
Citation: Wei, Y.; Liu, J.; Sun, D.; Su,

G.; Wang, J. From Netlist to

Manufacturable Layout: An

Auto-Layout Algorithm Optimized

for Radio Frequency Integrated

Circuits. Symmetry 2023, 15, 1272.

https://doi.org/10.3390/

sym15061272

Academic Editor: Jose Carlos R.

Alcantud

Received: 12 May 2023

Revised: 9 June 2023

Accepted: 13 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

From Netlist to Manufacturable Layout: An Auto-Layout
Algorithm Optimized for Radio Frequency Integrated Circuits
Yiding Wei, Jun Liu *, Dengbao Sun, Guodong Su and Junchao Wang

Zhejiang Provincial Key Laboratory of Large Scale Integrated Circuit Design, School of Electronic Information,
Hangzhou Dianzi University, Hangzhou 310018, China; 201040056@hdu.edu.cn (Y.W.);
212040131@hdu.edu.cn (D.S.); guodong@hdu.edu.cn (G.S.)
* Correspondence: ljun77@hdu.edu.cn

Abstract: Layout stitching is a repetitive and tedious task of the radio frequency integrated circuit
(RFIC) design process. While academic research on layout splicing algorithms mainly focuses
on analog and digital circuits, there is still a lack of well-developed algorithms for RFICs. An
RFIC system usually has a symmetrical layout, such as transmitter and receiver components, low-
noise amplifier (LNA), an SPDT switch, etc. This paper aims to address this gap by proposing an
automated procedure for the layout of RFICs by relying on the basic device/PCell structure based on
the interconnection among circuit topologies. This approach makes the in-series generation of layouts
and automatic splicing based on circuit logic possible, resulting in superior stitching performance
compared with related modules in Advanced Design System. To demonstrate the physical application
possibilities, we implemented our algorithm on an LNA and a switch circuit.

Keywords: RF circuit; layout splicing; PCell structure; topology

1. Introduction

In the field of microelectronics, Process Design Kits (PDKs) serve as a starting point for
integrated circuit design, acting as a bridge between design engineers and manufacturing
companies [1]. During the chip design process, the foundry provides specific data and
script files in the Electronic Design Automation (EDA) tool, as the PDK library used by the
designer contains details about the semiconductor process. This enables design engineers to
quickly create chips using the PDK [2]. A PDK typically consists of symbols, the Component
Description Format (CDF), parameterized cells (PCells), the SPICE simulation model, the
physical verification rule file (PVRule), and other components [3].

A PCell is a programmable unit that allows users to modify parameters and create
different PCell instances [4]. In mainstream Electronic Design Automation (EDA) simula-
tion software, although there are rich UI interactive interfaces, circuit schematic diagrams
are typically stored in the background folder of simulation software as netlist files when
engineers perform front-end simulation [5]. During back-end simulation, engineers need
to manually splice device PCells and fine-tune the size parameters of PCells to obtain a
circuit layout that closely matches the front-end simulation results, a process known as
layout design.

As a critical part of the integrated circuit design process, layout design serves as a
bridge that connects design and manufacturing. It involves performing layout and physical
verification based on the netlist produced in the front-end design stage and generating
GDSII data for manufacturing [6]. While layout and routing are essential processes in
layout design, they can be repetitive and tedious tasks. Therefore, automating layout and
routing generation using computers to reduce the workload of engineers has become a
classic problem [7].

In the past decade, with the continuous development of semiconductor technology,
Electronic Design Automation (EDA) has played an important role in circuit design, and

Symmetry 2023, 15, 1272. https://doi.org/10.3390/sym15061272 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15061272
https://doi.org/10.3390/sym15061272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6927-9183
https://doi.org/10.3390/sym15061272
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15061272?type=check_update&version=2


Symmetry 2023, 15, 1272 2 of 28

in order to meet the growing market demand, the importance of computer-aided circuit
design in the field of circuit design has continued to increase [8]. In the field of digital
circuits, algorithms can be used to generate structured Verilog format combinational circuits.
The method is to store the calculated parameters in a structured form and use software to
generate combinational circuit data sets. This method can be used with limited information,
based on research on the reliability prediction of combinational circuits [9]. Cindy et al.
describe a random circuit generator used in FPGA architecture research [10]. The generated
circuits form a hierarchy of interconnected modules. At each hierarchy level, the modules
can be connected in a bus, star, or dataflow configuration. The generated circuits can
be used to create a baseline circuit and are more efficient than previous generators. The
resulting circuits yield more realistic architectural conclusions.

With the development of machine learning technology, layout design performed by arti-
ficial intelligence-assisted engineers has begun to develop. In the work by Azalia et al. [11,12],
chip placement is treated as a reinforcement learning problem by training an agent to place
the nodes of a chip network list onto a chip canvas, designing a neural architecture to pre-
dict the rewards of various network lists and their positions, and extending reinforcement
learning (RL) strategies to unseen regions using transfer learning. The goal is minimizing
the PPA (power, performance, and area), reducing human engineers’ work from weeks to
less than 6 h.

As the number of logic devices increases, the layout problem becomes more complex
and is no longer limited to component sorting but also involves selecting suitable paths for
each signal line. Thus, each signal line requires an appropriate wiring path in the second
type of layout algorithm. Therefore, these types of layout algorithms typically involve
a two-stage optimization process. The first stage is global optimization, which mainly
focuses on component placement, while the second stage is local optimization, which
mainly focuses on signal routing. Global optimization algorithms mainly use traditional
heuristic algorithms, such as simulated annealing, genetic algorithms, and ant colony
algorithms, to obtain an initial solution for the layout. Local optimization algorithms
mainly use iterative improvement methods, such as Steiner tree algorithms, to optimize
the routing of the signal lines based on the initial layout. Compared with the first type of
algorithm, the second type of algorithm can obtain more accurate results, but it requires
more computational resources and a longer optimization time [13].

This aggregation of functional modules in each part also facilitates the optimization of
the circuit layout. Various optimization algorithms, such as the genetic algorithm, particle
swarm optimization, simulated annealing, etc., can be used to optimize the layout of each
part; then, the optimized layout can be merged to obtain the final layout of the entire
circuit [14]. However, the problem of interconnecting optimization among different parts
of the circuit still needs to be solved. The resulting global optimal layout may not be the
optimal solution for each individual part. Therefore, further optimization is needed to
balance the optimization of the entire circuit and the optimization of each individual part.
In addition, with the continuous development of various materials, technologies, processes,
and revised design rules, the layout and wiring optimization problem of VLSI circuits is
still a challenging research topic.

