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Abstract: Due to the widespread issue of road accidents, researchers have been drawn to investigate
strategies to prevent them. One major contributing factor to these accidents is driver fatigue resulting
from exhaustion. Various approaches have been explored to address this issue, with machine and deep
learning proving to be effective in processing images and videos to detect asymmetric signs of fatigue,
such as yawning, facial characteristics, and eye closure. This study proposes a multistage system
utilizing machine and deep learning techniques. The first stage is designed to detect asymmetric
states, including tiredness and non-vigilance as well as yawning. The second stage is focused on
detecting eye closure. The machine learning approach employs several algorithms, including Support
Vector Machine (SVM), k-Nearest Neighbor (KNN), Multi-layer Perceptron (MLP), Decision Tree
(DT), Logistic Regression (LR), and Random Forest (RF). Meanwhile, the deep learning approach
utilizes 2D and 3D Convolutional Neural Networks (CNNs). The architectures of proposed deep
learning models are designed after several trials, and their parameters have been selected to achieve
optimal performance. The effectiveness of the proposed methods is evaluated using video and image
datasets, where the video dataset is classified into three states: alert, tired, and non-vigilant, while
the image dataset is classified based on four facial symptoms, including open or closed eyes and
yawning. A more robust system is achieved by combining the image and video datasets, resulting
in multiple classes for detection. Simulation results demonstrate that the 3D CNN proposed in
this study outperforms the other methods, with detection accuracies of 99 percent, 99 percent, and
98 percent for the image, video, and mixed datasets, respectively. Notably, this achievement surpasses
the highest accuracy of 97 percent found in the literature, suggesting that the proposed methods for
detecting drowsiness are indeed effective solutions.

Keywords: fatigue detection; drowsiness detection; deep learning; image processing; machine
learning; video processing; yawning detection

1. Introduction

The issue of drivers falling asleep while operating a vehicle has received considerable
attention from numerous researchers in the automotive field, who have dedicated their
efforts toward developing a range of drowsiness detection systems. This is an active area
of research that involves incorporating various components of the Internet of Things (IoT)
and application technology [1], such as sensors, cloud computing, facilities, smartphones,
and distributed data processing. To develop a reliable and effective fatigue detection
system, researchers typically employ three primary methodologies: behavior-based, vehicle-
based, and physical-based approaches [2]. Figure 1 presents an overview of the distinct
characteristics of each of these methodologies.
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ing wheel velocity, steering wheel angle, steering wheel movement, hand position, lane 
departure, and hand absence [4]. 

Figure 1. Overview of the principal methodologies employed in fatigue detection systems.

Behavioral-based methods utilize computer vision and image processing techniques
to evaluate images and videos of the operator, with the objective of assessing their level of
alertness. This strategy is based on analyzing various essential physiological indicators,
such as eye blinking, facial expressions such as lip movements, yawning, eye closure, nod-
ding, and head posture, to ascertain whether the operator is awake, drowsy, or asleep [3].

A different approach, known as vehicle-based systems, involves incorporating a driver
fatigue detection system into the steering wheel of the vehicle using embedded sensors
and devices. This integrated system measures various indicators, including steering wheel
velocity, steering wheel angle, steering wheel movement, hand position, lane departure,
and hand absence [4].
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The physical-based fatigue detection methods employ human bio-signals such as
Electroencephalography (EEG), Electrooculography (EOC), and Electrocardiography (ECG)
to monitor the driver behind the steering wheel. In addition, some signs are involved in
these methods, such as breathing, respiratory, and pulse rates [5].

1.1. Related Work

The endeavors toward developing a system for detecting fatigue can be categorized
into two primary groups: conventional algorithms and machine learning algorithms [6].
Among the machine learning algorithms, CNN and SVM are the most commonly employed
and efficient classifiers [7]. Although SVM is quick and precise in analyzing small datasets,
its accuracy and speed decrease when utilized for larger datasets. Conversely, CNN
exhibits high accuracy and stability for both small and large datasets, but its training can
be time-consuming when utilizing CPUs and may incur high processing costs when using
GPUs [7].

The development of a fatigue detection system for driving is a crucial component in
improving driving safety measures. Previous efforts to employ behavioral-based techniques
entailed utilizing software to observe driving behavior by capturing real-time images of
the driver using infrared illumination [8]. This approach considers multiple parameters,
including PERCLOS, face position, blink frequency, nodding frequency, and eye closure
duration, to monitor the driver’s conduct. A classifier evaluates these parameters to
determine the driver’s level of alertness. Currently, this system surpasses other algorithms
as it has the capability to observe and analyze a wide range of factors and collect data in
both daytime and nighttime conditions.

