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Abstract: Natural language generation (NLG) models combined with increasingly mature and
powerful deep learning techniques have been widely used in recent years. Deployed NLG models in
practical applications may be stolen or used illegally, and watermarking has become an important
tool to protect the Intellectual Property (IP) of these deep models. Watermarking technique designs
algorithms to embed watermark information and extracts watermark information for IP identification
of NLG models can be seen as a symmetric signal processing problem. In terms of IP protection of
NLG models, however, the existing watermarking approaches cannot provide reliable and timely
model protection and prevent illegal users from utilizing the original performance of the stolen
models. In addition, the quality of watermarked text sequences generated by some watermarking
approaches is not high. In view of these, this paper proposes two embedding schemes to the hidden
memory state of the RNN to protect the IP of NLG models for different tasks. Besides, we add a
language model loss to the model decoder to improve the grammatical correctness of the output
text sequences. During the experiments, it is proved that our approach does not compromise the
performance of the original NLG models on the corresponding datasets and outputs high-quality text
sequences, while forged secret keys will generate unusable NLG models, thus defeating the purpose
of model infringement. Besides, we also conduct sufficient experiments to prove that the proposed
model has strong robustness under different attacks.

Keywords: natural language generation; ownership protection; RNN; deep neural networks

1. Introduction

In recent years, many artificial intelligence (AI) domains such as natural language
processing [1–3] and computer vision [4–6] have been combined with deep neural networks
(DNN), and the corresponding model performance has been significantly improved. Since
the generation of DNN model requires massive computational and data resources [7], these
well-trained models are regarded significant intellectual property (IP) for model owners.
Therefore, it is necessary to protect IP of the DNN models from infringement in order to
maintain the competitive advantage of the owners in the open market.

DNN model extraction attacks [8–10] have been proposed in the past few years.
These attacks are generally implemented by learning the outputs of these victim DNN
models, and the purposes are to imitate the function of the victim DNN models. The
DNN model extraction attacks have confirmed that the functionality of DNN models
can be stolen through exploiting well-crafted queries [10]. After the DNN models are
stolen, unauthorized users can use the extracted DNN models to avoid service charges
and ultimately lead to IP infringement. Therefore, it is a challenge to prevent DNN model
extraction attacks while maintaining the performance of DNNs models for authorized users.

In view of this, several IP protection approaches of DNN models [11–14] have been
proposed, and IP protection of DNN models has become an important research area in
recent years. Ideally, the IP protection approaches of DNN models do not degrade the
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performance of the original models as much as possible, and must also be able to withstand
ambiguity and removal attacks. Digital watermarking is a symmetric signal processing
technique that embeds watermark information into the original carrier through a designed
algorithm without affecting its normal use, and can extract the embedded watermark
information through an extraction algorithm to achieve carrier copyright protection. Water-
marking technique is the most common approach to protect IP of DNN models. Recent
watermarking approaches [11–13] usually utilize trigger sets to embed invisible water-
marks on DNN models before distributing them to authorized users. When a DNN model
is suspected of being stolen, the model owner can perform IP claim with the help of the
trigger set.

Current watermarking approaches for protecting DNN models either follow tradi-
tional digital watermarking framework or focus on protecting the IP of DNN models that
perform classification tasks [15]. Unfortunately, these watermarking approaches are not
applicable for natural language generation (NLG) models that including machine transla-
tion (MT), image captioning (IC), text summarization (TS) and other technologies because
text data is quite different from other data. For example, watermarks for computer vision
tasks are generally designed images, which of course are not applicable for textual data for
general NLG tasks, e.g., MT takes text as input and generates coherent text as output. In
addition, DNN models output labels for classification tasks, whereas general NLG models
output sequences. Moreover, DNN models are about finding decision boundaries based on
the data content for classification tasks, while the NLG models need to fully understand
the data content and connect it with the language models to generate coherent text [15].

Although NLG model backdoors [16–18] can be used as watermarks for model IP
protection, these model backdoors generally utilize input data that is different from the
corpus data as triggers, therefore, they are usually easy to detect and cause malicious
behavior of NLG models, which is not conducive to the corresponding application [7].
Recent works on IP protection of NLG models [7,19] using watermarking techniques have
been proposed. T. Xiang et al. [7] propose a semantic and robust watermarking approach
for NLG models that make use of unharmful phrase pairs as watermarks for ownership
protection of NLG models. Recent work [19] presents a novel watermarking approach
which embeds watermarks by performing lexical modification to the original outputs of
the NLG models. X. He et al. [20] propose a conditional watermarking framework to
protecting the IP of NLG models. This watermarking approach reduces the distortion of
the overall text word distribution, while changing the selection of conditional words as
much as possible. However, these model IP protection approaches can only identify and
verify the ownership of the corresponding NLG models, the owner may have to depend on
government investigations and enforcement actions to prevent IP infringement. It remains
questionable whether these approaches provide reliable and timely protection of models.