There are numerous studies in academia on placement and routing algorithms for
large-scale circuits, but there is a lack of research on placement and routing algorithms for
small- and medium-sized integrated circuits. In the field of radio frequency (RF) circuits,
mainstream simulators such as ADS provide relatively rough algorithms for compound
process layouts. When the circuit structure becomes complex, it is common for device
layouts to intersect. Therefore, engineers need to consider issues such as impedance match-
ing and electromagnetic simulation when laying out the RF circuit. In other words, the
distribution of metal connections among devices also impacts the final circuit performance
of RF circuits.

M. Aktuna et al. [15] developed a device-level early floor-planning algorithm for
RF circuits based on the genetic algorithm (GA) aiming to optimize the physical layout



Symmetry 2023, 15, 1272 3 of 28

of individual components or devices in RF circuits as early as possible in the design
phase. The algorithm takes into account key factors such as device placement, routing,
and performance metric optimization, including noise, linearity, power consumption, and
impedance matching, and can dynamically adjust the size of the floor plan when necessary.
It assists designers in identifying optimal floor plans, potentially reducing design iterations,
and speeding up the time to market of RF circuits.

This paper discusses a layout stitching method for medium-sized analog circuits that
is different from traditional layout algorithms. The method is specifically designed for
generating radio frequency layouts in circuit design and reverse engineering fields. Given
circuit topology and device dimensions, the proposed method places PCells (parameterized
cells) to generate an initial RF layout, which can be mapped into ADS simulation software
using scripts. In this description, the physical position of the PCell is determined by three
factors: placement coordinates, rotation angles, and mirror reflections. By analyzing the
input netlist file, the method determines the optimal combinations of these three factors.
Specifically, a specific size vector is established based on the PCell structure of each device,
and a decision function is established for each port to ensure that the PCell meets the design
requirements after rotation and reflection operations. The approach was implemented on
the C++ platform and tested using various possible stitching methods to achieve optimized
layout stitching results. The final result is organized and automatic layout generation based
on circuit logic that outperforms the relevant modules in ADS (Advanced Design System)
in terms of performance.

2. Overview of Layout Splicing Methods

This paper describes a C++-based system developed to automate layout generation,
as illustrated in Figure 1. The system can be useful in both the field of back-end design
and reverse engineering, reducing the repetitive work of RF circuit engineers in layout
design [16]. The system generates placement information of devices in the best possible
layout combination based on the user-provided netlist file and PDK information. The
placement information is combined with the self-developed AEL function library to output
AEL files that can be recognized by ADS. By calling the AEL files in ADS, the system can
automatically generate circuit layouts in ADS [17]. The system effectively streamlines the
layout design process and increases design efficiency while minimizing human error in the
layout process. It can be a valuable tool for engineers facing time and resource constraints
in the design process.

Netlist file

Reference 
coordinates

PDK library

Placement coordinates

Number of rotations

Mirror or not
Math model

Device operation

AEL Function Library

Environment

Layout information

Feedback

Generate .ael file

Circuit topology

Layout 
generate

User provided

Reference

Circuit layout

Based on actual 
operation

Figure 1. Overview of Layout Splicing Methods.



Symmetry 2023, 15, 1272 4 of 28

In the device PCell-splicing process, the circuit logic is known, and the length of the
wire cannot be changed [18]. To solve the problem of device intersection, mirror inver-
sion of the asymmetric structure can eliminate the overlap under a certain probability
phenomenon [19]. Devices that can resolve the local overlapping of layouts with mirror
inversion are referred to as traceable devices in this paper. The candidate devices for back-
tracking points include T-junctions, cross junctions, bends, and transistors. The structures
of various traceable devices are shown in Figure 2.

(a) (b) (c) (d)

Figure 2. Candidate Traceable Devices. (a) T-junctions in circuit layout; (b) cross junctions in circuit
layout; (c) bends in circuit layout; (d) transistor in circuit layout.

In this paper, a decision tree is used to model the layout stitching problem, as shown
in Figure 3. The number of the nodes represent the traceable device IDs that can be found
on record. These nodes are referred to as “backtracking points” in this paper.

Figure 3. Decision Tree Model. The nodes 1–3 in the tree structure represent the serial numbers of
traceable devices, where the left subtree corresponding to these nodes represents normal splicing,
and the right subtree represents symmetric operations.

Using Node 1 as an example, the left subtree of Node 1 represents the concatenation
of traceable device No. 1 without flipping, while the right subtree represents the mirror-
flipped version of traceable device No. 1. As shown in Figure 4a, when traceable device
No. 1 is properly interconnected, a layout overlap occurs. To resolve this issue, a vertical
flip operation can be applied to the first retrievable device, as demonstrated in Figure 4b.
Therefore, the state of layout stitching can be described by the splicing states at each
backtracking point. By finding the correct path in the decision tree, the layout stitching
problem of the RF circuit can be solved.

In this paper, the combination of the DFS (depth-first search) algorithm and the
backtracking algorithm is used to traverse the decision tree [20]. The DFS algorithm is a
graph algorithm that starts from a vertex and explores as far as possible along each branch
before backtracking. The basic process of browsing the tree structure based on the DFS
algorithm is as follows: starting from vertex v, explore the unvisited adjacent nodes of node



Symmetry 2023, 15, 1272 5 of 28

v until all nodes are visited [21]. Based on this method, searching through the binary tree to
find the correct solution has a time complexity of O(2n), where n is the number of traceable
devices [22].

1

1

(a) (b)

Figure 4. The layout concatenation status corresponding to Node 1. (a) The concatenation status
corresponding to the left subtree of Node 1. (b) The concatenation status corresponding to the right
subtree of Node 1.

As shown in Figure 5, to reduce the time complexity of the algorithm, this paper
applies a combination of backtracking and topological features to “prune” the binary
tree [23]. Incorrect concatenation may result in overlapping layouts or unclosed loops.
When device overlaps occur, the backtracking algorithm is used to return to the previous
backtracking point and prune the left subtree of the node, until a correct concatenation
path is found [24]. Meanwhile, to ensure the normal concatenation of loop structures, the
connection status of the devices that compose the corners of the loop can be determined,
and the corresponding paths in the decision tree for this type of device can be directly
selected to reduce the time complexity of the algorithm.

Figure 5. “Pruning” operation of decision tree. Nodes 1–3 in the tree structure have the same meaning
as Figure 3.