Abtahi et al. [9] devised a simple method using image processing to detect signs
of driver fatigue. This approach involves capturing facial features, such as eye and lip
movements, to identify yawning and ocular languor and then monitoring the driver’s face
in the image. The concept identifies changes in the geometric properties of the driver’s
face to recognize fatigue. Flores et al. [10] put forth an Advanced Driver Assistance
System (ADAS) in their investigation, which employs a technique for detecting tiredness
by scrutinizing the driver’s face and eyes to evaluate their facial expressions and eye
movements. The authors conducted real-time testing of the system under varying lighting
conditions in contrast.

Several techniques, such as those described in references [11–16], strive to improve the
precision of fatigue detection by identifying the same facial characteristics as described in
reference [9]. To this end, Sigari et al. [17] developed a method that compares the driver’s
present head orientation to a pre-existing facial template and projects the top half of the
driver’s facial image horizontally to detect alterations in eye closure and eyelid distance.
A fuzzy-based approach that integrates both parameters was used to automatically activate
the algorithm, and it was found to be effective. Nonetheless, it faces difficulties during
daylight hours and is incapable of detecting fatigue when the driver is wearing glasses.

In a prior investigation [18], a deep neural network architecture was proposed to
address the challenge of identifying drowsiness. The approach involved analyzing the
driver’s facial characteristics from RGB footage using a feature fusion architecture devel-
oped with three separate convolutional neural network models: VGG16, InceptionV3, and
ResNet50. However, the accuracy of this approach was found to be limited, with a score of
78%. On the other hand, Galarza et al. [19] presented an interactive system for detecting
drowsiness that incorporated behavioral data, such as eye position, head posture, and
yawning frequency, utilizing an Android smartphone. This method offered several benefits,
including consistent performance across different settings (e.g., lighting conditions and
driver accessories, such as glasses, caps, or hearing aids) and an accurate detection rate of
drowsiness, achieving a detection accuracy of 93.37%.

Bassi et al. [20] conducted a study wherein they developed a fatigue detection system
that employed machine learning techniques, including local binary pattern, SVM, and
Principal Component Analysis (PCA). The primary goal of the system was to enhance the



Symmetry 2023, 15, 1274 4 of 20

performance of SVM by selecting the optimal linear, polynomial, and quadratic kernels
and assessing their effectiveness. The SVM model’s accuracy differed for different kernels,
with the polynomial kernel yielding the highest accuracy of 99%. However, this approach
was deemed computationally intensive, and its testing necessitated a considerable amount
of time, despite its efficacy.

In their study, Ouabida et al. [21] proposed a method for detecting driver fatigue using
an optical correlator for driver-eye tracking. Specifically, they employed the Vander Lugt
Correlator (VLC) to estimate the position of the eye center and filter out visual noise in
challenging settings. Their approach yielded an impressive 95% accuracy rate. However, a
notable disadvantage of this technique is its susceptibility to light reflections from external
sources, such as other vehicles or streetlights.

An alternative approach to detecting driver fatigue was introduced by Maior et al. [22],
who utilized computer vision and machine learning techniques to extract eye patterns and
monitor blink movements from video streams. This method employed SVM, RF, and MLP
algorithms and yielded a 94% accuracy rate. Nonetheless, this technique is associated with
relatively lengthy processing times.

In their study, Saurav et al. [23] presented a system that utilizes video streaming
technology to identify occurrences of yawning. To enhance the accuracy of fatigue detection,
advanced deep learning models, specifically Bi-directional Long Short-Term Memory (Bi-
LSTM) and CNN, were employed. The system also leverages a camera feed to capture data
from the mouth area and distinguish between typical mouth movements and indications of
fatigue. The effectiveness of the system was assessed by evaluating it against two datasets,
the Yawning Detection Dataset (YawDD) [24] and the National Tsing Hua University
Yawning Detection Dataset (NTHUDDD) [25]. The outcome of the evaluation showed a
high accuracy rate of 96%.