Considering the drawbacks of current IP protection approaches of NLG model, we
propose two embeding schemes to the hidden memory state of the RNN to protect the
IP of NLG models for different tasks. The experimental results demonstrate that our
proposed approach hardly degrades the performance of the original NLG model on the
corresponding dataset, while forged secret keys will immediately generate unusable NLG
models. That is, the NLG models protected by our proposed approach will not work
unless the valid secret keys are provided, thus immediately preventing the illegal use of
the models at no additional costs and defeating the purpose of model infringement. In
addition, we also conduct relevant experiments to prove that the proposed model has
strong robustness under different attacks. Main contributions of this paper:

(1) In view of the existing watermarking approaches can not provide reliable and
timely model protection for NLG model, we propose two schemes to protect the IP of NLG
model for different tasks.

(2) We have conducted sufficient experiments to prove that the proposed approach
hardly degrades the performance of the original NLG model while forged secret keys will
immediately generate unusable NLG models.
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(3) The experimental results show that the proposed approach can not only prove the
ownership of the protected NLG model, but also has strong robustness.

The rest of this paper is structured as follows: we provide the preliminary and related
work on NLG model IP protection in Section 2. Then, Section 3 elaborates the proposed
NLG model IP protection approach in detail. After that, we conduct sufficient experiments
and evaluate the proposed approach based on the analysis of the experimental results in
Section 4. In Section 5, we summarize our proposed NLG model IP protection approach
and the future work is prospected.

2. Preliminary and Related Work

In this section, we describe the preliminary and progress of related work of IP pro-
tection approaches of DNN models in recent years, so as to introduce our proposed IP
protection approach.

2.1. Digital Watermarking

Digital watermarking is a branch of information hiding field [21], which uses a de-
signed algorithm to embed identification digital information in the carrier without affecting
the use of the original carrier to achieve the purpose of protecting the ownership of the
digital media, and the embedded digital information is as undetectable and unmodified
as possible by attackers [22]. And even with unauthorized copies or minor modifications
to the watermarked file, the owners can still extract the watermarks to prove their own-
ership. Digital watermarking is one of the most suitable technologies to protect IP, verify
ownership, track contents of the digital media and ensure authentication and security [23].

Digital watermarking can be roughly divided into video watermarking, image wa-
termarking, audio watermarking and text watermarking according to the watermarking
carrier. Because there is a lot of redundant information in the video file, the video wa-
termarking generally embeds the watermarking sequences in it to achieve the purpose
of copyright protection. Image watermarking generally embeds watermarks in the time
domain or frequency domain of the image by changing the pixel or texture information
of the image to protect image ownership. Audio watermarking generally embeds the wa-
termarks by modifying the significant bits in the time domain or frequency domain of the
sound. Text watermarking is generally achieved by adjusting the document structure and
the semantic structure of the text [21]. Digital watermarking technology is being updated,
and mature digital watermarking will be migrated to new carriers in the future.

2.2. IP Protection of DNN Models

Early work on IP protection of DNN models is proposed by embedding watermarks
into the weight parameters through parameter regularizers as white-box protection during
training [11]. In order to verify the ownership, the owner needs to access the model
parameters to extract the embedded watermarks. Subsequent work [12,24–26] uses the
black-box as the setting to remedy this issue. A set of trigger set images are produced
in the form of random image and label pairs in this setting. In the training process, the
feature distributions of these images are far away from the labeled samples. During the
verification process, the watermarks can be extracted remotely without accessing the model
weights. Recently proposed IP protection approaches of DNN models are applicable to
both white-box and black-box settings [13,27]. Rouhani et al. [27] embed watermarks in
the designated DNN layers by integrating two regularization loss terms, namely Gaussian
Mixture Model agent loss and commonly used binary cross-entropy loss. This approach
is robust against attacks such as fine-tuning, but does require more computation. The
closest to our work is L. Fan et al. [13] add a “passport” layer to the protected DNN models
to enable the DNN models IP validation. If an attacker utilizes a forged passport, the
performance of the proposed model will greatly decrease. This approach requires the DNN
model owner to maintain the confidentiality of the passport layer weights.
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Recent work on IP protection of the NLG models has also been proposed. NLG model
backdoors [16–18] can be used as watermarks for model IP protection. However, NLG
model backdoors are usually easy to detect and cause malicious behavior of NLG models,
which is not conducive to the corresponding application [7]. T. Xiang et al. [7] propose a
semantic and robust watermarking approach for NLG models that make use of unharmful
phrase pairs as watermarks for ownership protection of NLG models. Experimental results
demonstate that the watermarks can maintain its verifiability even after multiple model
modifications. Recent work [19] presents a novel watermarking approach which embeds
watermarks by performing lexical modification to the original outputs of the NLG models.
This approach achieves identifiable performance with less semantic losses. X. He et al. [20]
propose a conditional watermarking framework to protecting the IP of NLG models, which
reduces the distortion of the overall text word distribution, while changing the selection of
conditional words as much as possible. However, these model IP protection approaches
can only identify and verify the ownership of the corresponding NLG models. It remains
questionable whether these approaches provide reliable and timely protection of models.

