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Abstract: Sylvester’s theorem states that every number can be decomposed into a sum of consecutive
positive integers except powers of 2. In a way, this theorem characterizes the partitions of a number
as a sum of consecutive integers. The first generalization we propose of the theorem characterizes
the partitions of a number as a sum of arithmetic progressions with positive terms. In addition to
synthesizing and rediscovering known results, the method we propose allows us to state a second
generalization and characterize the partitions of a number into parts whose differences between
consecutive parts form an arithmetic progression. To achieve this, we will analyze the set of divisors
in arithmetics that modify the usual definition of the multiplication operation between two integers.
As we will see, symmetries arise in the set of divisors based on two parameters: t1, being even or odd,
and t2, congruent to 0, 1, or 2 (mod 3). This approach also leads to a unique representation result of
the same nature as Sylvester’s theorem, i.e., a power of 3 cannot be represented as a sum of three or
more terms of a positive integer sequence such that the differences between consecutive terms are
consecutive integers.

Keywords: Sylvester’s theorem; partition; divisor; arithmetic progression; representation

MSC: 11P81; 11A41; 11A51

1. Introduction

Tom M. Apostol [1] stated Sylvester’s theorem: “Every integer n, not a power of 2,
is a sum of two or more consecutive positive integers. Moreover, the number of such
representations is equal to the number of distinct odd divisors of n that exceed 1”. Results
about the representation of positive integers as the sum of consecutive numbers abound
in the literature. These results have been rediscovered time and time again, even in
recreational mathematics. This work aims to explore and expand this result in various
ways. The first extension is known, but our approach will bring order and clarity to
all results of this type. In addition to consecutive integers, one may wonder about the
representations of a number as the sum of a sequence of integers whose difference between
consecutive terms is an integer t > 0. We will first distinguish between representations
using general finite sequences and partitions (representations with positive integers). Once
we have analyzed these cases, we will deal with the case in which the difference between
consecutive terms of the sequence forms an arithmetic progression (AP). With this, among
other questions, we can answer the following: What must a numerical sequence satisfy so
that the powers of 3 cannot be represented as partial sums of the sequence?

This work is based on the authors’ previous research on partitions in APs (see [2–4]).
However, this paper introduces a novel technique compared to the conventional methods
studied in partition theory. This approach provides an alternative perspective on classical
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results and allows for the generalization of proposed problems. The main idea is as follows.
In the usual arithmetic, the set of divisors of a number allows us to divide it into equal
parts. Now, we will study a new arithmetic, defining a new multiplication operation in
which the set of divisors of a number n allows us to divide it into integers in AP. We will
develop this idea in Section 2. Then, in Section 3, we will extend the product definition to
study representations of n as a sum of sequences of integers whose differences between
consecutive terms form APs. As we will see when studying the set of divisors in the new
arithmetics, symmetries will occur depending on two parameters. We can see the most
representative case of this symmetry in Lemma 5.

2. First Extension

Definition 1. Given m, t ∈ Z, for all positive integers n, we define the multiplication operation
�t as follows:

m�t n = m + (m + t) + . . . + (m + t+ (n−1). . . +t). (1)

We can easily add the right-hand side of this equation to obtain

m�t n = m · n +
n · (n− 1) · t

2
. (2)

Notation 1. Let t ∈ Z. We use the notation Zt = {Z,+,�t ,<} to infer that we are working on
the set of integers with the usual order, the usual addition, and the new multiplication operation.

The study of Zt is interesting in itself. In the article titled “Alternative varieties of
integer multiplication” (F. J. de Vega, under review), we studyZt as a variation of Dedekind–
Peano arithmetic, where the classic axioms of multiplication are modified. The algebraic
properties of this new structure are also studied.

Definition 2. An integer d > 0 is called a divisor of n on Zt, denoted by d|t n, if there exists some
integer b such that n = b�t d.

In other words, d is the number of terms in the summation (1).
If we defined a new product mapping, we should have a new quotient.

Definition 3. Let a, b ∈ Z, b 6= 0. An integer c is called a quotient of a divided by b on Zt if and
only if c�t b = a. We write: a�t b = c ⇐⇒ c�t b = a.

In addition, we can use the usual quotient to study the new one:

a�t b =
a
b
− (b− 1) · t

2
. (3)

For instance, if we want to write 93 as the sum of 6 terms of an AP whose difference is
5, then the quotient indicates the first term of the solution: 93�5 6 = 93/6− 5 · 5/2 = 3.
Then, 93 = 3�5 6 = 3 + 8 + 13 + 18 + 23 + 28. Furthermore, 6|593.

The following result will allow us to study the divisors of an integer a on Zt.

Corollary 1. An integer d > 0 is a divisor of a on Zt ⇐⇒ a�t d is an integer.

What is the significance of divisors of n on Zt? We can see it in the following remark.

Remark 1. If we have the divisors of n on Zt, then we have the arithmetic progressions whose
difference is t with sum n.

Proof. If d is a divisor of n on Zt, there exists an integer a such that n = a �t d. Then
n = a + (a + t) + . . . + (a + (d− 1)t). Hence, n is the sum of an AP whose difference is t.
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On the other hand, if n is the sum of an AP whose difference is t, there must exist a, d ∈ Z,
d > 0 such that n = a + (a + t) + (a + 2t) + . . . + (a + (d− 1)t). Then n = a�t d and d is a
divisor of n on Zt.

That is it! By calculating the divisors of a number on Zt, we obtain its representations
as the sum of integers in AP.

Lemma 1. Let t, a ∈ Z. The set of divisors of a on Zt, denoted by Divt(a), consists of

1. The usual divisors of a if t ∈ E = {. . . ,−4,−2, 0, 2, 4, . . .}.
2. The usual divisors of 2a except the even usual divisors of a if t ∈ O = {. . . ,−1, 1, 3, 5, . . .}.