Biswal et al. [26] have devised an intelligent monitoring system that can detect and
caution against driver fatigue. The system relies on video streaming and blink analysis
techniques to estimate the distance between the eye and the face, as well as the Eye Aspect
Ratio (EAR). An advantage of this system is its ability to integrate with IoT modules for
traffic incident alerts. Another approach proposed by Jeon et al. [27] combines vehicle-based
and behavioral methods. This method captures data from the steering wheel and pedal
pressure sensors and employs Convolutional Neural Networks (CNNs) for classification,
with a reported success rate of 94%. However, this technique’s accuracy is susceptible to
fluctuation due to alterations in the road environment, which is its primary limitation.

By contrast, a number of algorithms have incorporated machine learning and deep
learning models to create physical techniques that rely on input from EEG [28,29], ECG [30],
and EOG. These techniques represent a fusion of physical and behavioral strategies. For
example, Ko et al. [31] proposed a system that extracts Differential Entropy (DE) from EEG
signals and applies CNN for classification. This process generates hierarchical features
and class-discriminative information, enabling the detection of sleepiness via a density-
connected layer. Similarly, Zhu et al. [32] employed CNN to gather and analyze data
from wearable EEG sensors. They employed a pre-trained AlexNet model with CNN to
classify the collected EEG signals, resulting in a 94% accuracy rate. However, the primary
difficulty associated with this approach lies in the time delay between acquiring EEG data
and processing it with CNN.

1.2. Novelty and Contributions

Upon examination of the reviewed literature, it becomes evident that a multitude of
feature extraction techniques were employed to extract the essential features from the input
data. Additionally, various strategies were employed in the classification task to attain
optimal detection accuracy. Many researchers investigated fatigue detection methods to
prevent drivers from drowsiness [33–35], and others detect sleepiness from eye closure
rate [36]. Nevertheless, despite using robust feature extraction and classification methods,
the highest level of detection accuracy attained was 97% on a collected dataset using a
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driving simulator with an ensemble machine learning method. The objective of this article
is to develop an enhanced system that can achieve a higher level of detection accuracy than
the existing systems presented in previous literature. This objective is achieved using a
cascaded decision system which comprises two stages. The first stage is requested to detect
yawning and tiredness, while the second one detects the eye closure state.

In addition, we deployed machine learning and deep learning, which have been em-
ployed in various applications, including emotion recognition [37], speech recognition [38],
image reconstruction [39], and medical diagnosis [40–43]. The present study suggests a
deep learning approach based on 2D and 3D CNNs for identifying fatigue in images and
videos. The proposed study’s contributions are as follows:

1. The process of feature extraction from images and videos is accomplished by the
utilization of the Haar Cascaded Classifier (HCC).

2. To investigate a cascaded system that detects both tiredness and eye closure. This
system is the first concern in this topic, to the best of the author’s knowledge.

3. To explore an improved approach to detect fatigue from images based on machine
learning methods utilizing SVM, RF, DT, KNN, QDA, MLP, and LR.

4. To design some deep learning models based on 2D and 3D CNNs to handle the input
data in RGB modality with specific hyper-parameters.

5. A comparison is carried out among the proposed models, which presents the optimal
one based on the accuracy of detection and testing time.

The remaining sections of this paper can be divided into four parts. Section 2 outlines
the materials and proposed methods utilized in this study. Section 3 presents a comprehen-
sive analysis of the results obtained from these methods. In Section 4, a brief comparison
between the proposed methods and previous works in the literature is discussed. Lastly,
Section 5 serves as the conclusion of this paper.

2. Materials and Methods

This introduces a method for detecting drowsiness, due to fatigue, among drivers
by monitoring their conduct, specifically utilizing videos and images. The system is
composed of four principal phases, including feature extraction, preprocessing, scaling,
and classification. In the feature extraction phase, the Haar Cascaded Classifier is utilized
to extract the driver’s facial and ocular features from the captured videos or images.
Furthermore, the preprocessed facial images are enhanced by utilizing data augmentation
techniques to increase the amount of input data for the classification procedure. Moreover,
the enhanced data is standardized and scaled to be incorporated into the classification
models. The overall architecture of the suggested system is depicted in Figure 2. The
concept of the proposed system is to detect fatigue (tiredness), which is a primary cause
of drowsiness. The algorithm of the proposed system is shown in Algorithm 1. First, the
input video, which is recorded at a rate of 30 frames per second, is fed into the system.
Then, the face is extracted from the video frame in the “Face extraction” step. The extracted
faces are enrolled in to “Face detection” step for face and eye recognition. The classification
process to detect drowsiness from facial symptoms and yawning is performed in Step 3,
while the detection of drowsiness from the detected eyes is performed in Steps 4 and 5. We
deployed HCC to detect them to be fed into the classifiers to detect their state, whether
open or not. The steps of the proposed algorithm are as follows:
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Algorithm 1: Steps of Drowsiness Detection in The Proposed System