3. Proposed IP Protection Approach of NLG Models

At present, the NLG models for MT, IC and TS tasks are mainly implemented
by sequence-to-sequence (seq2seq) model [28]. The seq2seq model consists of an en-
coder and a decoder, and its purpose is to model a conditional probability p(y|x), here
x = {x1, x2, . . . , xn} represents the source input and y = {y1, y2, . . . , yn} represents the out-
put sequence. Specifically, first the encoder of the seq2seq model projects x = {x1, x2, . . . , xn}
to hidden states h = {h1, h2, . . . , hn}. Afterwards, hidden states h = {h1, h2, . . . , hn} are
converted into a fixed-length vector c. Finally, output sequence y = {y1, y2, . . . , ym} can be
decoded one by one from the vector c. It should be pointed out that the seq2seq model for
MT and TS tasks generally uses the LSTM encoder because the input is text data, while the
CNN encoder is generally used for the IC task because the input is image.

In view of the drawbacks of current NLG model IP protection approaches, we propose
two embeding schemes to the hidden memory state of the RNN of the model decoder to
protect the IP of NLG models for different tasks.

3.1. IP Protection Approach Generation of NLG Models

The encoder of model based on seq2seq generally uses LSTM for MT and TS tasks.
Firstly, the encoder projects the input x = {x1, x2, . . . , xn} to hidden state h = {h1, h2, . . . , hn}.
Afterwards, the hidden state h is converted into a fixed-length vector c. For IC tasks, the
model based on Seq2Seq generally uses CNN as the encoder. The encoder first extracts
features from the input image through CNN, and then converts it into a fixed-length
vector c. Next, we propose the scheme E(K, h′, e) to embed secret key into the hidden
memory state of the RNN of the seq2seq model decoder to protect the IP of NLG models
for different tasks.

E(K, h′, e) =

{
K⊕ h′, if e = ⊕,
K⊗ h′, otherwise.

(1)

where the embedded secret key K = {ki}m
i=1 with m is the size of the RNN hidden state of

the decoder, ki ∈ R : −1 ≤ ki ≤ 1, h′ = {h′1, h′2, . . . , h′n} is the hidden state of the model
decoder. The whole embedding process

PE(D, s,N[·], L) = N[W, s] (2)

is a RNN learning process that takes D as input training data, and additionally together
with optionally signature s, and outputs the protected model N[W, s] by minimizing a
given loss L, W represents the model weights.

During the experiments, we use string conversion to generate the secret key. However,
since the binary vectors of different alphanumeric conversions are generally close, we
perform transformation T on the converted binary vector B1 to generate the final key K:
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T(B1, B2) = B1 ⊗ B2 = K (3)

where B2 is the binary vector sampled by the model owner from −1 or 1.
To further strengthen the whole model, we add the sign loss regularization into the

model loss function:

Ls(h′, S, γ) =
m

∑
i=1

max(γ− hi
′si, 0) (4)

where S = {si}m
i=1 with si ∈ {−1, 1}, m is the size of the hidden state of the decoder. γ is a

hyperparameter, which is introduced into the sign loss in order to make the hidden state
of the decoder have magnitude greater than 0, this is similar to [13]. The main difference
between our approach and [13] is that we do not embed the signature in the model weights,
but in the hidden state of the decoder. A major reason is that we found the embedding
signature in the model weights is generally vulnerable to channel permutation attacks.

In addition, in order to improve the grammatical correctness of the output sequence,
we add a language model loss to the model decoder to fine-tune the model during the
training process [29]. Specifically, we first trained AWD-LSTM [30] separately on the used
training set, which is effective and widely used in recent years [31–33]. After that, we fix
the weights of the trained AWD-LSTM model to calculate the likelihood of the output
sequence. The sequence with higher likelihood is more syntactically similar to the target
sequence in training process. The Figure 1 shows the overview of IP protection approach
generation process for different NLG tasks based on seq2seq model.