As illustrated in Figure 6, Device 2 belongs to the retrievable device type and also
composes the corner of the loop. During the layout concatenation process, when Device 2
is normally concatenated (as shown in Figure 6a), an intersection occurs, and the loop
structure fails to close properly. According to the topological characteristics of the RF
circuit, whether Device 2 should be mirrored can be predetermined. Therefore, for the
decision regarding Node 2, the correct path can be directly selected, resulting in the final



Symmetry 2023, 15, 1272 6 of 28

successful concatenation illustrated in Figure 6b. This operation realizes “pruning” and
reduces the pathfinding time of the binary tree.

3

2

2

3

(a) (b)

Figure 6. Circuit layout corresponding to before and after “pruning” operation. The 1–3 numbers
marked in the image indicate the node ID corresponding to the traceable device. (a) The circuit layout
after normal concatenation. (b) The circuit layout after the “pruning” operation.

3. Device Addressing Model

In this chapter, a mathematical model is developed to describe the method for com-
puting the coordinates of other pins based on the coordinates of pin 1 and the dimensional
characteristics of the device to facilitate the description of the physical location of each de-
vice. The model takes the right direction as the positive x-axis and the downward direction
as the positive y-axis. In the system designed in this paper, the physical coordinates of
PCell placement are represented by the coordinates of pin 1. During the layout stitching
process, it is necessary to consider the method of computing the coordinates of other pins
after rotation and mirror operations.

3.1. Addressing Ports of Normally Placed Devices

In the PCell structure involved in this article, there are at most four pins for each PCell
on the RFIC device, and the shape of the RFIC device can be approximated by a rectangle.
This means that the PCell structure of the device can be described by a rectangle and four
boundary center points. Taking a four-port device as an example, its structure diagram
is shown in Figure 7. For a device with the coordinates of pin No. 1 being p(x1, y1), the
device structure is described by size vector X, and the calculation formula for size vector
X is

X = [x1, y1, l1, l2, h1, h2]
T (1)

where (x1, y1) are the coordinates of port 1 of the device, l1 is the distance from port 4 to
the left border, l2 is the distance from port 4 to the right border, h1 is the distance from port
2 to the upper border, and h2 is the distance from port 2 to the lower boundary.



Symmetry 2023, 15, 1272 7 of 28

Figure 7. PCell structure diagram of four-port device.

For a four-port device whose port 1 coordinates are (x1, y1), when the device is not
rotated or mirrored, the calculation formula for other port coordinates is

x2 = x1 + l1 + l2
y2 = y1

x3 = x1 + l1
y3 = y1 + h2
x4 = x1 + l1
y4 = y1 − h1

(2)

where (x2, y2) are the port 2 coordinates, (x3, y3) are the port 3 coordinates, and (x4, y4) are
the port 4 coordinates.

The device coordinates are represented by vector P, P = [x1, y1, x2, y2, x3, y3, x4, y4];
then, (2) can be organized into a matrix form:

P = AX (3)

where A =



1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 0 −1 0


and X is the size vector of the device.

3.2. Addressing Ports after Rotation Operation

In this article, the term “rotation operation” refers to a 90° clockwise rotation of
the device, using the coordinates of port 1 as the reference point. A schematic diagram
illustrating the rotation of a rectangular device is shown in Figure 8.

Figure 8. Device rotation diagram. (a) PCell diagram of a device. (b) The PCell is rotated once.



Symmetry 2023, 15, 1272 8 of 28

In the two-dimensional plane coordinate system, as illustrated in Figure 9, the green
line is the result of rotating the blue line, (x, y), clockwise around the origin by an angle θ.
The endpoint of the green line is denoted as (x′, y′), and the calculation formula for these
rotated coordinates is {

x′ = r · cos(θ + φ)
y′ = r · sin(θ + φ)

(4)

After rearranging Formula (4), we can obtain{
x′ = r · cos(φ)cos(θ)− r · sin(φ)sin(θ) = x · cos(θ)− y · sin(θ)
y′ = r · sin(φ)cos(θ) + r · cos(φ)sin(θ) = x · sin(θ) + y · cos(θ)

(5)

Figure 9. Rotation operations in the virtual coordinate system.

When the rotation base point is not the origin, the rotation process can be viewed as
first translating the coordinates to make the rotation base point the origin [25]. After the
rotation is completed, the endpoint coordinates are corrected by translating them back to
their original position [26]. Following this principle, Formula (5) can be corrected. For a
point (x, y) with a rotation base point of (x0, y0) and an angle of rotation θ, the resulting
point is (x

′
, y
′
). The coordinates (x

′
, y
′
) can be calculated as follows:{

x′ = (x− x0)cos(θ)− (y− y0)sin(θ) + x0
y′ = (x− x0)sin(θ) + (y− y0)cos(θ) + y0

(6)

To summarize, for a device with port 1 coordinates p1(x1, y1) and port i coordinates
pi(xi, yi), performing a 90° clockwise rotation operation with port 1 as the base point results
in the new coordinates p

′
i(x

′
i , y
′
i), which are calculated using the following formula:{

x
′
i = x1 + y1 − yi

y
′
i = y1 − x1 + xi

(7)

Formula (7) is arranged with a matrix. For the device whose coordinate vector is P,
after n rotations, the calculation formula for its coordinate vector P

′
is

P
′
= PRn (8)



Symmetry 2023, 15, 1272 9 of 28

where R =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 −1 0 0 0 0
−1 1 1 0 0 0 0 0
1 1 0 0 0 −1 0 0
−1 1 0 0 1 0 0 0
1 1 0 0 0 0 0 −1
−1 1 0 0 0 0 1 0


.

3.3. Addressing Ports after Mirror Operation

In this paper, the term “mirror operation” refers to flipping the device vertically or
horizontally with the coordinates of port 1 as the reference point. Figure 10 illustrates four
schematic diagrams of mirror flips for a rectangular device.

Figure 10. Device mirror operation diagram. (a) Performing mirror flipping with the port 1 horizontal
coordinate axis as the axis of symmetry. (b) Performing mirror flipping with the port 1 vertical
coordinate axis as the axis of symmetry. (c) Another form of upper-and-lower mirror flipping.
(d) Another form of left-and-right mirror flipping.