Proof. 1. We use Corollary 1. If d | a, then a/d− (d− 1)t/2 is an integer because t ∈ E.
The reciprocal is also trivial; hence, if t ∈ E, then d | a⇔ d |t a.

2. Let Div(a) be the set of the usual divisors of a. It is clear that Divt(a) ⊆ Div(2a).
Indeed, d |t a ⇔ ∃b such that b�t d = a ⇔ 2a/d = b + (d− 1)t ∈ Z. Therefore, we have
two cases:

• d | a: if d ∈ Div(a) and t ∈ O, then a�t d ∈ Z⇔ a/d− (d− 1)t/2 ∈ Z⇔ d ∈ O.
• d | 2a and d - a: we can suppose that ∃h ∈ Z such that a/d = h/2 with h ≡ 1 (mod 2).

Hence, if t ∈ O, then a�t d ∈ Z, which is equivalent to

a/d− (d− 1)t/2 ∈ Z⇔ h/2− (d− 1)t/2 ∈ Z⇔
(
1− (d− 1)t

)
/2 ∈ Z⇔ d ∈ E.

As we will see, there will be two possibilities for Divt(n), which we will denote as
DivE(n) and DivO(n). The first will refer to the case where t is even, and the second will
refer to the case where t is odd.

Example 1. Calculate the set Div3(30).
Solution. By Point 2 of Lemma 1, the divisors of 30 on Z3 are the usual divisors of 60 except

the even usual divisors of 30. Hence, Div3(30) = {1, 3, 4, 5, 12, 15, 20, 60}.
Now, by Remark 1, the statement of this example can be replaced by: “Express the number 30

in all possible ways as a sum of APs whose difference is 3”. Each divisor d produces a representation,
and the first term of each representation is 30�3 d. The solution can be seen in Table 1.

Table 1. Solution to Example 1.

d 30 �3 d Representation d 30 �3 d Representation

1 30 30 12 −14 −14− 11− 8− . . . + 13 + 16 + 19
3 7 7 + 10 + 13 15 −19 −19− 16− 13− . . . + 17 + 20 + 23
4 3 3 + 6 + 9 + 12 20 −27 −27− 24− 21− . . . + 24 + 27 + 30
5 0 0 + 3 + 6 + 9 + 12 60 −88 −88− 85− 82− . . . + 83 + 86 + 89

So far, everything has been elementary. However, with this lemma, we can already
study the representations of integers as the sum of arithmetic progressions. Let us see how
to proceed and organize the already-known results.

2.1. An Integer as a Sum of an AP

The following corollaries appear in [5]. Let us apply our approach to prove them.

Corollary 2. Let n = 2e pe1
1 · · · p

er
r be any positive integer, where p1, . . . , pr are distinct odd primes.

The number of ways n can be expressed as the sum of an arithmetic series of integers with a specified
odd common difference, t, is twice the number of distinct positive odd divisors of n.
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Proof. Let τO(n) = (e1 + 1) · . . . · (er + 1) denote the number of odd usual divisors of n. Let
τE(n) = e · (e1 + 1) · . . . · (er + 1) denote the number of even usual divisors of n. We have
to calculate the number of elements of Divt(n), t ∈ O, denoted by |Divt(n)|. By Lemma 1,

|Divt(n)| = τ(2n)− τE(n) = (e + 2)
r

∏
i=1

(ei + 1)− e
r

∏
i=1

(ei + 1) = 2τO(n).

Furthermore, if t ∈ O, |Divt(n)| = (τE(2n) − τE(n)) + τO(2n) = (τO(n)) + τO(n).
Hence, exactly half of the elements of Divt(n) are even, and the other half are odd.

Corollary 3. In the conditions of the previous corollary, half of the representations have an even
number of terms, and the other half have an odd number of terms.

Corollaries 2 and 3 can be verified with Example 1.

Corollary 4. Let n be any positive integer. The number of ways n can be expressed as the sum of an
arithmetic sequence of integers with a specified even common difference t is the number of distinct
positive divisors of n, denoted by τ(n).

Proof. This corollary is a consequence of Point 1 of Lemma 1.

Example 2. Express the number 30 in all possible ways as a sum of an AP whose difference is
t = 4.

Solution. By Corollary 4, each usual divisor d of 30 produces a representation. The first term
of this representation is 30�4 d and the solution can be seen in Table 2.

Table 2. Solution to Example 2.

d 30 �4 d Representation d 30 �4 d Representation

1 30 30 6 −5 −5− 1 + 3 + 7 + 11 + 15
2 13 13 + 17 10 −15 −15− 11− . . . + 13 + 17 + 21
3 6 6 + 10 + 14 15 −26 −26− 22− . . . + 22 + 26 + 30
5 −2 −2 + 2 + 6 + 10 + 14 30 −57 −57− 53− . . . + 51 + 55 + 59

2.2. An Integer as a Sum of Positive Integers in an AP

This problem was almost solved in the previous section. We need to select the repre-
sentations with a positive first term. If we want to study the representation of an integer
n > 0 as a sum of positive integers in an AP whose difference is t, then the first term must
be greater than 0. If d|t n, then the first term of the representation will be n�t d. Hence,

n�t d > 0⇔ n/d− (d− 1)t/2 > 0⇔ t <
2n

d(d− 1)
. (4)

Remark 2. Given an integer n > 0 and t ∈ O, the divisors d ∈ Divt(n) that produce repre-
sentations of n as a sum of positive integers in an AP with a common odd difference t satisfy
d <
√

2n/t.

Proof. By (4), if t ∈ O, t > 0, and 2n/t
d(d−1) ≤ 1, then there will be no representations. Hence,

if d >
√

2n/t we will not have an arithmetic progression of positive integers with sum n.
If d =

√
2n/t, then

√
2n/t is even and

√
2n/t | n. Thus, by Lemma 1, this case should

be excluded.