Input Data
Step 1: Face extraction
Step 2: Face Detection
Step 3: Drowsiness Detection from face
if yawn;
Alert;
else if tired;
Alert;
end if;
else Go to step 5;
Step 4: Eye Detection
Step 5: Drowsiness detection from Eye
if yawn;
Alert;
else Go to step 1;
end if ;
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2.1. Image Augmentation

This paper presents a data augmentation technique based on a Generative Adversarial
Network (GAN), which has been shown to be effective in several applications. In this study,
we apply the Convolutional GAN (CGAN) method to augment the input images. Unlike
the standard use of GANs, our study uses them solely for data augmentation and not for
classification purposes.

Specifically, our CGAN comprises a generator network and a discriminator network,
as shown in Figure 3. The generator consists of five convolutional transpose layers and
a denoising fully connected layer to generate feature maps from input images. The dis-
criminator comprises five convolutional layers and a denoising fully connected layer to
reconstruct the original image. The generated images are used to augment the available
dataset, improving the performance of the DLMs.
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2.2. Classification

Classifiers such as DT, KNN, SVM, RF, and MLP with backpropagation, QDA, and
LR are used in the machine learning approach. In addition, the hyperparameters of the
proposed algorithms are mechanically chosen using the grid search method [44,45].

Additionally, the deep learning methodology consists of two deep learning models.
The first model, namely the 3D CNN, comprises 16 layers. Its structure encompasses several
duties, including feature extraction, feature reduction, full connectivity, and classification.
The feature extraction stage employs four 3D convolutional layers with filter sizes 32, 64,
64, and 128. Furthermore, the feature reduction task is accomplished through four 3D Max
pooling layers, using a window size of 2. Both these tasks operate on the 3D modality
to handle the depth of the input images, where the input video frames are fed into the
proposed model with an input shape of (162, 162, and 3). Consequently, this model intends
to account for any color changes that may occur within the frame’s color channels.

Another objective is the fully connected task, which is managed by utilizing a 3D
global average pooling (3D GAP) to process the output 3D feature map generated by the
convolutional and pooling layers sequence. The GAP layer is subsequently followed by a
series of dense layers that produce an eigenvector, which is then fed into the classification
layer. This classification layer consists of a dense layer equipped with a softmax activation
function. The architecture of the proposed 2D and 3D model is shown in Figures 4 and 5.
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3. Results

This section offers a thorough assessment of the proposed fatigue detection techniques.
Firstly, a detailed depiction of the datasets employed in this research is provided. Secondly,
the evaluation metrics employed to measure the effectiveness of the proposed methods
are presented. Thirdly, the hyperparameters utilized in this study are illustrated. More-
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over, the results obtained from the experiments are outlined, accompanied by discussions
and comments on these findings. Finally, a comparative analysis of the endeavors is con-
ducted to provide a comprehensive comprehension of the strengths and limitations of the
proposed approaches.

The proposed techniques were assessed on a personal computer containing an Intel
Core i7 CPU, 8 GB NVIDIA GPU driver, 32 GB of RAM, and running on the Windows
11 operating system. These specifications were enough to handle the processing of the
videos with a frame rate of 30 frames per second (time interval of 33.33 ms), as shown in the
simulation results. The programming codes for the proposed approaches were developed
utilizing Python 3.8 and the Keras and TensorFlow toolkits and the design of the proposed
models, including the layers and learning parameters.

3.1. Datasets

The proposed techniques are executed on the “ULg Multimodality Drowsiness Database,”
commonly abbreviated as DROZY [46]. This database comprises two segments. The first
segment entails collecting data from 14 young, healthy individuals, comprising three
males and eleven females, utilizing video streaming monitoring. The data in this segment
was gathered utilizing Kinect technology and video sensors that are equipped with Near-
Infrared (NIR) sensitivity, resulting in a resolution of 512 × 424 pixels in MP4 format.
Illustrations of NIR intensity scenes generated from video frames are displayed in Figure 6.
This dataset is collected at the rate of frames of 30 frames per second (time interval of
33.33 ms) with a number of frames of 17,000 frames per person. Table 1 illustrates the
number of images for each person involved in this dataset (publicly provided).
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Table 1. Summary of the number of images in the DROZY dataset [46].