As shown in Figure 10a,c, let p1(x1, y1) be the coordinates of port 1 of a device, and
pi(xi, yi) be the coordinate of port i. When the device undergoes an up–down mirror opera-
tion (flipped upwards and downwards with port 1 as the reference point), the calculation
formula for coordinates p

′′
i (x

′′
i , y

′′
i ) of port i is{

x
′′
i = xi

y
′′
i = 2y1 − yi

(9)

As depicted in Figure 10b,d, when a left–right mirror operation is applied to a device
(i.e., the device is flipped horizontally with port 1 as the reference point), the formula for
calculating coordinates p

′′
i (x

′′
i , y

′′
i ) of port i is{

x
′′
i = 2x1 − xi

y
′′
i = yi

(10)

Let us arrange (9) and (10) in the form of a matrix. For a device whose coordinate vector
is P, after an up-and-down mirror operation, the calculation formula for its coordinate
vector P

′
ud is

P
′
ud = PM1 (11)



Symmetry 2023, 15, 1272 10 of 28

where M1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 2 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 2 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 2 0 0 0 0 0 −1



T

.

After the device undergoes a left–right mirror operation, the calculation formula for
coordinate vector P

′
rl is

P
′
rl = PM2 (12)

where M2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
2 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
2 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
2 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1



T

.

4. Dimension Vector for RFIC Device PCell in Compound Process

This chapter outlines the method for calculating the size vector of common RFIC
components based on their size parameters provided in the netlist file. The PDK model
used in this article was developed by WIN Company. However, due to the impact of
the production process, the size vector obtained from the PCell size parameter needs to
be numerically corrected [27]. The discussed RFIC devices include circular inductors,
capacitors, resistors, and transistors.

The size parameters for circular inductors include W (line width), S (line spacing),
D (inner radius), and T (number of turns), as illustrated in Figure 11. These parameters
represent the physical characteristics of the inductor PCell structure.

D

T=1

W

S

1 2

Figure 11. Circular Inductor Simplified Diagram.

When the size parameters are known, the calculation formula of the actual width
between the two ports of the circular inductor PCell is

L1 = 2 · T · S + (2 · T + 2) ·W + D + ∆L1 (13)

The formula for calculating the upper–lower width of the inductor is

W1 = (2 · T + 1) ·W + (2 · T − 1) · S + D (14)



Symmetry 2023, 15, 1272 11 of 28

In the former, ∆L1 is a correction parameter that is used to compensate for the differ-
ence between the theoretical length and the actual attempt. This parameter is only related
to the device process.

To sum up, the calculation formula for size vector Xinst of the circular inductor with
port 1 coordinates (x0, y0) is

Xinst = [x0, y0, W1/2, W1/2, L1/2, L1/2] (15)

Resistors and capacitors have a rectangular shape, with the size parameters of resistors
being W (line width) and L (line length). During the design process, a metal layer is used
for connection at the resistor port, as shown in Figure 12a. For capacitors, there is typically
an air bridge at the two ports for connection, as shown in Figure 12b.

LWLW

(a) (b)

Figure 12. PCell Structure of Rectangular Devices. (a) PCell Structure of Resistor. (b) PCell Structure
of Capacitor.

The formula for calculating the actual width between the two ports of resistor and
capacitor is

L2 = L + ∆L2 (16)

The formula for calculating the resistance width is

W2 = W + ∆W2 (17)

In the above, ∆L2 and ∆W2 are correction constants that have nothing to do with the
size parameters.

The formula for calculating the capacitance width is

W
′
2 =

{
W + ∆W

′
2 WBridge < W + ∆W

′
2

WBridge WBridge >= W + ∆W
′
2

(18)

where ∆W
′
2 is the width correction parameter of the capacitor and WBridge is the width of

the air bridge.
To sum up, the calculation formula of size vector Xres of the resistor with port 1

coordinates (x0, y0) is

Xres = [x0, y0, W2/2, W2/2, L2/2, L2/2] (19)

The calculation formula for size vector Xcap of the capacitor whose port 1 coordinates
are (x0, y0) is

Xcap = [x0, y0, W
′
2/2, W

′
2/2, L2/2, L2/2] (20)

The size parameters of a transistor include gate width (Ugw) and gate index (NOF).
The PCell structure of the transistor is illustrated in Figure 13.



Symmetry 2023, 15, 1272 12 of 28

(a) (b)

Figure 13. Transistor PCell Structure Diagram. (a) Transistor PCell Structure. (b) PCell Structure
Details.

In the horizontal direction, the length of the transistor is related to the size parameter
in the following way:

L3 = Ugw + ∆L3 (21)

Due to the asymmetrical structure of the transistor, the formula for calculating its
length needs to be adjusted as follows:

L3 = L
′
3 + L

′′
3 (22)

where L
′
3 = Ugw/2 + ∆L

′
3 and L

′′
3 = Ugw/2 + ∆L

′′
3 .

In the vertical direction, the relationship between the width of the transistor and the
size parameter is

W3 = n1 · (NOF + 1) + n2 · NOF + ∆W3 (23)

where n1 is the width of the gate finger, n2 is the width of the gate finger gap, and ∆L3 and
∆W3 are the dimension correction constants.

To sum up, the size vector of the transistor is

Xcpw = [x0, y0, W3/2, W3/2, L
′
3, L

′′
3 ] (24)

where (x0, y0) are the port 1 coordinates of the transistor.

5. Layout Splicing Scheme
5.1. Strategies for Handling Ring Structures

After parsing the netlist file, an undirected graph is generated based on the PDK
mechanism and the device connections described in the netlist [28]. This is illustrated in
Figure 14. Unlike a traditional undirected graph, each node in this graph corresponds to a
device in the netlist. It contains relevant information such as the device’s size and name,
and the direction of its ports.

Figure 14. Graph structure.



Symmetry 2023, 15, 1272 13 of 28

The minimum cycle structure of an undirected graph can be found using a depth-first
search algorithm [29]. In RF circuit layout, a Manhattan structure (horizontal or vertical)
is commonly used for connecting metal [30]. Therefore, for a ring structure, as shown in
Figure 15, four corner devices are required to change direction when forming a ring. The
devices marked by dotted lines, Cross, Tee1, Bend1, and Bend2, are the corner devices
of the ring structure. During layout and routing, to ensure the proper closure of the ring
structure, such corner devices cannot be considered routable devices.

In Figure 15, Tee1 is considered a corner device because it is attached to the ring
structure through ports 1 and 3 or ports 2 and 3. This changes the direction of the ring. On
the other hand, Tee2 is not considered a corner device because accessing the ring structure
through ports 1 and 2 in the actual circuit does not alter the direction of the circuit ring.
In RF circuits, devices that connect to the ring in a direction-changing manner are called
corner devices due to their impact on layout and routing. Tee1 and Tee2 are connected to
the ring in the actual circuit as shown in Figure 16, which takes into account their impact
on circuit layout.

Figure 15. Ring structure in undirected graphs.

(a) (b)

Figure 16. Tee structure. The 1–3 numbers in the picture indicate the node labels of the Tee structure.
(a) Connecting Tee1 to the circle. (b) Connecting Tee2 to the circle.