(a)

(b)

Figure 1. Overview of IP protection approach generation process for different NLG tasks based on
seq2seq model. (a) IP protection approach generation for MT and TS tasks. (b) IP protection approach
generation for IC task.
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3.2. IP Verification of NLG Models

In this paper, combined with the proposed IP protection approach generation of NLG
models, we use two approaches to verify the IP of the NLG models, namely secret key-
based IP verification and signature-based IP verification, the overview of the NLG model
verification process is shown as Figure 2. In terms of secret key-based IP verification, the
user can depend on the secret key is public key or private key to verify the IP of the NLG
models. Formerly, trained NLG model and the corresponding public key is provided to the
user. In the process of model inference, the public key is needed as part of the input of NLG
model to ensure the model performance. In this case, the NLG model IP can be directly
verified using the provided key. Latter, a private key is embedded into the NLG model.
During model inference, only text data or images are needed as model input. The model
owner needs to access to the NLG model and extract the private key from the decoder RNN
cells for model IP verification. For the signature-based IP verification, in view of a unique
signature is embedded through sign loss regularization during training, the model owner
is required to access to the NLG model and extract the sign of the hidden state from the
RNN cells of decoder, then compare it with the embedded signature.

Figure 2. Overview of the NLG model verification process.

4. Experiments

In this section, we conduct relevant experiments to evaluate the proposed IP protection
approach of NLG models on the corresponding datasets for different NLG tasks, and
compare them with the baseline models.

4.1. Datasets and Models

Datasets. In the experiments, we perform three common NLG models namely MT,
IC, and TS on the respective datasets to evaluate the proposed IP protection approach.
For the MT task, we perform German to English translation on the the commonly used
WMT14 dataset. Moses [34] is employed to pre-process all corpora of the WMT14 dataset
and all text contains case. We evaluate the proposed IP protection approach for the IC task
on MS-COCO dataset and employ the split provided by [35]. For the TS task, we use the
CNN/DM dataset and recycle the dataset version preprocessed by [36]. Following the
work [37] that utilizes a small amount of test data to evaluate the performance of the IP
protection approach, we randomly select 200 pairs of samples from the test set of different
NLG model to form the respective test set. Details of each dataset for different NLG models
are listed in Table 1.

Table 1. Statistics of datasets used for different NLG models.

Dataset Train Dev Test Task

WMT14 4.5 M 3 K 200 Machine Translation
MSCOCO 567 K 25 K 200 Image Captioning
CNN/DM 287 K 13 K 200 Text Summarization

Models. For the MT task, we use the model proposed by [38] as the baseline model.
This model adopts the method of introducing attention mechanism into seq2seq model, and
achieves good translation effect. It should be noted that the original model in reference [38]
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performs English-French translation tasks on WMT14, we only used the model in [38],
but we performed English-German translation tasks on WMT14 during the experimental
process (including model training and testing). The state-of-the-art work on IC [39] is used
as the baseline model for the IC task. This popular model also used the encoder-decoder
framework, where a CNN encode an image into a fixed-length vector, and LSTM is used
to generate the captions. L. Fan et al. [13] add a “passport” layer to the protected DNN
model to enable the DNN model IP validation. It is closer to our proposed approach and
will also serve as a baseline model for IC tasks to compare with our approach. For the
TS task, we adopt the framework developed by R. Nallapati et al. [40] as the baseline
model, which model abstractive TS using attentional RNN Encoder–Decoder and achieve
state-of-the-art performance.

4.2. Basic Settings and Evaluation Metrics

Basic Settings. The seq2seq model we used is an RNN Encoder–Decoder for the MT
task in the experiments, the encoder and decoder both have 1000 hidden units. During
the experiments, we use stochastic gradient descent (SGD) algorithm with Adadelta [41]
to train the model, the learning rate is 0.001. The epoch is set to 50 and the minibatch is
80 sentences. For the IC task, we employ ResNet-50 [42] pre-trained on the ImageNet as
the encoder. For the decoder, we use LSTM with 512 hidden units. The attention loss factor
is set to 0.01. In addition, we optimize the model using Adam [43] with β1 of 0.9, β2 of
0.998 and ε of 1 × 10−5. The epoch is set to 20 and the batch size is 32. We use attentional
RNN Encoder–Decoder for the TS task. The encoder and decoder both have 400 hidden
units. We leverage Adadelta [41] with a learning rate of 0.001 to train the model and set the
batch size to 50. We employ NVIDIA TITAN RTX 24GB GPU for accelerating these NLG
models training.

