks−2c∞(k f−ks)
2k f +ks+c∞(k f−ks)

, ϕs =
µn f
µ f

= 1
(1−c∞)2.5 .

(13)

The nanofluid used in this investigation is water-based and contains 1% alumina
nanoparticles (when compared to pure water). Table 1 shows the Al2O3-water nanofluid
thermophysical properties.

Table 1. The values of the thermophysical properties.

Property Solid (Alumina) Fluid (Water)

cp(J/kgk) 765 4179

k(W/mk) 40 0.613

ρ(kg/m3) 3970 997.1

For heat transfer applications, the local Nusselt number is exhibited as Nux =
xqw

k f (Tw−T∞)
, qm = −k f

(
∂T
∂y

)
y=0

is the wall heat flux. For mass transfer applications, the

local Sherwood number shx is exhibited as, shx = xqw
DB(Cw−C∞)

, where qm = −DB

(
∂c
∂y

)
y=0

is

the wall mass flux. In dimensionless form, the heat transfer −θ′(0) and the mass transfer
−S′(0) are, respectively, expressed as:

−θ′(0) = Nux/Rax
1
4 and − S′(0) = shx/Rax

1
4 . (14)

3. Results

The buoyancy-driven nanofluid flow past a vertical wall was considered for the
applications of heat and mass transfer. In a steady laminar flow of buoyancy-driven
fluid past a vertical plane wall with a magnetic field provided perpendicular to the fluid
flow, the magnetic parameter can have significant effects on the velocity, temperature,
and concentration profiles of the fluid. As the increasing magnetic parameter rises the
resistance force, the fluid flow is opposed. This can induce Lorentz forces that modify the
flow behavior and lead to changes in the velocity, temperature, and concentration profiles.
Specifically, in this scenario, the buoyancy-driven fluid flow is characterized by natural
convection induced by a temperature difference between the wall and the surrounding
fluid. The magnetic field can interact with this flow and modify it in the described ways. As
the magnetic field becomes stronger, it can suppress the natural convection and introduce a
new flow pattern dominated by the Lorentz forces. This can cause changes in the velocity
profile, which may become more uniform near the wall and more peaked near the centreline.
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The temperature profile can also be affected by the magnetic field, particularly in the high
magnetic Reynolds number regime as shown in Figure 2. The Lorentz forces can induce
heat transfer enhancement or suppression depending on the direction of the magnetic
field and relative to the temperature gradient. This can lead to changes in the temperature
profile, which may become more uniform near the wall or develop a central temperature
peak. The concentration profile of a fluid can also be influenced by the magnetic field,
particularly when the fluid is a mixture of different components. The Lorentz forces can
cause differences in the diffusion rates of the components and modify the concentration
profile of the fluid. Therefore, the magnetic parameter can have significant effects on the
velocity, temperature, and concentration profiles of a buoyancy-driven fluid flow past a
vertical plane wall. The specific changes depend on the strength of the magnetic field
and its interaction with the flow dynamics. The Brownian motion effect in terms of the
Brownian parameter Nb has been displayed in Figure 3 and for N f impact in Figure 4
versus fluid motion, thermal profile, and concentration field. The fluid motion slightly
increased with the increasing values of Nb, and N f , while the same effect was observed for
the thermal profile. However, a decline in effect was observed for the concentration profile,
as shown in the last part of Figures 3 and 4. Physically, the boundary layer thickness was
dependent on the thermal boundary condition at the outer surface. Therefore, the fluid
motion upsurges and the concentration profile declines. The Buoyancy ratio parameter
effect, in terms of the Brownian parameter Nr, is displayed in Figure 5 versus nanofluid
flow, thermal profile, and concentration field. Physically, the Buoyancy ratio parameter
opposes the pressure gradient, and consequently, reduces the fluid motion.
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Neural Networks

The purpose of this study was to present numerical solutions for the nanofluid model
of heat/mass transfer using the deep neural network (DNN) along with the procedure of
Bayesian regularization scheme (BRS), DNN-BRS, as described in [37–41]. The DNN process
was delivered by taking eight and ten neurons into the first and second hidden layers as well
as the log-sigmoid function. The numerical data set was provided using the Adam method,
which was performed through testing, training, and verification processes. The model
was categorized into three categories: a dimensionless form of the stream, a concentration
state, and temperature. The accuracy of the DNN-BRS solver was observed by comparing
the benchmark and offering solutions. Reliability and accuracy were achieved through
negligible absolute error values. The numerical observations obtained from the fluid model
were calculated to reduce the efficiency of the mean square error. The competence and
reliability of the DNN-BRS solver were validated by relative measures of state transitions
(STs), regression, error histograms, and correlation.