5.2. Method for Detecting Overlapping Devices in Circuit Layouts

In this paper, the PCell structure of an RFIC device is represented as a rectangle.
Figure 17a illustrates the relative positions of two PCell structures. When two devices
intersect, a portion of the contour points of device A enter the contour range of device
B. This is known as intersection relationship. On the other hand, when one device fully
contains the other device, it is referred to as inclusion relationship. This is illustrated in
Figure 17b, where all the contour points of device B are within the contour range of device
A. When there is no intersection between the horizontal and vertical coordinate ranges of
the two devices, it is considered a separation relationship, as shown in Figure 17c. During
the layout process, the presence of an intersection or inclusion is considered an error. In
summary, when the horizontal and vertical coordinate ranges of two devices intersect, it is
regarded as a layout error.



Symmetry 2023, 15, 1272 14 of 28

Figure 17. The relationship between PCells of a device. A and B represents the sub-PCell structure to
be spliced separately. (a) Intersection. (b) Overlap. (c) No intersection.

The size vectors of two devices A and B are denoted by X and X
′
, respectively,

and coordinate vectors P and P
′

of a device can be obtained using Formula (3). For
non-four-port devices, the coordinate vector can be considered a vector consisting of the
four vertex coordinates of the device. Therefore, coordinate vector P can be represented
as P = [x1, y1, x2, y2, x3, y3, x4, y4], where the abscissa range of the device is [xmin, xmax]
and the ordinate range is [ymin, ymax]. Thus, the intersection or containment relationship
between two devices A and B can be determined as follows [31]:{

(xmin − x
′
min)(xmax − x

′
max) <= 0

(ymin − y
′
min)(ymax − y

′
max) <= 0

(25)

To sum up, the evaluation function J(X, X
′
) is established to judge the positional

relationship between devices A and B:

J(X, X
′
) = 0, 1 (26)

where when the input dimension vector satisfies Formula (25), J(X, X
′
) = 0; otherwise,

J(X, X
′
) = 1.

5.3. Rotation and Mirror Operations

This paper represents the physical position of a device using its port 1 coordinates.
When rotating the device to achieve the connection of the target port, the port 1 coordinates
are necessary. In Figure 18, the following information is required for splicing port 2 of
device B and port 2 of device A: the number of rotations of device B, whether a mirror
operation is needed, and the placement coordinates of port 1.

A

B

Figure 18. Two devices’ PCells to be spliced. A and B respectively represent the PCell structures of
the two devices to be spliced, and the serial number markings on the PCell structure assist in node
identification of the devices.



Symmetry 2023, 15, 1272 15 of 28

This chapter of the paper introduces a standard port-matching scheme for the Man-
hattan structure that assigns direction numbers to the four directions of the structure.
Specifically, direction 1 is assigned to the left; direction 2, to the right; direction 3, to the
bottom; and direction 4, to the top. For instance, in Figure 18, port 2 of device A is assigned
direction 4, while port 2 of device B is assigned direction 2. The chapter also discusses
port-matching schemes in the context of rotation and mirror operations, with device A
being fixed and device B being spliced with it as a reference.

To reduce the probability of overlapping when layouts intersect, an asymmetric struc-
ture can be mirrored. The mirror mode that device B can choose is determined to achieve
the normal splicing of the ports. When the connected port of device B points to direction 1
or 2, the optional mirror mode is up-and-down reverse mirroring, as shown in Figure 19a.
On the other hand, if the connected port of device B points to direction 3 or 4, the selectable
mirror mode is left-and-right mirror inversion. This is illustrated in Figure 19b.

(a) (b)

Figure 19. Device mirror inversion. (a) Up–down mirror inversion. (b) Left–right mirror inversion.

To achieve normal port splicing, it is necessary to determine the physical coordinates
and the number of rotations of the other device. In other words, given the physical
coordinates of device A, the number of rotations required for device B can be obtained from
a lookup table without considering layout overlap. Table 1 shows the number of rotations
required for the port matching of a device based on the direction of the port to be matched.

Table 1. The port matches the corresponding rotation times.

Device Name: Direction A: Direct 1 A: Direct 2 A: Direct 3 A: Direct 4

B: direct 1 2 0 3 1
B: direct 2 0 2 1 3
B: direct 3 1 3 2 0
B: direct 4 3 1 0 2

To summarize, the splicing process for the situation shown in Figure 18 can be de-
scribed as follows:

1. Place port 1 of device B at the port to be matched, as illustrated in Figure 20a.
2. Perform three rotations on device B, as shown in Figure 20b.
3. Move device B to achieve docking between the two ports using coordinate correction,

as depicted in Figure 20c.



Symmetry 2023, 15, 1272 16 of 28

(a) (b) (c)

Figure 20. Port-splicing process. (a) The docking of two ports. (b) Rotation operation. (c) Coordi-
nate correction.

For port i of the nth device, the coordinates to be spliced are (x, y). We place port 1 of
the nth device at (x, y), which is represented by the coordinates in its size vector Xn. The
number of rotations is represented by parameter rn, while parameter mn indicates whether
to perform mirroring. Then, for device n, coordinate vector Pn after rotation and mirror
operations can be calculated using the following formula:

Pn = AXn Mmn Rrn (27)

where A is the addressing matrix and can be obtained with Equation (3); M is the mirror
operation matrix, which can be calculated using Equations (11) and (12); and R is the
rotation operation matrix and can be calculated using Equation (8).

After rotation and mirror operations, coordinates (xi, yi) of port i of device n are{
xi = Pn[2 · i− 1]

yi = Pn[2 · i]
(28)

At this point, the two ports to be spliced face each other, but their physical positions
may not be aligned. Therefore, physical coordinate correction is necessary. After size
correction, coordinates (x′, y′) of port 1 of device n are{

x
′
= 2 · x− xi

y
′
= 2 · y− yi

(29)

6. The Complete PCell-Splicing Process

To clarify the process, after reading the netlist file, circuit design software generates a
list of components and their respective pins. This list contains abstract information about
the device, such as its name, size, and pin names, as well as the connection relationship
between devices. Based on this connection relationship, the software can determine the
order in which the device ports should be connected.

With this information, a splicing process can be performed by reading the port in-
formation in the specified sequence. The software can use the formulas and procedures
described in this paper to determine the physical coordinates, rotations, and mirror oper-
ations needed to connect each pair of ports. By following this process, the software can
create a layout that accurately reflects the desired circuit topology.