Person
Number of Frames

Alert Non-Vigilant Tired

1 17,865 15,195 14,185
2 17,899 14,156 13,033
3 17,882 13,540 14,198
6 17,789 13,079 14,272
7 17,898 14,163 13,167
8 17,913 14,198 14,331
10 17,863 17,886 14,204
11 17,866 17,900 14,339
12 17,914 17,861 17,972
13 17,889 17,908 17,889
14 17,902 17,198 17,875

The second dataset is the drowsiness dataset [24]. This dataset comprises images of the
drivers with different eye and face symptoms, including eyes closed or open and yawning
or not. The objective is to distinguish among these states using the proposed deep learning
models. In addition, data augmentation is employed to increase the number of images fed
into the deep-learning models. Figure 7 shows samples of this dataset.
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The datasets are shuffled and split into training and testing subsets with an 80/20 ratio.
In addition, the training process is performed using k-fold cross-validation with a k value
of 10.

3.2. Evaluation Metrics

To evaluate proposed approaches, various evaluation metrics are used, such as ac-
curacy, recall, precision, F1 score, and Matthews Correlation Coefficient (MCC). These
metrics (MCC) are defined by Equations (1)–(5) [47]. The term False Negative (FN) refers
to the number of instances in which drowsy states are mistakenly identified as normal.
True Positive (TP) denotes the number of drowsy states correctly identified as such. True
Negative (TN) pertains to the number of normal states accurately identified as normal.
False Positive (FP) refers to the number of normal states inaccurately identified as drowsy.

Accuracy =
No. o f correctly detected images

Total No. o f images
× 100

=
(TN + TP)

(TP + FP + TN + FN)
× 100

(1)

Recall = TPR =
TP

TP + FN
= (1 − FNR) (2)

precision =
TP

TP + FP
(3)

F1 = 2 ×
(

precision × recall
precision + recall

)
(4)

MCC =
(TP × TN)− (FP × FN)√

((TP + FP)× (TP + FN)× (TN + FP)× (TN + FN))
× 100 (5)

3.3. Hyperparameter Setting

This study conducts a grid search algorithm to perform hyperparameter selection for
both machine learning and deep learning approaches. The objective of this process is to
identify the optimal values of hyperparameters that result in maximum accuracy. Table 2
lists the hyperparameters utilized in the proposed methods, which are obtained through
100 iterations for each model. The model training process is carried out iteratively with
various hyperparameter values for the optimizer, learning rate, and activation function
of the deep learning layers to select the optimal hyperparameters for the deep learning
approach. Figure 8 presents the learning curve for accuracy during the hyperparameter
optimization, demonstrating that the model performance improves with each run due
to the variations in the hyperparameter values. Moreover, Table 3 displays some of the
iterations conducted for hyperparameter optimization for the deep learning model, while
Table 2 illustrates the selected hyperparameters for the proposed methods.
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Table 2. Hyperparameters of The Proposed Methods.

Model Hyperparameters

SVM
C|275
Gamma|‘scale’
Kernel|‘rbf’

RF Number of estimators|79
Criterion|‘entropy’

DT

Criterion|‘gini’
Minimum samples leaf|1
Minimum samples split|2
CCP Alpha|0

KNN

Number of neighbors|1
Leaf size|30
Metric|‘minkowski’
P|2
Weights Distribution|‘uniform’

QDA Tol|0.0001

MLP

Number of hidden layers|2
Hidden layer_sizes|[44,45]
Activation|‘relu’
Maximum number of iterations|200
Optimizer|‘adam’

LR
Optimizer|‘lbfgs’
C|1.0
Fit intercept|True

2D CNN

Optimizer|‘adam’
Epochs|Automatic (using Early_Stopping technique)
Batch size|20
Activation function|‘relu’
Learning rate|0.01

3D CNN

Optimizer|‘adam’
Epochs: Automatic (using Early_Stopping technique)
Batch size|20
Activation function|‘relu’
Learning rate: 0.01

Table 3. Sample of iterations for Hyperparameter Optimization.