The difference between this result and those studied, for example, in [5], is that here,
in addition to having an upper bound on the number of terms in the representation, we
also know exactly which lengths we have to consider (Lemma 1).
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Example 3. Express the number 100 in all possible ways as a sum of an AP of positive integers
whose common difference is t = 7.

Solution. The divisors of 100 on Z7 are DivO(100) = {1, 5, 8, 25, 40, 200}. As
√

2 · 100/7 ≈
5.35, there is a unique nontrivial representation produced by the divisor d = 5: 100�7 5 = 6,
hence, 100 = 6�7 5 = 6 + 13 + 20 + 27 + 34.

Remark 3. Given an integer n > 0 and t ∈ E, the divisors d ∈ Divt(n) that produce repre-
sentations of n as a sum of positive integers in an AP with a common even difference t satisfy
d ≤
√

2n/t.

Proof. The difference between this remark and Remark 2 is that, here, we could have a
divisor d =

√
2n/t.

Example 4. Express the number 200 in all possible ways as a sum of an AP of positive terms whose
difference is t = 16.

Solution. As t ∈ E, by Lemma 1 and the previous remark, every usual divisor d of 200,
d ≤
√

2 · 200/16 = 5, produces a representation. These can be seen in Table 3.

Table 3. Solution to Example 4.

d 200 �16 d Representation d 200 �16 d Representation

1 200 200 4 26 26 + 42 + 58 + 74
2 92 92 + 108 5 8 8 + 24 + 40 + 56 + 72

2.2.1. The Case t = 1

Now, Sylvester’s theorem appears as a consequence of Corollary 2 and Remark 2.

Theorem 1 (Sylvester). Every integer n, not a power of 2, is a sum of two or more consecutive
positive integers. Moreover, the number of such representations is equal to the number of distinct
odd divisors of n that exceed 1.

Proof. By Corollary 2, we have 2 · τO(n) possible representations, but, by Remark 2, the
number of elements d ∈ Div1(n) with d <

√
2n are half (if d ∈ Div1(n) such that d <

√
2n

and 2n = d · a, then a ∈ Div1(n) and a >
√

2n). Hence, we will have τO(n) representations
with positive integers.

Example 5. Express the number 50 as a sum of positive and consecutive integers.
Solution. We will write the divisors of 50 on Z1 by pairs. By Remark 2, the first row

produces representations only. D1(50) =
{ 1 4 5

100 25 20

}
. Then, we have 3 representations

(the number of odd divisors of 50), two of them with more than one term: d = 4, 50�1 4 = 11,
50 = 11 + 12 + 13 + 14; d = 5, 50�1 5 = 8, 50 = 8 + 9 + 10 + 11 + 12.

Let us now study unique representations as sums of positive integers in AP. For
example, some of these results appear in [6,7]. With our approach to the problem we can
better understand these representations.

Corollary 5. A power of two n = 2s, s ∈ Z, s > 0 cannot be represented as a sum of two or more
positive integers in an AP whose common difference is t ∈ O.

Proof. By Lemma 1, DivO(2
s) = {1, 2s+1}. Hence, we will have the trivial representation

2s = 2s and another starting with the negative number n�t 2s+1.
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Corollary 6. Let n = 2s · p, where p is an odd prime and s is a non-negative integer, and let t ∈ O.
If p < 2s+1/t, there exists a unique representation of n as a sum of p numbers in an AP with a
common difference t. If 2s+1 < p/t, the unique representation will have 2s+1 parts.

Proof. The divisors of n = 2s · p on Zt are Divt(n) = {1, p, 2s+1, 2s+1 · p}. Hence, by
Remark 2, the divisor d = p will produce a representation if p < 2s+1/t, or the divisor
d = 2s+1 will produce a representation if 2s+1 < p/t.

Example 6. We show that 496 and 248 are uniquely representable as sums of two or more consecu-
tive positive integers.

Solution. 496 = 24 · 31. By the previous corollary, 25 > 31, hence the solution will be
produced by the divisor d = 31: 496�1 31 = 1, hence 496 = 1 + 2 + . . . + 30 + 31 = 496.
248 = 23 · 31. As 24 < 31, the unique representation will be produced by the divisor 23+1:
248�1 24 = 8, hence 248 = 8 + 9 + . . . + 22 + 23.

2.2.2. The Case t = 2

Corollary 7. Every positive integer n > 1, not a prime, is a sum of two or more positive integers in
APs whose common difference is 2. Moreover, the number of such representations is equal to d τ(n)

2 e.

Proof. By Remark 3, d ≤
√

n. As Div2(n) are the usual divisors of n, denoted by Div(n), if
n is a perfect square, we will have (τ(n) + 1)/2 divisors that produce partitions; and if n is
not a perfect square, we will have τ(n)/2 possibilities. Hence, the result follows.

Example 7. Express the number 36 in all possible ways as partitions in an AP whose difference
is 2.

Solution. By the previous corollary, each usual divisor d ≤
√

36 = 6 produces a partition.
These are presented in Table 4.

Table 4. Solution to Example 7.

d 36 �2 d Representation d 36 �2 d Representation

1 36 36 4 6 6 + 8 + 10 + 12
2 17 17 + 19 6 1 1 + 3 + 5 + 7 + 9 + 11
3 10 10 + 12 + 14

Let us now study unique representations in this case.

Corollary 8. A usual prime p cannot be represented as a sum of two or more positive integers in
APs with common difference t ∈ E.

Corollary 9. Let p and q be usual primes (p < q). Then, p2, p · q, and p3 have unique nontrivial
representations as sums of positive integers in APs with common difference 2.

Proof. In the three cases, p is the unique nontrivial divisor such that p ≤
√

n.

We can extend Corollary 9 to arithmetic progressions with even differences.