Evaluation Metrics. For different NLG tasks, we use BLEU [44] as the metric to
evaluate the overall output text sequence quality of the models. BLEU can be used to
evaluate the similarity between the reference text sequence and the generated text sequence.
In general, a larger BLEU value indicates a higher output text sequence quality of the
corresponding model. GErr [45] is the number of increased grammatical errors in the
generated text sequence compared to the reference text sequence of the different NLG
models. For the different NLG tasks, we hope the GErr to be as small as possible. SPICE [46]
is used as an important evaluation metric for model performance for the IC task. It is
generally believed that a larger SPICE value corresponds to a higher quality of the output
text sequence of the IC model. The ROUGE value [47] is an important performance
evaluation metric for the TS model. For the TS model, we hope the ROUGE value to be as
large as possible.

4.3. Performance Evaluation for Different NLG Tasks

We conduct experiments on the respective datasets to evaluate the performance of
the proposed models for different NLG tasks, and compare them with the corresponding
baseline models. Table 2 and Figure 3 show the examples of our proposed model and the
baseline models for the MT and IC tasks on the corresponding dataset, respectively. It can
be clearly observed from Table 2 and Figure 3 that the text sequences generated by our pro-
posed models are very close to the baseline models, while the image captions generated by
“Passport” [13] are quite different from the baseline model, which are very brief compared
to the baseline model and our proposed models. This preliminarily shows that the quality
of the text sequences generated by our proposed models has a certain guarantee.
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Table 2. Examples of different models on WMT14 dataset for the MT task. “K⊕” and “K⊗” represent
the “K⊕ h′” and “K⊗ h′” embedding approaches, respectively (same below).

Source Text
Sie achten auf gute Zusammenarbeit zwischen Pony und
Führer und da waren Fenton und Toffee die Besten im Ring.

Baseline [38]
They pay attention to good cooperation between pony
and guide, and Fenton and Toffee were the best in the
ring.

K⊕
They pay attention to a good cooperation between pony
and guide, and Fenton and Toffee were the best in the ring.

K⊗
They pay attention to good cooperation between pony
and guide and Fenton and Toffee were the best in the ring.

Figure 3. Captions generated by (a) baseline model [39], (b) K⊕, (c) K⊗, (d) “Passport” [13] on
MS-COCO dataset. It can be observed that the image captions generated by our proposed models are
very close to the baseline models, while the image captions generated by “Passport” [13] are quite
different from the baseline model.

Performance of our proposed models and the baseline models on WMT14, MSCOCO
and CNN/DM datasets for the MT, IC and TS tasks are shown in Tables 3–5, respectively.
It can be seen from Tables 3–5 that the overall performance of our proposed models is
similar to the baseline models, while in terms of increased grammatical errors(GErr),
the proposed models significantly outperform the corresponding baseline models. This
is mainly attributed to the trained AWD-LSTM model included in the decoder of our
proposed models. The sequence with higher likelihood is more syntactically similar to
the target sequence in training process, that is, the GErr of sequence generated by our
approach is lower. In addition, it can be observed from Table 4 that the performance of
the “Passport” [13] model on MS-COCO is significantly worse than our models and the
baseline model for the IC task. For example, the SPICE of the “Passport” [13] model dropp
16.86% while our proposed models drop at most 3.7% on MS-COCO dataset.
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Table 3. Performance of different models on WMT14 dataset for the MT task. The baseline is the
model proposed by [38].

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 GErr

Baseline 29.82 21.65 14.30 10.95 1.06
K⊕ 28.54 21.51 13.42 11.08 0.86
K⊗ 28.33 20.85 13.04 9.40 0.82

Table 4. Performance of different models on MS-COCO dataset for the IC task. The baseline is the
model proposed by [39] and “Passport” is the model proposed by [13].

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 SPICE GErr

Baseline 71.74 57.30 39.89 30.92 18.51 1.02
K⊕ 70.48 57.42 39.58 28.08 18.30 0.83
K⊗ 70.17 56.91 39.43 29.94 17.85 0.86

Passport [13] 65.31 51.27 37.06 27.37 15.39 1.05

Table 5. Performance of different models on CNN/DM dataset for the TS task. The baseline is the
model proposed by [40].