In Figure 6, the DNN approach was used to handle the nonlinear problem. The
input layers were 8, while the hidden layers were 10, sigmoid activation function, and
1 output layer. It is evident from the above-stated strategy that the Bayesian regularization
artificial neural networks (BR-ANNs) is a more efficient and advanced technique to solve
the nonlinear problems that arise in the field of science and engineering. This strategy tends
to reduce lengthy calculations and minimize problem solutions through high accuracy and
convergence. BRS is a mathematical procedure that transforms nonlinear regression into a
single statistical problem by utilizing the peak regression process.
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Figures 7–11 apply the DNN-BRS. Figure 7 shows the MSE training performances for
each case in the heat/mass transfer WNF model, which were calculated as 2.321 × 10−10,
and 1.5321 × 10−10 at epochs 678, and 903, respectively. Figure 8 represents the gradi-
ent, Mu, num parameter, sum squared, and validation checks for the respective cases
in the heat/mass transfer WNF system. The gradient calculated for cases 1 to 2 were
1.3556 × 10−06, and 3.6828 × 10−07. Figure 9 presents the function fitness for solving the
fluid model using the DNNs-BRS of cases 1 to 2. The performances of the EHs for the
fluid dynamics system using DNNs-BRS are plotted in Figure 10. These EHs values for the
respective variations of the model were obtained at 1.84 × 10−06, and 5.89 × 10−06. The
regression values for cases 1 to 2 are illustrated in Figures 10 and 11 for solving the fluid
model using the DNNs-BRS. These values for each case are presented as one for each case
of the model that represents the perfect modeling.

The calculated impact of the various parameters versus heat and mass transfer rates is
shown in Table 2. Nt, Nb, Nc, increase the heat transfer rate for its larger values. The greater
values of Nb decrease the mass transfer rate, while Nt & Sc increase the Sherwood number.

Table 2. Heat and mass transfer in terms of embedded parameters impact.

Parameters θ’(0) S’(0)

Nt Nc Nb Sc

0.1 0.01 0.1 0.1 0.38356 0.370880

0.3 0.418340 0.3781709

0.5 0.434021 0.381703

0.02 0.43194 0.370880

0.03 0.478149 0.370880

0.2 0.3973194 0.3642471

0.3 0.408781 0.3513482

0.2 0.38356 0.421032

0.3 0.38356 0.4421872
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4. Conclusions

In the numerical simulation of buoyancy-driven Al2O3-water nanofluid flow contain-
ing electrified Al2O3-nanoparticles adjacent to a symmetrically vertical plane wall, the
impacts of Al2O3 nanoparticle electrification parameter M and buoyancy ratio Nr on non-
dimensional concentration, temperature, and velocity profiles, as well as dimensionless
coefficients of heat and mass transfer have been thoroughly examined. The concluding re-
sults show that the heat transfer rate increased with the inclusion of the Al2O3 nanoparticles
in the base fluid of water. The significant results are highlighted herewith.

• An increase in M causes the velocity of the nanofluid in the boundary layer region to
increase, whereas an increase in Nr causes the velocity to decrease.

• An increase in Nr raises the temperature of the nanofluid, whereas an increase in M
lowers the temperature near the plane wall.

• In the vicinity of the plane wall, increasing Nr enhances the concentration of nanopar-
ticles, while increasing M reduces the concentration.

• The dimensionless heat and mass transfer coefficients of the nanofluid rise alongside
M, while both reduce with Nr.

• The process of DNN is presented in two hidden layers, with 8 and 10 neurons, to solve
the model.

• The log-sigmoid function is used as an activation function for both hidden layers to
solve the mathematical model.

• The reliability and exactness are observed through the negligible values of the absolute
error for each variation of the model.

• The numerical achieved observations of the fluid dynamical system have been com-
puted to reduce the mean square error performances, which were performed in negli-
gible values for the testing and training.
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Nomenclature

List of symbols Greek symbols
u, v—Components of velocity

(
ms−1). µn f —The viscosity of nanofluid (mPa).

Sc—Schmidt number φ—Nanoparticle volume fraction
DB—Brownian diffusion coefficient

(
m2/s

)
. η—Dimensionless transform variable

(Ex, Ey)—Electric intensity (N/C). cp f —Heat capacitance (J/kg ·K).
Nr—Buoyancy ratio. kn f —Thermal conductivity (W/mK).
T—Temperature of fluid (K). α—Stretching shrinking parameter
Pr—Prandtl number. cpn f —Heat capacitance of nanofluid
DT—Thermophoretic coefficient

(
m2s−1). ρ f —Base fluid density (Kgm−3).

Nb—Brownian motion parameter. µ f —Viscosity of the base fluid (mPa).
g—Gravitational acceleration

(
ms−2). σn f Electrical conductivity

Nc—Nanoparticle ionization parameter ρn f —Hybrid nanofluid density (Kgm−3).
Tw, T∞—Lower, Upper wall temperature (K). βT—Thermal expansion (K−1).
NRe—Momentum transfer number. Θ, f —Dimensional thermal, velocity fields
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