Corollary 10. Let p and q be usual primes and t ∈ E such that p ≤ 2q/t. Then, the number
n = p · q has a unique representation as a sum of p positive terms of an AP whose difference is t.

Proof. We have only to apply Remark 3 to the usual divisors of n = p · q.

Example 8. Analyze the representations of the number 4369 as the sum of an AP of positive
integers with common difference t = 30.
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Solution. As 4369 = 17 · 257 and 17 < 2 · 257/30, by the previous corollary, we will have a
unique representation with 17 terms. Hence, 4369�30 17 = 17 and 4369 = 17 + 47 + 77 + . . . +
437 + 467 + 497.

To conclude this section, we revisit the basic properties of Zt by formulating a result
that clarifies the first extension of Sylvester’s theorem.

We are going to define the prime numbers on Zt. Based on Lemma 1, an integer a > 1
always has two divisors on Zt. Indeed, if t ∈ E, 1 and a are divisors of a on Zt and if t ∈ O,
then 1 and 2a are divisors of a on Zt. Thus, we can write the following definition.

Definition 4. An integer p > 1 is called a prime on Zt if it has only two divisors on Zt. An
integer greater than 1 that is not a prime on Zt is termed a composite on Zt.

We use Lemma 1 to characterize the primes on Zt.

Theorem 2. Let t ∈ Z. The primes on Zt are:

1. The usual primes if t ∈ E.
2. The powers of two if t ∈ O.

Proof. 1. Let t ∈ E. By Lemma 1, if a > 1, then d | a⇔ d |t a and the result holds.
2. Let t ∈ O. If a > 1 is not a power of 2, then a = 2s · b, b is odd and s∈{0, 1, 2, . . .}.

By Lemma 1, b |t a. In conclusion, 1, 2a, and b are divisors of a on Zt; hence, a is not prime
on Zt.

If a > 1 is a power of two, then a = 2s, s ∈ {1, 2, . . .}. By Lemma 1, the divisors of a on
Zt are the usual divisors of 2a except the even usual divisors of a. Hence, the divisors of a
on Zt are {1, 2 · 2s}; thus, a is prime on Zt.

As we can see, Theorem 1 and Corollaries 5, 7 and 8 are encompassed by Theorem 2.

3. Second Extension

With the same idea as in the previous section, we will define a new product between
two integers, but now, the difference between consecutive addends will form the arithmetic
progression (t1 + t2 · i)i≥0.

Definition 5. Given m, t1, t2 ∈ Z, for all positive integers n, we define the following product
operation between two numbers:

m� n = m + (m + t1) + (m + 2t1 + t2) + (m + 3t1 + 3t2) + . . . + (m + (n− 1)t1 +
(n− 2)(n− 1)t2

2
).

Note that the differences between consecutive addends in parentheses form the arith-
metic progression (t1 + x · t2)x≥0.

By adding the right-hand side of the previous expression we obtain

m� n = m · n +
(n− 1) · n · t1

2
+

(n− 2) · (n− 1) · n · t2

6
. (5)

Furthermore, similar to Definition 3 and Equation (3), we deduce the new quotient:

a� b =
a
b
− (b− 1) · ( t1

2
+

(b− 2) · t2

6
). (6)

Notation 2. Let t1, t2 ∈ Z. We use the notation Zt1,t2
= {Z,+,�,<} to infer that we are

working with the set of integers, the usual order, the addition, and the new multiplication operation.
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The definitions of divisors and primes on Zt1,t2
are analogous to Definitions 2 and

4, respectively. Furthermore, similar to Corollary 1 we can identify the set of divisors
as follows.

Corollary 11. An integer d > 0 is a divisor of n on Zt1,t2
, denoted by d |t1,t2

n, if and only if n� d
is an integer.

The divisors of an integer n, denoted by Divt1,t2
(n), are studied in the following

lemmas. As we will see, there will be six possible sets of divisors depending on whether t1
is even or odd and depending on whether t2 ≡ 1, 2, 0 (mod 3). We will denote these sets as
DivE,1(n), DivE,2(n), DivE,3(n), DivO,1(n), DivO,2(n), and DivO,3(n). For instance, DivE,2(n)
means that t1 is an even number and t2 ≡ 2 (mod 3).

Each of these six cases will produce an extension of Sylvester’s theorem. We will
focus on the first case and state the results of the other cases by providing solved examples
for each.

3.1. Case t1 ∈ E and t2 ≡ 1 (mod 3)

Lemma 2. Let t1 ∈ E and t2 ≡ 1 (mod 3). The elements of the set Divt1,t2
(n) satisfy the following

conditions:

(a) If d ∈ Div(a), then d |t1,t2
a ⇐⇒ 3 - d.

(b) If d ∈
(
Div(3a) \Div(a)

)
, then d |t1,t2

a ⇐⇒ 3 | d and 3a
d ≡ 1 (mod 3).

Proof. Let Div(a) be the set of usual divisors of a. Then, Divt1,t2
(n) ⊆ Div(6a). This is

because: d | a on Zt1,t2 ⇔ b� d = a⇔ 6a/d = 6b + 3(d− 1)t1 + (d− 2)(d− 1)t2 ∈ Z.
(a) Suppose d | a. By Equation (6) and Corollary 10, it is easy to observe that

d |t1,t2
a⇔ (d− 1)(d− 2)t2

6
∈ Z⇔ 3 - d.

Indeed, if 3 - d, then (d − 1)(d − 2) is a multiple of 6 and (d − 1)(d − 2)t2/6 is an
integer for all values of t2. If 3 | d, then (d− 1)(d− 2) is not divisible by 3 and hence not
divisible by 6 for all values t2 ≡ 1 (mod 3).

We claim that if d | 2a and d - a, then d -t1,t2
a.