To process the information in the netlist file, we follow the principle that the number
of ports with the same name cannot exceed two [32]. When the port names are the same, it
means that two pins are connected. Based on these principles, we generated an undirected
graph containing device information by reading in the netlist file. The pseudocode for
reading in the netlist file is shown in Algorithm 1.



Symmetry 2023, 15, 1272 17 of 28

Algorithm 1 Netlist file reading scheme

Input: Netlist file.
Output: A graph structure containing netlist information: G = (V, E).

1: port_device = []
2: for date in Netlist file do
3: V.append(date.DeviceInformation)
4: for node in date.Node do
5: if port_device[node].size() == 1 then
6: E.append({port_device[node][0] ,date.DeviceName})
7: end if
8: port_device[node].append(date.DeviceName)
9: end for

10: end for
11: return G

In Algorithm 2, the function deal_port() is used to splice the device layout based on
the device name. During the splicing process, when a traceable device is encountered,
its device serial number is stored in the stack structure trace_list. When an intersection
occurs between the layouts, the program backtracks using the serial number in trace_list.
After the netlist file has been read, the device coordinates, number of rotations, and mirror
relationship for the layout with the lowest number of intersections can be obtained. The
complete pseudocode for the function deal_port() is shown in Algorithm 3 below.

Algorithm 2 Methods for Traversing Undirected Graphs

Input: Undirected Graph containing Netlist Information: G = (V, E)
Output: Coordinate information of each device: RES

1: # Convert input graph G(V,E) into an undirected graph represented in adjacency list format.
2: graph = {}
3: for v in V do
4: graph[v] = []
5: end for
6: for e in E do
7: graph[e[0]].append(e[1])
8: graph[e[1]].append(e[0])
9: end for

10: # Depth-first search function for traversing a graph.
11: STACK = []
12: RES = []
13: visited = set()
14: start = V[0]
15: STACK.append(start)
16: visited.add(start)
17: while STACK do
18: node = STACK.pop()
19: for neighbor in graph[node] do
20: if neighbor not in visited then
21: RES.append(deal_port(node,neighbor)
22: STACK.append(neighbor)
23: visited.add(neighbor)
24: end if
25: end for
26: end while
27: return RES;



Symmetry 2023, 15, 1272 18 of 28

Algorithm 3 deal_port() function pseudocode

Input: DeviceOne, DeviceTwo
Output: Device placement coordinate information

1: if DeviceOne is not placed then
2: Place DeviceOne randomly
3: end if
4: Place DeviceTwo according to the coordinates of DeviceOne
5: if DeviceTwo intersects with other device then
6: # Deleting previous layout based on index of reversible components.
7: num_trace = trace_list.pop()
8: while history_port_name.top() != num_trace do
9: Delate(history_port_name.top())

10: S.push(history_port_name.pop)
11: end while
12: Merro(num_trace)
13: Rearranging the layout based on the device order in S.
14: end if

7. Commercial EDA Software Integration

This implementation method makes it possible to seamlessly integrate the C++ pro-
gram and ADS, enabling the layout process to be efficiently and accurately automated. The
use of AEL scripting provides a high degree of flexibility and customization in the layout
process, allowing layouts tailored to specific design requirements to be created.

In addition, the use of ADS as simulation software ensures that the final layout is
optimized for radio frequency applications. This is because ADS provides access to a wide
range of simulation and analysis tools. This improves the accuracy and reliability of the
layout and enables designers to quickly iterate and optimize their designs.

Overall, the combination of C++, AEL scripting, and ADS provides a powerful and
efficient solution for automating the layout process in complex circuit designs. This solution
can significantly reduce design time and improve design quality.

The structure of the AEL function library’s source code is shown in Algorithm 4.

Algorithm 4 Part of the AEL library

// PDK state
decl PDK_NAME = “WIN_PL15_1X_DESIGN_KIT”;
decl Instance_NAME = list(“ROUND”,“TFR_”,“CAPA_”,“CPW”,“PAD”,“TL”,"Tee”,
“Cros”, “Bend”);
decl MENTAL = list(“MET1”,“MET2”,“VIA2”);
// Function de f inition
// Place element
defun set_device(kind,x,y,_layout)
{
decl itemInfo0SP,str;
str = strcat(PDK_NAME,“:”,DEVICE_NAME[kind],“:”);
// Function declaration details
return itemInfo0SP;
}
// Rotating element
defun roat_device(kind,name_num, roat_k)
{
// Function declaration details
de_rotate_center(-90 * roat_k, TRUE);
de_deselect_all();



Symmetry 2023, 15, 1272 19 of 28

}
// Mobile component
defun move_device(kind,name_num, dx,dy)
{
// Function declaration details
}
// Set parameters
defun SET_device(date,kind,x0,y0)
{
// Function declaration details
}
// Mirror operation
defun merro_device(kind,name_num, sign,x,y)
{
// Function declaration details
}

8. Results and Discussion

In this study, we developed an algorithm using the C++ programming language to
obtain the mapping system and used it to generate the circuit layout. The applicable field
of this software is the single-layer circuit layout of RF chips. The workstation used for our
experiments used a 2.90 GHz x64 Intel Core(TM) processor with 16 GB of RAM and was
tested with a single thread. In the simulation experiment of this paper, the algorithm was
tested in two different scenarios.

Rapid production of layout mapping based on netlist files obtained from front-end
design: In this scenario, the algorithm was applied to automatically generate a layout for
a given netlist file, without manual intervention. The performance of the algorithm was
evaluated by comparing the generated layout with the reference layout, and the results
show that the algorithm was able to generate accurate layouts with high efficiency.

Rapid circuit reproduction based on physical information extracted with image pro-
cessing in reverse engineering: In this scenario, the algorithm was applied to extract the
physical information of an RFIC device from its microscopic digital photo and use it to
generate a layout. The performance of the algorithm was evaluated by comparing the
generated layout with the reference layout, and the results show that the algorithm was
able to generate accurate layouts with high efficiency.

Circuit layout design is a complex and highly specialized task. With regards to the
evaluation of DRC rules in each technology node, the proposed algorithm embraces a
rule-based approach that refers to the corresponding PDK library for the specific node. It
follows the PDK guidelines and embeds the rules into the algorithm to guarantee that the
created layout meets the DRC requirements. However, in some circumstances, design rules
may not be available or may lack completeness, resulting in security or other issues. The
solution, in such cases, is to depend on the circuit engineer’s experience and judgment to
manually verify the layout against the DRC rules. The proposed algorithm is aimed at
facilitating engineers in accomplishing preliminary work and reducing the repetitive tasks’
workload, but in the end, the engineer must ensure that the layout aligns with the DRC
requirements with manual verification and intervention.