Hyper Parameter Accuracy

Learning Rate Optimizer

0.01 adam 1
0.001 rmsprop 1
0.01 adam 1
0.001 rmsprop 0.9990
0.01 rmsprop 0.9990
0.01 rmsprop 0.9990
0.01 adam 0.9990

0.001 adam 0.99904

0.001 rmsprop 0.9910

0.001 adam 0.9900
0.01 adam 0.9900
0.01 adam 0.9890
0.001 adam 0.9880
0.001 adam 0.9871
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3.4. Simulation Results

This section comprises the simulation results of the proposed models for both images
and video datasets discussed previously. In addition, the proposed models have been
compared to accomplish the optimum method. The proposed methods are carried out in
three main scenarios. The first scenario includes three states, alert, tired, and non-vigilant.
The second one comprises four categories: eye open, eye closed, yawn, and no yawn. The
last scenario is a combination of the two scenarios, which comprises seven categories,
including those in the first and second scenarios. The following subsections discuss the
simulation results of each proposed scenario.

3.4.1. Simulation Results of DROZY Video Dataset

This research paper employs a fatigue detection technique that analyzes video frames
to determine the driver’s level of awareness, specifically identifying whether the driver
is alert, tired, or non-vigilant. The objective of this study is to develop an accurate model
with low testing time, utilizing both machine and deep learning models. The machine
learning approach implemented in this study includes SVM, RF, DT, KNN, QDA, MLP,
and LR, while the proposed deep learning approach involves 2D and 3D CNNs. Figures 9
and 10 present the learning curves of the proposed models, demonstrating that the model
performance improves during the training process. Table 4 lists the evaluation metrics of the
proposed models, including precision, recall, accuracy, and F1-score. The simulation results
indicate that the SVM, RF, and KNN machine learning models have superior performance
for fatigue detection from videos, achieving an accuracy of 99%. Furthermore, the proposed
3D CNN deep learning model achieves an accuracy of 99%. Thus, the proposed models
offer effective solutions for video fatigue detection.
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Table 4. Brief Comparison among The Proposed Machine Learning Models for DROZY Dataset.

Model Precision Recall F1-Score Accuracy Testing Time (ms)

SVM 100 99 99 99 187
RF 100 99 100 99 31
DT 92 92 92 92 20

KNN 100 99 100 99 16
QDA 68 68 68 68 40
MLP 95 95 95 95 30
LR 95 95 95 95 10

2D CNN 97 97 97 97 120
3D CNN 100 100 100 100 124

3.4.2. Simulation Results of Drowsiness Image Dataset

Another scenario is proposed in this paper, based on image capturing of the driver.
The proposed models are carried out on an image dataset comprising the symptoms of the
face. This scenario includes eye closure, opening categories, and whether or not to yawn.
Such as in the previous scenario, the proposed machine learning and deep learning models
are carried out. The learning curves of the proposed models are shown in Figures 11 and 12
for machine learning and deep learning, respectively. Table 5 illustrates the evaluation
metrics of the proposed models. This scenario is more robust rather than the previous one.
It can be noticed from the performance of the proposed models. The proposed RF and LR
machine learning models achieved an accuracy of 93%. In addition, the proposed 2D and
3D CNNs achieved 95% and 98% accuracy, respectively. Therefore, in this scenario, the
proposed 3D CNNs outperform the other proposed models for detecting facial symptoms.
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Table 5. Brief Comparison among The Proposed Machine Learning Models for Images Dataset.

Model Precision Recall F1-Score Accuracy Testing Time (ms)

SVM 86 85 85 85 194
RF 93 93 93 93 39
DT 81 82 82 82 25

KNN 86 85 85 85 20
QDA 47 47 47 47 54
MLP 90 90 90 90 32
LR 93 93 93 93 15

2D CNN 95 94 95 95 12.4
3D CNN 98 98 98 98 16.9
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3.4.3. Simulation Results of The Combined Dataset

To provide a general and robust scenario, we combined the image and video datasets
and fed them into the proposed models. This scenario provides seven classification cat-
egories, including the driver’s status and face symptoms. These categories can be sum-
marized as follows: alert, non-vigilant, tired, eye open, eye closed, yawn, and no yawn.
The proposed machine and deep learning models are carried out on the combined dataset
to be evaluated. Figures 13 and 14 show the learning curves of the proposed machine
learning and deep learning models, respectively. Furthermore, the simulation results of the
proposed models are illustrated in Table 6. The simulation results reveal that the proposed
RF model outperforms the machine learning models, while 3D CNNs do in the deep learn-
ing models. The superior models achieved 90% and 98% accuracy for RF and 3D CNNs,
respectively. Therefore. They can be considered efficient solutions for robust conditions.