To see this, note that d | 2a and d - a ⇒ ∃h ∈ Z such that 2a = dh ⇒ a/d = h/2. By
hypothesis d - a, so h is odd. Then,

a� d =
h
2
− (d− 1) · ( t1

2
+

(d− 2) · t2

6
).

Therefore,

a� d ∈ Z⇔ 1
2
− (d− 1)(d− 2)t2

6
∈ Z. (7)

But if d ≡ 1, 2 (mod 3), then (d− 1)(d− 2)t2/6 is an integer, say e1, for all values of
t2. Based on (7), 1/2− e1 /∈ Z ⇔ a� d /∈ Z and if d ≡ 0 (mod 3), then (d− 1) or (d− 2)
is even and the product of the other and t2 is not divisible by 3. So, ∃e2 ∈ Z such that
(d− 1)(d− 2)t2/6 = e2/3. Based on (7), 1/2− e2/3 /∈ Z⇔ a� d /∈ Z.

Thus, we have proved that if d | 2a and d - a, then d -t1,t2
a. This implies that

Divt1,t2
(a) ⊆ Div(3a), and we have to examine only the following point (b) to exhaust all

possibilities of the case t1 ∈ E, t2 ≡ 1 (mod 3).
(b) Suppose d | 3a and d - a. Then, ∃h ∈ Z such that 3a = dh⇒ a/d = h/3 and h ≡ 1 or 2
(mod 3). Similar to the proof of part (a), we deduce

a� d ∈ Z⇔ h
3
− (d− 1)(d− 2)t2

6
∈ Z.
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Now, if d ≡ 1, 2 (mod 3), then (d− 1)(d− 2)t2/6 is an integer, say e, for all t2. Hence,
h
3 − e /∈ Z and if d ≡ 0 (mod 3), say d = 3d1, then (d− 1) or (d− 2) is even:

In the first case, (d− 1)/2 ≡ 1 (mod 3). Let (d− 1)/2 = 3d2 + 1 and let t2 = 3t∗2 + 1
for some d2, t∗2 ∈ Z.

a� d ∈ Z⇔ h
3
− (3d2 + 1)(3d1 − 2)(3t∗2 + 1)

3
∈ Z⇔ h + 2

3
∈ Z.

Then h ≡ 1 (mod 3). In the second case, (d − 2) is even, and we reach the same
conclusion as before, that is, a� d ∈ Z⇔ h ≡ 1 (mod 3). Therefore, the result follows.

Example 9. Express the number 336 in all possible ways as a sum of an integer sequence (an)n>0
whose differences an+1 − an, form the arithmetic progression {0, 1, 2, 3, . . .}.

Solution. We have to find the divisors of 336 on Z0,1 .

• By Point (a) of Lemma 2, we have to eliminate multiples of 3 from the usual divisors of 336:
{1, 2, 4, 7, 8, 14, 16, 28, 56, 112, } ⊆ Div0,1(336).

• Div(3 · 336) \ Div(336) = {9, 18, 36, 63, 72, 126, 144, 252, 504, 1008}. By Point (b) of
Lemma 2, {9, 36, 63, 144, 252, 1008} ⊆ Div0,1(336). For instance, 18 is not a divisor of 336
on Z0,1 because 3 · 336/18 = 56 ≡ 2 (mod 3).

Hence, Div0,1(336) = {1, 2, 4, 7, 8, 9, 14, 16, 28, 36, 56, 63, 112, 144, 252, 1008} and the solu-
tions are presented in Table 5.

Table 5. Solution to Example 9.

d 336 � d Representation d 336 � d Representation

1 336 336 28 −105 −105− 105− . . . + 246
2 168 168 + 168 36 −189 −189− 189− . . . + 406
4 83 83 + 83 + 84 + 86 56 −489 −489− 489− . . . + 996
7 43 43 + 43 + . . . + 53 + 58 63 −625 −625− . . . + 1266
8 35 35 + 35 + . . . + 50 + 56 112 −2032 −2032− . . . + 4073
9 28 28 + 28 + . . . + 49 + 56 144 −3382 −3382− . . . + 6671
14 −2 −2− 2− . . . + 64 + 76 252 −10457 −10457− . . . + 20918
16 −14 −14− 14− . . . + 77 + 91 1008 −168840 −168840− . . . + 337681

In this example, the number of even divisors is three times that of the odd divisors. Is
this a coincidence? We now show that it is not.

Although the theory we are developing is elementary, here we can already see the
power of the approach. The next two corollaries would have been challenging to prove
without this focus on the problem.

Corollary 12. Let n = 2a3b pe1
1 · · · p

er
r be the prime factorization of n, where p1, . . . , pr are distinct

primes congruent to 1 (mod 3) and a is even. The number of representations of n as the sum of
integer sequences (ai)i≥0 in which the differences between consecutive terms (ai+1 − ai)i≥0 form an
AP whose first term is an even number with common difference congruent to 1 (mod 3) is given by
(3a/2 + 2) · (e1 + 1) · · · (er + 1).

Proof. By point (a) of Lemma 2, we have a ·∏r
i=1(ei + 1) even and ∏r

i=1(ei + 1) odd divisors
of n on Zt1,t2

, where t1 ∈ E, t2 ≡ 1 (mod 3). Since the product of two or more primes of
the form 1 (mod 3) is of the same form and 2s ≡ 1 (mod 3) if and only if s is even, point
(b) implies that we have (a/2) ·∏r

i=1(ei + 1) new even divisors on Zt1,t2
and ∏r

i=1(ei + 1)
odd divisors. In total we have (3a/2) ·∏r

i=1(ei + 1) even divisors and 2 ·∏r
i=1(ei + 1) odd

divisors on Zt1,t2
, and the result follows.