Overall, the algorithm designed in this paper can help RF circuit engineers to accelerate
the circuit design process and improve the accuracy and efficiency of layout generation.

8.1. Generating Circuit Layout Based on Netlist Files

Various semiconductor process companies offer their own PDK packages, which can
differ significantly from one another. To assess the algorithm’s ability to function effectively
across different PDKs, this study examined automatic layout generation by the algorithm
under diverse circuit topological logics for PDKs associated with two different processes.



Symmetry 2023, 15, 1272 20 of 28

The topological logic of the test circuit is provided as a netlist file, whose content format is
detailed in Table 2.

Table 2. Input netlist file.

Partial Content of the Netlist File

. . . . . .
MLine:TL118 N__147 N__146 W = 15 µm L = 38.8194 µm
MLine:TL15 N__87 N__86 W = 14 µm L = 59.4967 µm
Round_Ind_EM:INDR_EM7 N__24 N__83 D = 98.4726 µm W = 14.8479 µm S = 5 µm N = 3
MLine:TL70 N__46 N__38 W = 20 µm L = 33.545 µm
MLine:TL9 N__40 N__41 W = 20 µm L = 123.424 µm
Res:Rst2 N__99 N__107 W = 18.2016 µm L = 74.7178 µm
Corner:Corner4 N__54 N__69 W = 20 µm
CAP:CAP24 N__117 N__115 W = 32.2637 µm L = 32.3136 µm
. . . . . .

The resulting layout schemes are presented in Table 3. By utilizing a self-written
AEL function library to call ADS across platforms, the layout was completed in ADS. The
algorithm was found to avoid the intersection of layouts and produced circuit layouts that
conformed to the production specifications for radio frequency circuits. The splicing effect
of this algorithm was found to be superior to that of the default layout mosaic splicing
effect provided by ADS, as verified with algorithm verification.

Table 3. Partial content of the algorithm-generated layout method.

Device Name Place Coordinates Mirror Operation Number of Rotations

. . . . . .
TL1 (−1, 39) 0 0

MTee1 (199, 42) 1 0
INDR_EM1 (206, 206) 0 1

TL4 (313, 62) 0 2
CAP1 (334.5, 40) 0 0
TL7 (416, 62.5) 0 2

MTee2 (430, 59.5) 0 2
. . . . . .

The algorithm was tested on an RF low-noise amplifier with five ring structures using
the PDK process by WIN Company. For the convenience of circuit schematic display,
we divided the schematic into two parts and connected them with a pin named p2. The
schematic displays are shown separately in Figures 21 and 22.



Symmetry 2023, 15, 1272 21 of 28

Figure 21. The first part of the circuit schematic to be processed.

Figure 22. The second part of the circuit schematic diagram to be processed.

The simulation results of the circuit schematic are illustrated in Figures 23 and 24.
This circuit is a low-noise amplifier operating in the frequency range of 6–13 GHz. As
can be observed from the figures, both S11 and S22 of the simulation results are less than
10 dB within the operating frequency band. The simulation result of S12 is around 17 dB,
demonstrating the high potential of this design chip.



Symmetry 2023, 15, 1272 22 of 28

(a) (b)

Figure 23. Schematic simulation results of LNA. (a) Simulation results of reflection loss (S11).
(b) Simulation results of return loss (S12).

The resulting layout, obtained from the input circuit netlist file, is shown in Figure 25.
As seen from the figure, the algorithm-generated layout avoided the intersection of devices.
Although the closure of the five ring structures could not be achieved due to device
parameters, the connected parts in the layout were positioned at the shortest physical
distance, making the circuit layout conform to the production specifications of the radio
frequency circuit. This layout generation took 86 ms, and the generated layout area was
1919 × 1176 µm2.

Figure 24. Simulation results of intraoral reflection coefficient (S22).

Figure 25. The layout generated by the proposed algorithm.

The circuit simulation based on algorithm-generated layouts is shown in Figures 26 and 27.
As can be seen from the simulation results, there are discrepancies between the back-end



Symmetry 2023, 15, 1272 23 of 28

simulation results and the front-end results, which require engineers to further debug the
layout to optimize its performance. The algorithm proposed in this paper serves as a tool
to aid engineers in completing the preliminary work of back-end design, reducing the
workload of repetitive tasks. However, ultimately, engineers need to perform performance
debugging to ensure that the layout performance meets production specifications.

(a) (b)

Figure 26. Layout simulation results of LNA. (a) Simulation results of reflection loss (S11).
(b) Simulation results of return loss (S12).

Figure 27. Simulation results of intraoral reflection coefficient (S22).

ADS software provides built-in tools for generating circuit layouts. To compare
the results of these tools with the algorithm proposed in this paper, the same circuit
topology was used to generate layouts using the built-in tools in ADS, as shown in Figure 28.
The layout generated by ADS appears chaotic, with many intersections. Based on the
verification conducted in this study, the algorithm proposed in this paper demonstrates a
superior splicing effect when compared with the layout mosaic tool provided in ADS.



Symmetry 2023, 15, 1272 24 of 28

Figure 28. ADS-generated layout.

8.2. Layout in Reverse Engineering

The algorithm presented in this article has potential applications in the reverse en-
gineering of circuits. Specifically, it can assist engineers in reproducing circuits based on
extracting physical information from chip photos taken under a microscope, which can save
a lot of human resources during process migration. To illustrate the efficacy of the algorithm,
an SPDT switch chip was used as an example. This switch operates in the frequency range
of 8–12 GHz and is highly suitable for many applications, such as radar systems, medical
equipment, and wireless communication devices. Physical information was obtained with
microscopic analysis, and a layout algorithm was then utilized to generate the board layout.
The resulting layout was subsequently subjected to simulation testing.

Figure 29a displays a blurred photomicrograph of the chip under a microscope to
safeguard the circuit IP. The information extraction algorithm was then utilized to ex-
tract physical information such as device parameters, circuit topology, and device port
coordinates from the digital photo. The resulting circuit topology is shown in Figure 29b.
The chapter focuses on the PDK technology provided by Lion and demonstrates how the
algorithm can be utilized for achieving process migration and layout reproduction for
the circuit.

(a) (b)

Figure 29. The switch chip to be reproduced. (a) Micrograph of the chip. (b) Circuit topology
extracted from photomicrographs.