Model ROUGE-1 ROUGE-2 ROUGE-L GErr

Baseline 39.08 18.45 35.29 1.14
K⊕ 38.61 18.49 34.87 0.90
K⊗ 38.75 18.06 33.95 0.93

4.4. Human Evaluation for Different NLG Tasks

To further verify the performance of our proposed models and the baseline models
on the corresponding datasets for the different tasks, we employ the common platform
namely Amazon Mechanical Turk (https://www.mturk.com (accessed on 2 March 2023))
for human evaluation to verify the naturality of the output text sequences generated by our
proposed models and the corresponding baseline models. In the experiment, we randomly
select 200 output text sequences generated by different models and ask annotators to give
corresponding naturality scores to evaluate the naturality of the output text sequences.
Specifically, for each output text sequence, we ask annotators to give naturality scores
from {1, 2, 3}, which stand for “machine generated”, “uncertain” and “human written”
respectively, and use the average of the naturality scores provided by these annotators
as the final naturality score. The higher the naturality score, the more natural the output
text sequence. The average naturality scores of the output text sequences generated by
our proposed models and the corresponding baseline models on corresponding datasets
for the different tasks is shown as Table 6. From Table 6 we can clearly see that the
output text sequences generated by both our proposed models and the corresponding
baseline models get high natural scores, while the text sequences generated by the proposed
models generally have higher natural scores than the corresponding baseline models for
the different tasks.

https://www.mturk.com
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Table 6. The average naturality scores of the output text sequences generated by our proposed models
and the corresponding baseline models on corresponding datasets for the different tasks.

NLG Tasks Datasets Models Naturality Score

MT WMT14
Baseline [38] 2.420

K⊕ 2.435
K⊗ 2.430

IC MS-COCO
Baseline [39] 2.345

K⊕ 2.340
K⊗ 2.360

TS CNN/DM
Baseline [40] 2.265

K⊕ 2.325
K⊗ 2.305

4.5. Protection against Forged Key and Signature

To further evaluate the performance of our proposed models, we assume that an
attacker somehow accesss into the protected NLG models and tries to attack these models
with forged keys and signatures. Figure 4 shows the performance of our proposed models
for different NLG tasks on the corresponding datasets. It is obvious from Figure 4a,c,e that
in general, the performance of NLG models will degrade when forged keys are used. For
example, even if the dissimilarity between the real key and the fake key is only 20%, the
BLEU-1 of our proposed “K⊕” model drops by almost 50% for the MT task on WMT14
dataset. Table 7 shows examples of different models on WMT14 dataset for the MT task
when our proposed models under forged key attack. As shown in Table 7, the proposed
models can generate translated text sequences very similar to the baseline model given the
correct key. However, The translation sentences generated by the proposed models using
fake keys with 25% and 50% dissimilarity to the real key are either incomplete or very
brief and meaningless. This shows that our proposed IP protection approach is effective to
against the forged key attack.

In practice, if the key of the proposed model is exposed to the attacker, we can also use
the signature embedded in the model as proof of ownership. In this case, the attacker will
try to forge the signature to attack the model by changing the sign of the signature. From
Figure 4b,d,f, we can observe that the performance of our proposed models degrades to
varying degrees when the forged signatures are used. For example, even if the dissimilarity
between true and fake keys increases by 10%, the SPICE of our proposed “K⊗” model drops by
almost 13% for the IC task. When the dissimilarity between true and fake keys increases to 60%,
the performance of the model has become so poor that it is almost useless. This demonstates
our proposed IP protection approach is also resilient against to the forged signature attack.

Table 7. Examples of different models on WMT14 dataset for the MT task. The baseline is the
model proposed by [38]. “K⊕” represents the proposed “K⊕ h′”, “K⊕ − 25” and “K⊕ − 50” rep-
resent the proposed “K⊗” model using the forged key with 25% and 50% dissimilarity to the real
key, respectively.

Source Text
Der Renditeabstand zwischen Immobilien und Bundesanleihen
sei auf einem historisch hohen Niveau.

Baseline
The return gap between real estate and federal bonds is historically
high.

K⊕
The yield gap between real estate and federal bonds is at a histori-
cally high level.

K⊕ − 25
The gap between real estate and federal bonds is at a historically
high level.

K⊕ − 50 The gap between real estate and federal bonds.
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(a) (b)

(c) (d)

(e) (f)
Figure 4. Performance of the proposed models with forged keys and signatures for different NLG
tasks compared with the baseline models. (a) BLEU-1 scores with forged key on WMT14 dataset
for the MT task. (b) The BLEU-1 scores with forged signature on WMT14 dataset for the MT task.
(c) SPICE scores with forged key on MS-COCO dataset for the IC task. (d) SPICE scores with forged
signature on MS-COCO dataset for the IC task. (e) ROUGE-L scores with forged key on CNN/DM
dataset for the TS task. (f) ROUGE-L scores with forged signature on CNN/DM dataset for the TS task.