Corollary 13. Under the hypotheses Corollary 12, if a = 4, then the number of even divisors on
Zt1,t2

, t1 ∈ E, t2 ≡ 1 (mod 3) will be three times the number of odd divisors on Zt1,t2
.
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From Example 9, 336 = 24 · 3 · 7 and then, we have (3 · 4/2) · (1 + 1) = 12 representa-
tions with an even number of terms and 2 · (1+ 1) = 4 representations with an odd number
of terms.

We could develop similar results to this one for each lemma that we will study in this
section. This objective will not be ours; therefore, we will only present the following corollary.

We present the following corollary in analogy to Corollary 12.

Corollary 14. Let n = 2a3b pe1
1 · · · p

er
r be the prime factorization of n, where p1, . . . , pr are distinct

primes congruent to 1 (mod 3) and a is even. The number of representations of n as the sum of
integer sequences (ai)i≥0 in which the differences between consecutive terms (ai+1 − ai)i≥0 form an
AP whose first term is an even number with common difference congruent to 1 (mod 3) is two times
the odd divisors of n that are not multiples of 3.

Proof. By point (a) of Lemma 2, there are ∏r
i=1(ei + 1) distinct odd divisors. By point (b)

of Lemma 2, there are also ∏r
i=1(ei + 1) divisors on Zt1,t2

, t1 ∈ E, t2 ≡ 1 (mod 3).

The following theorem can be a consequence of Lemma 2 or the last corollary.

Theorem 3. Let t1 ∈ E, t2 ≡ 1 (mod 3). The set of primes on Zt1,t2
is {3s : s ∈ Z, s > 0}.

Proof. If a > 1 and a /∈ {3s : s ∈ Z, s > 0}, then a = 3s1 · b, s1 ≥ 0, b > 1 and 3 - b. By
Lemma 2, 1, b, and 3a are divisors of a on Zt1,t2

. Hence, a is not prime on Zt1,t2
.

Finally, if a = 3s, by Lemma 2, the unique divisors of a on Zt1,t2
are 1 and 3a. Hence, a

is prime on Zt1,t2
.

It follows that if t1 ∈ E and t2 ≡ 1 (mod 3), then a power of three, say 3s, has only two
representations on Zt1,t2

. The first is trivial and the second begins with the negative term
3s � 3s+1.

Now, we turn to partitions under these conditions. Similar to (4), if d is a divisor of n
on Zt1,t2

, t1, t2 ∈ Z, the first term of the representation will be n� d. Hence,

n
d
− (d− 1) · ( t1

2
+

(d− 2) · t2

6
) > 0⇔ t1 <

2n
d(d− 1)

− (d− 2) · t2

3
. (8)

With (8), taking t1 = 0 and t2 = 1, we obtain a bound for the divisors on Zt1,t2
, t1 ∈ E,

t2 ≡ 1 (mod 3) that produce representations with a positive first term.

Remark 4. Let t1 ∈ E and t2 ≡ 1 (mod 3). The divisors d of n on Zt1,t2
such that n� d>0 satisfy

d ≤ b 3
√

6nc+ 1.

Proof. In order to find a bound, we take t1 = 0, t2 = 1 and use (8). We will not have a
positive first term if

2n
d(d− 1)

− (d− 2)
3

≤ 0⇔ 6n
d(d− 1)(d− 2)

≤ 1. (9)

If d− 2 ≥ 3
√

6n, then there will be no representation with a positive first term. Hence,
d < 3

√
6n + 2. Now, the case d = b 3

√
6nc+ 2 is ruled out because d(d− 1)(d− 2) ≥ 6n

(we would have the product of three consecutive numbers, two of them ≥ n). So, d ≤
b 3
√

6nc+ 1.

We can verify this result with Example 9. The divisors d that produce representations
with a first positive term verify d ≤ b 3

√
6 · 336c+ 1 = 13.

We conclude this section by studying some results on unique representations.
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Corollary 15. Let t1 ∈ E and t2 ≡ 1 (mod 3) and let n = 3s · p, where s ≥ 0 and p ≡ 2 (mod 3).
Then, n has a unique representation as a sum of an integer sequence whose differences between
consecutive terms form the arithmetic progression (t1 + t2 · i)i≥0 with more than one term and less
than 3n terms.

Proof. By Lemma 2, the divisors of n on Zt1,t2
are {1, p, 3 · n} and the result follows.

Example 10. We illustrate Corollary 15 with n = 891 and differences between consecutive terms
ai+1 − ai = 2 + 4 · (i− 1), i ≥ 1.

Since 891 = 34 · 11, the divisors of 891 on Z2,4 are {1, 11, 2673}. The solution is produced by
the divisor d = 11: 891� 11 = 891/11− 10 · (2/2 + 9 · 4/6) = 11, 891 = 11 + 13 + 19 + 29 +
43 + 61 + 83 + 109 + 139 + 173 + 211.

We leave it to the interested reader to obtain corollaries similar to the foregoing ones,
given that the set of terms with four divisors on Zt1,t2

, t1 ∈ E, t2 ≡ 1 (mod 3) is formed by
numbers of the form n = 3s · p, s ≥ 0, p ≡ 1 (mod 3). The divisors would be {1, 3s+1, p, 3n}.

The remaining sections are similar, therefore, we will state the results without proofs
(similar to those presented in this section). We will only provide examples in some cases.

3.2. Case t1 ∈ E and t2 ≡ 2 (mod 3)

Lemma 3. Let t1 ∈ E and t2 ≡ 2 (mod 3). The elements of the set Divt1,t2
(n) satisfy the following

conditions:

(a) If d ∈ Div(a), then d |t1,t2
a⇔ 3 - d.

(b) If d ∈
(
Div(3a) \Div(a)

)
, then d |t1,t2

a⇔ 3 | d and 3a
d ≡ 2 (mod 3).

From Lemma 3, a power of 3 only has the divisor d = 1 on Zt1,t2
. This proves the next

statement.