Symmetry 2023, 15, 1274 16 of 21 
 

 

LR 93 93 93 93 15 
2D CNN 95 94 95 95 12.4 
3D CNN 98 98 98 98 16.9 

3.4.3. Simulation Results of The Combined Dataset 
To provide a general and robust scenario, we combined the image and video datasets 

and fed them into the proposed models. This scenario provides seven classification cate-
gories, including the driver’s status and face symptoms. These categories can be summa-
rized as follows: alert, non-vigilant, tired, eye open, eye closed, yawn, and no yawn. The 
proposed machine and deep learning models are carried out on the combined dataset to 
be evaluated. Figures 13 and 14 show the learning curves of the proposed machine learn-
ing and deep learning models, respectively. Furthermore, the simulation results of the 
proposed models are illustrated in Table 6. The simulation results reveal that the proposed 
RF model outperforms the machine learning models, while 3D CNNs do in the deep learn-
ing models. The superior models achieved 90% and 98% accuracy for RF and 3D CNNs, 
respectively. Therefore. They can be considered efficient solutions for robust conditions. 

 
Figure 13. Example of machine learning and performance curves (SVM) for combined dataset. 

  
(a) Accuracy of 2D CNN. (b) Loss of 2D CNN. 

Figure 13. Example of machine learning and performance curves (SVM) for combined dataset.

Symmetry 2023, 15, 1274 16 of 21 
 

 

LR 93 93 93 93 15 
2D CNN 95 94 95 95 12.4 
3D CNN 98 98 98 98 16.9 

3.4.3. Simulation Results of The Combined Dataset 
To provide a general and robust scenario, we combined the image and video datasets 

and fed them into the proposed models. This scenario provides seven classification cate-
gories, including the driver’s status and face symptoms. These categories can be summa-
rized as follows: alert, non-vigilant, tired, eye open, eye closed, yawn, and no yawn. The 
proposed machine and deep learning models are carried out on the combined dataset to 
be evaluated. Figures 13 and 14 show the learning curves of the proposed machine learn-
ing and deep learning models, respectively. Furthermore, the simulation results of the 
proposed models are illustrated in Table 6. The simulation results reveal that the proposed 
RF model outperforms the machine learning models, while 3D CNNs do in the deep learn-
ing models. The superior models achieved 90% and 98% accuracy for RF and 3D CNNs, 
respectively. Therefore. They can be considered efficient solutions for robust conditions. 

 
Figure 13. Example of machine learning and performance curves (SVM) for combined dataset. 

  
(a) Accuracy of 2D CNN. (b) Loss of 2D CNN. 

Symmetry 2023, 15, 1274 17 of 21 
 

 

  

(c) Accuracy of 3D CNN. (d) Loss of 3D CNN. 

Figure 14. Proposed Deep Learning Models for Multiclass Scenario Learning and Performance 
Curves for Combined Dataset. 

Table 6. Brief Comparison among The Proposed Machine Learning Models for Combined Dataset. 

Model Precision Recall F1-Score Accuracy Testing Time 
(ms) 

SVM 83 82 82 82 214 
RF 90 90 90 90 65 
DT 82 82 82 82 53 

KNN 87 86 86 86 33 
QDA 42 41 41 41 27 
MLP 89 88 88 88 41 
LR 89 89 89 89 20 

2D CNN 91 89 90 89 19 
3D CNN 98 98 98 98 25 

4. Discussion 
4.1. Explainability and Features Impact 

In this section, SHAP summary plots were employed to exhibit the ranking of the 
features. The SHAP summary plot, as demonstrated in Figure 15, displays the features as 
lines, with the dot denoting the impact of these features in a specific instance. The colors 
on the plot denote feature correlation, with blue indicating low correlation and red indi-
cating high correlation. Analysis of the summary plot reveals several key observations: (1) 
Feature “2865” exerts a significant influence on the overall decision; (2) an increase in this 
feature has a positive effect on the overall score; (3) conversely, a decrease in the value of 
features “3255”, “4810”, “6724” has a positive impact on the overall performance of the 
calculated score. Features with long tails in the right direction are likely to have a positive 
effect on the total decision. 

Figure 14. Proposed Deep Learning Models for Multiclass Scenario Learning and Performance
Curves for Combined Dataset.



Symmetry 2023, 15, 1274 16 of 20

Table 6. Brief Comparison among The Proposed Machine Learning Models for Combined Dataset.