4.6. Robustness

The aforementioned experimental results and analysis have demonstrated that our
proposed IP protection approach is effective to against the forged key and signature attacks.
In practical applications, attackers may try different approaches to perform removal attacks
on our proposed models. Next, we conduct experiments to evaluate the robustness of the
proposed models for the removal attacks.

4.6.1. Pruning

Model parameter pruning is a commonly used technique in deep learning model
training in recent years, mainly to reduce the weights and computation of DNN model.
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However, in practical applications, an attacker may exploit it to remove the signatures
embedded in the proposed models. In the experiments, we employ class-blind pruning [48]
approach to evaluate the robustness of the proposed models for the removal attacks.
Figure 5 shows the performance and signature detection rates of the proposed models
with different model parameter pruning rates for different NLG tasks. It can be observed
from Figure 5 that the proposed model can maintain good performance and high signature
detection rate even with a high model parameter pruning rate. For instance, even if the
model parameter pruning rate reaches 60%, BLEU-1 of our proposed “K⊗” model drops by
almost 10% and the signature detection rate can reach about 88% for the MT task. Table 8
shows examples of different models on WMT14 dataset for the MT task when our proposed
“K⊗” model with parameter pruning rate of 60%. According to Table 8, we can clearly
observe that even if the parameter pruning rate of the proposed “K⊗” model is 60%, the
translated text sequence generated by the model is still similar to the baseline model. In
conclusion, the signature detection rates and performance of the proposed models can be
guaranteed even in the case of high model parameter pruning rates.

Table 8. Examples of different models on WMT14 dataset for the MT task. The baseline is the model
proposed by [38]. “K⊕ − 60” represents the proposed “K⊕” model with parameter pruning rate
of 60%.

Source Text
Die neue Saison in der Falkenberger Discothek “Blue Velvet”
hat begonnen.

Baseline
The new season in the Falkenberg discotheque “Blue Velvet”
has begun.

K⊕
The new season in Falkenberg discotheque “Blue Velvet” has
begun.

K⊕ − 60 The season in Falkenberg discotheque “Blue Velvet” has begun.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Performance and signature detection rates of the proposed models with different model
parameter pruning rates for different NLG tasks. (a) BLEU-1 scores on WMT14 dataset for the MT
task. (b) Signature detection rates on WMT14 dataset for the MT task. (c) SPICE scores on MS-COCO
dataset for the IC task. (d) Signature detection rates on MS-COCO dataset for the IC task. (e) ROUGE-
L scores on CNN/DM dataset for the TS task. (f) Signature detection rates on CNN/DM dataset for
the TS task.

In practice, an attacker with a general understanding of our proposed model and
knows the key is in place may try to prune the embedded key. Figure 6a,c,e show the
performance of the proposed models with different key pruning rates for different NLG
tasks. we can see that the performance of our proposed models gradually degrades with the
increase of the key pruning rates, which is mainly due to the fact that the original embeded
keys are changed more and more with the increase of the key pruning rates. In addition,
we also conduct related experiments to test the signature detection rates of the proposed
models with different key pruning rates for different NLG tasks on the corresponding
dataset. The experimental results are shown as Figure 6b,d,f). It can be observed that the
signature detection rates of the proposed models can reach more than 93% for different
NLG tasks under different key pruning rates. Therefore, the secret key and signature
embedded in our proposed models training process can protect the model IP against the
key pruning attack.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

Figure 6. Performance and signature detection rates of the proposed models with different key prun-
ing rates for different NLG tasks. (a) BLEU-1 scores on WMT14 dataset for the MT task. (b) Signature
detection rates on WMT14 dataset for the MT task. (c) SPICE scores on MS-COCO dataset for the
IC task. (d) Signature detection rates on MS-COCO dataset for the IC task. (e) ROUGE-L scores on
CNN/DM dataset for the TS task. (f) Signature detection rates on CNN/DM dataset for the TS task.