Corollary 16. Let t1 ∈ E and t2 ≡ 2 (mod 3). A power of three cannot be represented as a sum of
two or more terms of an integer sequence (ai)i≥1 verifying that the difference between consecutive
terms forms the arithmetic progression (t1 + t2 · n)n≥0 .

Example 11. Express the number 50 in all possible ways as a sum of an integer sequence (an)n>0
whose differences an+1 − an, form the arithmetic progression {0, 2, 4, 6, . . .}.

Solution. By Lemma 3, Div0,2(50) = {1, 2, 3, 5, 10, 25, 30, 50, 75}. The solution can be seen
in Table 6.

Table 6. Solution to Example 11.

d 50 � d Representation d 50 � d Representation

1 50 50 25 −182 −182− 182− . . . + 324 + 370
2 25 25 + 25 30 −269 −269− 269− . . . + 487 + 543
3 16 16 + 16 + 18 50 −783 −783− 783− . . . + 1569
5 6 6 + 6 + 8 + 12 + 18 75 −1800 −1800− . . . + 3602

10 −19 −19− 19− . . . + 37 + 53

Similar to Remark 4, we can calculate a bound for positive representations:

Remark 5. Let t1 ∈ E and t2 ≡ 2 (mod 3). The divisors d of n on Zt1,t2
such that n� d > 0 verify

that d ≤ b 3
√

3nc+ 1.

For instance, in the previous example, b 3
√

3 · 50c+ 1 = 6. Hence, the divisors of 50 on
Z0,2 greater than 6 will not produce partitions.

Now, we continue with the results of unique representation.
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Theorem 4. Let t1 ∈ E, t2 ≡ 2 (mod 3). The set of primes on Zt1,t2
is {3s−1 · p : s ∈ N, p usual

prime, p ≡ 1 (mod 3)}. That is, the unique divisors of n = 3s−1 · p on Zt1,t2
will be 1 and p.

Example 12. Consider n = 189 with consecutive differences between terms ai+1− ai = 5 · (i− 1),
i ≥ 1.

Then, 189 = 33 · 7 implies that the divisors of 189 on Z0,5 are {1, 7}. The unique non trivial
solution is: d = 7, 189� 7 = 2, 189 = 2 + 2 + 7 + 17 + 32 + 52 + 77.

In order to finish this case, we consider sets of numbers with three or four divisors.

Corollary 17. Let t1 ∈ E and t2 ≡ 2 (mod 3). The set of numbers with three divisors on Zt1,t2

is {3s−1 · p : s ∈ N, p usual prime, p ≡ 2 (mod 3)}. The sets of numbers with four divisors are
{3s−1 · p · q : s ∈ N, p and q usual primes, p, q ≡ 1 (mod 3)} and {3s−1 · p3 : s ∈ N, p usual
prime, p ≡ 1 (mod 3)}.

Proof. If n = 3s−1 · p, p ≡ 2 (mod 3), the divisors onZt1,t2
will be {1, p, 3s}. If n = 3s−1 · p · q,

p, q ≡ 2 (mod 3), the divisors on Zt1,t2
will be {1, p, q, p · q}. If n = 3s−1 · p3, p ≡ 1 (mod 3),

the divisors on Zt1,t2
will be {1, p, p2, p3}.

3.3. Case t1 ∈ E and t2 ≡ 0 (mod 3)

This case is one of the most accessible; therefore, we will only state the results.

Lemma 4. Let t1 ∈ E and t2 ≡ 0 (mod 3), then d | a⇔ d |k1,k2
a.

Theorem 5. Let t1 ∈ E and t2 ≡ 0 (mod 3). The set of primes onZt1,t2
is the set of the usual primes.

Remark 6. Let t1 ∈ E and t2 ≡ 0 (mod 3). The divisors d of n on Zt1,t2
such that n� d>0 verify

that d ≤ b 3
√

2nc+ 1.

Finally, we will study and state the remaining results in a single section. We will start
with a Lemma similar to Lemmas 2, 3, and 4. To clarify the lemma, we will present a simple
example. After this, we will classify the set of prime numbers in each case. The reader will
be able to obtain results of unique representation similar to those already studied. Then,
we will state a Remark providing us with an upper bound for the divisors that produce
representations with all positive terms. Lastly, we will state a theorem concerning powers
of 3.

3.4. Case t1 ∈ O, t2 ≡ 1, 2, and 0 (mod 3)

Lemma 5. Let t1 ∈ O, t2 ∈ Z. The divisors of n ∈ Z on Zt1,t2
satisfy the following conditions:

1. t2 ≡ 1 (mod 3):

(a) If d ∈ Div(n), then d |t1,t2
a⇔ 2 - d and 3 - d.

(b) If d ∈
(
Div(2a) \Div(a)

)
, then d |t1,t2

a⇔ 2 | d and 3 - d.
(c) If d ∈

(
Div(3a) \Div(a)

)
, then d |t1,t2

a⇔ 2 - d and 3 | d and 3a
d ≡ 1 (mod 3).

(d) If d ∈
(

Div(6a) \
(
Div(3a) ∪Div(2a)

))
, then d |t1,t2

a⇔ 2 | d and 3 | d and 6a
d ≡ 5 (mod 6).

2. t2 ≡ 2 (mod 3):

(a) If d ∈ Div(a), then d |t1,t2
a⇔ 2 - d and 3 - d.

(b) If d ∈
(
Div(2a) \Div(a)

)
, then d |t1,t2

a⇔ 2 | d and 3 - d.
(c) If d ∈

(
Div(3a) \Div(a)

)
, then d |t1,t2

a⇔ 2 - d and 3 | d and 3a
d ≡ 2 (mod 3).

(d) If d ∈
(

Div(6a) \
(
Div(3a) ∪Div(2a)

))
, then d |t1,t2

a⇔ 2 | d and 3 | d and 6a
d ≡ 1 (mod 6).