Model Precision Recall F1-Score Accuracy Testing Time (ms)

SVM 83 82 82 82 214
RF 90 90 90 90 65
DT 82 82 82 82 53

KNN 87 86 86 86 33
QDA 42 41 41 41 27
MLP 89 88 88 88 41
LR 89 89 89 89 20

2D CNN 91 89 90 89 19
3D CNN 98 98 98 98 25

4. Discussion
4.1. Explainability and Features Impact

In this section, SHAP summary plots were employed to exhibit the ranking of the
features. The SHAP summary plot, as demonstrated in Figure 15, displays the features as
lines, with the dot denoting the impact of these features in a specific instance. The colors on
the plot denote feature correlation, with blue indicating low correlation and red indicating
high correlation. Analysis of the summary plot reveals several key observations: (1) Feature
“2865” exerts a significant influence on the overall decision; (2) an increase in this feature
has a positive effect on the overall score; (3) conversely, a decrease in the value of features
“3255”, “4810”, “6724” has a positive impact on the overall performance of the calculated
score. Features with long tails in the right direction are likely to have a positive effect on
the total decision.
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4.2. Results Discussion and Comparison

This research paper presents a system intended for detecting drowsiness based on
video and image monitoring. The proposed system encompasses three key tasks: feature
extraction, preprocessing, and classification. The Haar Cascaded Classifier (HCC) is uti-
lized to extract the required features, identifying the face and eyes in both images and
video frames. Following this, classification is carried out using both machine learning
and deep learning algorithms. The effectiveness of the proposed system is evaluated
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in diverse conditions, including three-class, four-class, and seven-class scenarios. Addi-
tionally, the proposed models are compared to identify the optimal method among the
proposed alternatives. Figure 16 illustrates a comparative analysis of the proposed models
in different scenarios.
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Additionally, to demonstrate the effectiveness of the proposed methods, their perfor-
mance is compared to existing works in the literature. The strategy of this comparison is
to include the works which deployed the same methods proposed in this work and those
carried out on the same datasets. Specifically, the deep learning approach introduced in
this study is compared to similar methods presented by Maior et al. [22], Biswal et al. [26],
Jeon et al. [27], Gwak et al. [48], and Bakheet and colleagues [49]. The algorithm proposed
by Gwak et al. [49] is included in both comparisons since it involves experiments in both
video streaming scenarios. A comparison between the proposed deep learning approach
and other video streaming-based algorithms is presented in Table 7. The simulation results
indicate that the proposed methods exhibit superior performance and outperform previous
efforts in this field.

Table 7. Brief Comparison of The Proposed Models and Works in The Literature.

Work Dataset Method Precision Recall F1-Score Accuracy

Maior et al. [22] DROZY SVM - - - 94
Biswal et al. [26] Collected CNN 97.07 97.13 97.65 97.1

Jeon et al. [27] ETS2 CNN 93.9 94.74 94.18 94.2
Gwak et al. [48] Collected Ensemble ML 97.1 93.5 94.9 95.4

Bakheet et al. [49] NTHU-DDD Naïve Bayes - - 87.84 85.62
Knapik et al. [34] Thermal Images CNN - - 87 -

Hemantkumar et al. [33] Mouth images Optimization - - - 84.66
Liu [35] FDDB CNN - - - 96.7

Proposed DROZY

SVM 100 99 99 99
RF 100 99 100 99

KNN 100 99 100 99
2D CNN 97 97 97 97
3D CNN 100 100 100 100

5. Conclusions

This paper has addressed the issue of fatigue detection and proposed an artificial
intelligence-based solution to tackle this problem. The suggested system comprises two
main tasks: feature extraction and classification. The HCC algorithm has been employed
to extract the relevant features, and several datasets have been used to evaluate the per-
formance of the proposed classifiers, including SVM, RF, DT, KNN, QDA, MLP, RL, 2D
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CNN, and 3D CNN. The results indicate that the proposed 3D CNN classifier outperforms
the other models and achieves superior performance. Additionally, the proposed models
exhibit high performance compared with those reported in the literature, making them a
promising and effective solution for fatigue detection.

Furthermore, the authors intend to expand the scope of their research in the future by
pursuing various ideas. Firstly, the proposed models can be implemented to offer a practical
solution to the market. This implementation can be performed using NBIDIA Jetson Nano.
Secondly, the proposed models can be subjected to validation using additional datasets
that include more categories. Finally, the authors aim to explore the possibility of fatigue
detection using fused features obtained from both visual and medical signal modalities.
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