4.6.2. Fine-Tuning

An attacker may fine-tune the stolen NLG model with a different dataset to obtain
another model that almost inherits the performance of the original model while attempting
to remove the signature embedded in the model. Table 9 shows the performance and
signature detection rates of the proposed models after fine-tuning on different datasets for
different NLG tasks. It can be seen that in the original NLG tasks, our proposed models
can detect signatures with almost 100% accuracy. In addition, Table 9 shows that after
fine-tuning the proposed models with different datasets, the model can achieve similar
performance as the baseline models, but the signature detection rates drop by nearly 25%.
This is a defect of the proposed approach, but in general it does not compromise the IP
protection of the NLG model since we still have the embedded key as proof of ownership.
On the whole, the secret key embedded in the proposed models works jointly with the
signature can protect model ownership for fine-tuning with different datasets.
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Table 9. Performance and signature detection rates of the proposed models after fine-tuning on
different datasets for the different tasks. “Fine-tuning” in bracket indicates that the proposed model
is fine-tuned on a dataset different from the original dataset.

MT

Metric BLEU-1 Signature detection rate (%)

Datasets WMT14 WMT17
(Fine-tuning) WMT14 WMT17

(Fine-tuning)

Baseline 29.82 26.60 - -
K⊕ 28.54 26.53 100 73.40
K⊕ 28.37 25.89 99.99 72.62

IC

Metric SPICE Signature detection rate (%)

Datasets MS-COCO Flickr30k
(Fine-tuning) MS-COCO Flickr30k

(Fine-tuning)

Baseline 18.51 13.12 - -
K⊕ 18.30 13.06 100 72.25
K⊗ 17.85 13.08 100 74.38

TS

Metric ROUGE-L Signature detection rate (%)

Datasets CNN/DM Gigaword
(Fine-tuning) CNN/DM Gigaword

(Fine-tuning)

Baseline 35.29 33.17 - -
K⊕ 34.87 33.02 99.99 75.09
K⊗ 33.95 32.52 99.98 77.47

In practice, if an attacker has full knowledge of the proposed model, including the
model training process, specific training parameters, datasets and embedded key/signature,
it is possible to fine-tune the proposed model with a different key/signature according to
the same training steps. The performance and signature detection rates of the proposed
models after key/signature fine-tuning on the corresponding datasets for the different tasks
are shown as Table 10. As shown in Table 10, the performance of the proposed models after
key/signature fine-tuning slightly degrades compared to the original protected models. In
addition, the signature detection rates of the proposed models can be maintained at around
70%. It can be seen that when the attacker has full knowledge of the proposed models and
uses key/signature fine-tuning, the model IP can still be easily protected. However, this
scenario is difficult to happen in practice.

Table 10. Performance and signature detection rates of the proposed model after key/signature
fine-tuning on the corresponding datasets for the different tasks. “Attack” in bracket indicates the
proposed model after key/signature fine-tuning.

MT

Metric BLEU-1 Signature detection rate (%)

Datasets WMT14 WMT14
(Attack) WMT14 WMT14

(Attack)

K⊕ 28.54 25.85 100 70.66
K⊗ 28.37 24.70 99.99 70.34

IC

Metric SPICE Signature detection rate (%)

Datasets MS-COCO MS-COCO
(Attack) MS-COCO MS-COCO

(Attack)

K⊕ 18.30 16.71 100 69.18
K⊗ 17.85 14.46 100 68.73

TS

Metric ROUGE-L Signature detection rate (%)

Datasets CNN/DM CNN/DM
(Attack) CNN/DM CNN/DM

(Attack)

K⊕ 34.87 30.82 99.99 72.24
K⊗ 33.95 30.97 99.98 69.05
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5. Conclusions

NLG models have received extensive attention and applications due to their increasing
mature in combination with powerful DNN in recent years. However, the deployed NLG
models may be stolen or used illegally in practical applications. Several recent works on IP
protection of NLG models mostly use watermarks to identify and verify model ownership.
However, it remains questionable whether these watermarking approaches provide reliable
and timely protection of models. In addition, the quality of the watermarked text sequences
generated by some watermarking approaches is not high. In this paper, we propose two
embeding schemes to the hidden memory state of the NLG model decoder RNN to protect
the IP of the models for different tasks, and we add a trained AWD-LSTM to the model
decoder to fine-tune the model during the training process to improve the grammatical
correctness of the output text sequences. Experimental results show that our proposed
IP protection approach is able to maintain the original performance of the NLG model
and outputs high-quality text sequences, while forged keys will generate unusable NLG
models, thus defeating the purpose of model infringement. We also conduct sufficient
experiments to demonstrate the robustness of the proposed IP protection of NLG models
under various attacks. Table 9 shows that after fine-tuning the proposed models with
different datasets, the model can achieve similar performance as the baseline models, but
the signature detection rates drop by nearly 25%. In future work, we will optimize the
proposed watermarking model to further improve its robustness, so that the model can
effectively resist various common attacks. In addition, we will attempt to generalize similar
model IP protection approach to the large language model represented by ChatGPT.
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