3. t2 ≡ 0 (mod 3):
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(a) If d ∈ Div(a), then d |t1,t2
a⇔ 2 - d.

(b) If d ∈
(
Div(2a) \Div(a)

)
, then d |t1,t2

a⇔ 2 | d.

We can observe the symmetry mentioned in the introduction that occurs in the different
sets of divisors. For example, if a divisor d does not yield a representation in Point 1 c), d
would indeed yield a representation under the conditions of Point 2 c).

Example 13. Express the number 20 in all possible ways as a sum of a sequence (an)n>0 verifying
ai+1 − ai = i + 2, i ∈ N.

Solution. As the first difference is 3, we need to calculate the set Div3,1(20) using Point 1 of
Lemma 5.

• Div(20) = {1, 2, 4, 5, 10, 20}. By a), only 1 and 5 are divisors of 20 on Z3,1 .
• Div(40) \Div(20) = {8, 40}. By b), 8 and 40 are divisors of 20 on Z3,1 .
• Div(60) \Div(20) = {3, 6, 12, 15, 30, 60}. By c), the candidates are 3 and 15 but 60/3 =

20 ≡ 2 (mod 3) and 60/15 = 4 ≡ 1 (mod 3). Hence, 3 -3,1 20 and 15 |3,1 20. We reiterate the
symmetric nature of the divisors. Although 3 is not a divisor of 20 on Z3,1 , while 15 is, we
would have the symmetrical case on Z3,2 , for example.

• Div(120) \ (Div(60) ∪Div(40)) = {24, 120}. By d), 24 |3,1 20 because 120/24 = 5 ≡ 5
(mod 6) but 120 -3,1 20 because 120/120 = 1 ≡ 1 (mod 6).

Hence, Div3,1(20) = {1, 5, 8, 15, 24, 40} and the solution can be seen in Table 7.

Table 7. Solution to Example 13.

d 20 � d Representation d 20 � d Representation

1 20 20 15 −50 −50− 47− . . . + 67 + 83
5 −4 −4− 1 + 3 + 8 + 14 24 −118 −118− 115− . . . + 179 + 204
8 −15 −15− 12− . . . + 18 + 27 40 −305 −305− 302− . . . + 512 + 553

Theorem 6. Let t1 ∈ O, t2 ∈ Z. The set of primes is:

1. {22l−1 · 3s−1 : s, l ∈ N} if t2 ≡ 1 (mod 3).
2. All numbers are composite if t2 ≡ 2 (mod 3).
3. {2l : l ∈ N} if t2 ≡ 0 (mod 3).

Proof. The proof is similar to those of previous theorems. We have to use Lemma 5.
We comment only that if t2 ≡ 2 (mod 3), then all numbers a > 1 have at least three
divisors: if a = 2l−1 · h, h odd, then 1, 2l and 6a are divisors of a. Hence, a is not prime.
It can be proved that the set of numbers with exactly three divisors is the following:
{22l−2 · 3s−1 > 1 : s, l ∈ N}.

Remark 7. Let t1 ∈ O, t2 ∈ Z. The divisors d of n on Zt1,t2
such that n� d>0 verify:

1. If t2 ≡ 1 (mod 3), then d ≤ b 3
√

6nc.
2. If t2 ≡ 2 (mod 3), then d ≤ b 3

√
3nc+ 1.

3. If t2 ≡ 0 (mod 3), then d ≤ b 3
√

2nc+ 1.

Table 8 shows the numbers with 3 and 4 divisors onZt1,t2
, t1 ∈ O. With this information

and the previous remark, we can obtain results of unique representation easily. For Table 8,
we will consider that s, l ∈ N, and p, q are usual primes with p ≡ 1 (mod 6).
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Table 8. Numbers with 3 and 4 divisors on Zt1,t2
(t1 ∈ O).

t2 Numb. with 3 Div. Divisors Numb. with 4 Div. Divisors

1 (mod 3) 22l−2 · 3s−1 1, 22l−1, 3s 22l−1 · 3s−1 · p 1, 22l , p, 22l · p
2 (mod 3) 22l−2 · 3s−1 1, 22l−1, 22l−1 · 3s 22l−1 · 3s−1 1, 22l , 3s, 22l · 3s

0 (mod 3) ∅ ∅ 2l−1 · q 1, 2l , q, 2l · q

Example 14. We show that n = 39548 has a unique partition such that the differences between
consecutive parts form the arithmetic progression {1, 4, 7, . . .}.

Solution. n = 39548 = 22 · 9887, then the divisors of n on Z1,3 are 1, 23, 9887, and 2n.
As b 3
√

2nc+ 1 = 43, then the solution is produced by the divisor d = 23. 39548� 8 = 4919,
39548 = 4919 + 4920 + 4924 + 4931 + 4941 + 4954 + 4970 + 4989.

Our last result is the following theorem concerning the powers of 3. We emphasize
again that although the methods used are elementary, this result would be difficult to
discover and prove without the approach employed in this article.

Theorem 7. A power of 3 cannot be represented as a sum of three or more parts of an integer
sequence (ai)i≥1 such that the differences between consecutive parts form an arithmetic progression
whose common difference is 1 or 2 (mod 3).

Proof. DE,1(3
s) = {1, 3s+1}, DE,2(3

s) = {1}, DO,1(3
s) = {1, 2, 3s+1}, DO,2(3

s) = {1, 2, 2 ·
3s+1}. Using Remarks 4, 5, and 7, the result follows.

As a consequence of this theorem, we conclude the paper with a corollary similar to
Sylvester’s original theorem.

Corollary 18. A power of 3 cannot be represented as a sum of three or more terms of a positive
integer sequence (ai)i≥1 such that the differences between consecutive terms are consecutive integers.
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