Symmetry 2023, 15, 1272 25 of 28

The algorithm started by setting the device PCell parameters based on the extracted
device parameters and placing the PCell devices according to their relative positions in
the photo to obtain an initial layout, as shown in Figure 30a. However, the initial layout
had overlaps between PCell devices and broken port splicing. To address these issues, the
proposed algorithm was used to polish the layout, resulting in a final layout as shown
in Figure 30b. This layout generation took 124 ms, and the generated layout area was
913 × 898 µm2.

(a) (b)

Figure 30. Generating circuit layouts with reference to device coordinates in photomicrographs.
(a) The initial layout generated by purely using coordinates. (b) Circuit layout after algorithm polishing.

The generated layout underwent simulation testing. As shown in Figure 31, the circuit
exhibited return loss (S11 and S22) that was superior to −20 dB within the 8–12 GHz
frequency range, indicating minimal reflected energy and optimal impedance matching
within the design. Moreover, Figure 32a depicts the switch’s isolation (S31) to be less than
−20 dB within the bandwidth, reflecting an excellent separation of signals between the
input and the two output ports. Additionally, Figure 32b indicates that the insertion loss
(S21) was greater than −1.5 dB, denoting efficient transmission of input signals to output
ports. In light of these observations, the switch layout is regarded as performing well and
possessing considerable potential for eventual adoption in practical applications.

Figure 31. Results of return loss on the layout.



Symmetry 2023, 15, 1272 26 of 28

(a) (b)

Figure 32. Simulation Results of Insertion Loss (S21) and Isolation (S31) for Switch Circuit Layout.
(a) Isolation (S31) for Switch Circuit Layout. (b) Insertion Loss (S21) for Switch Circuit Layout.

Overall, the algorithm presented in this article provides a useful tool for reverse
engineering circuits and can save significant human resources during process migration.
The scope of the frequency range that can be designed depends on the specific circuit
requirements and the capabilities of the layout design tool. However, for the case presented
in this article, the engineer was able to design circuits with a frequency range of DC to
15 GHz. This covers a wide range of frequencies commonly used in RF applications, in-
cluding those used in 5G and 6G communication systems. It is worth noting that designing
circuits for higher frequencies, such as those in the millimeter-wave range, can be more
challenging due to the increased sensitivity to parasitic effects and the need for precise
layout optimization.

9. Conclusions

This paper presents a novel algorithm for the layout design of radio frequency circuits.
The algorithm is based on the depth-first search framework, which considers the connection
relationship between the PCell structure/basic device structure and circuit topology to
automatically generate an orderly layout. The proposed algorithm offers better results
than ADS-related modules in the experimental phase. The algorithm addresses the issue of
the lack of layout stitching tools for RF circuits in the automatic design problem. It also
assists engineers in traditional RF circuit design in completing the mapping from schematic
diagram to layout, thereby reducing manpower costs. Overall, the proposed algorithm
offers a promising solution for the automated layout design of RF circuits.

Regarding the evaluation of DRC rules in each technology node, the proposed algo-
rithm adopts a rule-based approach that refers to the corresponding PDK library for the
specific technology node. The algorithm is designed to follow the PDK guidelines, and
the rules are incorporated into the algorithm to ensure that the generated layout meets the
DRC requirements. However, in some cases, due to security reasons or other factors, the
design rules may not be available or may be incomplete. In such situations, the solution
is to rely on the circuit engineer’s experience and judgment to manually verify the layout
against the DRC rules. The proposed algorithm serves as a tool to aid engineers in com-
pleting the preliminary work and reducing the workload of repetitive tasks, but ultimately,
the engineer needs to ensure that the layout meets the DRC requirements with manual
intervention and verification.

At present, the netlist file needs to be provided by the circuit engineer, either from the
front-end design results of the circuit or from the physical information of the chip collected
under the microscope during reverse engineering. However, in future research, it may be
possible to integrate a comprehensive method for netlist design into the algorithm, which
would further streamline the circuit design process.

Author Contributions: Data curation and Writing—original draft, Y.W.; Conceptualization and
Supervision, J.L.; Formal analysis and Validation, D.S.; Validation, G.S.; Writing—review and editing,
J.W. All authors have read and agreed to the published version of the manuscript.



Symmetry 2023, 15, 1272 27 of 28

Funding: This work is supported by the National Key Research and Development Program of China
under grant number 2019YFB1706800.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Novichkova, Y.A.; Fail, T.N.; Goryainov, A.E.; Kalentyev, A.A.; Bilevich, D.V.; Dobush, I.M. Approach to Integration of a Synthesis

Tool and PDK for Commercial EDA. In Proceedings of the 2021 XV International Scientific-Technical Conference on Actual
Problems Of Electronic Instrument Engineering (APEIE), Novosibirsk, Russia, 19–21 November 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 24–27.

2. Lakshmanan, A.; Mishra, G.K.; Ravi, T. Design and Analysis of 7nm FinFET Full Custom Standard Cell Library using ASAP7
PDK. In Proceedings of the 2022 6th International Conference on Computing Methodologies and Communication (ICCMC),
Erode, India, 29–31 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 611–615.

3. Haiyan, L.; Lan, C.; Minghui, Y. A design method for process design kit based on an SMIC 65 nm process. J. Semicond. 2010,
31, 105008. [CrossRef]

4. Goldman, R.; Bartleson, K.; Wood, T.; Kranen, K.; Cao, C.; Melikyan, V. Synopsys’ interoperable process design kit. In Proceedings
of the European Workshop on Microelectronics Education; Springer: Berlin/Heidelberg, Germany, 2010; pp. 119–121.

5. Bulakh, D.; Zhestkov, S.; Volobuev, P. A Pattern-based Algorithm for Transistor-level Combinational Circuits Netlists Visualization.
In Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
St. Petersburg, Russia, 28–31 January 2019; pp. 2194–2197. [CrossRef]

6. Chari, K.S.; Sharma, M. Performance of IC layout design diagnostic tool. In Proceedings of the 2015 Global Conference on
Communication Technologies (GCCT), Thuckalay, India, 23–24 April 2015; pp. 332–337. [CrossRef]

7. Jeong, J.; Yang, J.; Kim, T.H.; Kim, H.; Cheon, E. Efficient post-layout simulation method using Auto layout effect modification
module in Reinforcement learning for optimizing circuit. In Proceedings of the 2022 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia), Yeosu, Republic of Korea, 26–28 October 2022; pp. 1–3. [CrossRef]

8. Yan, B.; Cheng, X.; Yang, F.; Yao, L. Research on EDA technology and its related issues. In Proceedings of the 2010 International
Conference On Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; Volume 4, pp. V4-26–V4-29. [CrossRef]

9. Zunin, V.; Romanov, A.Y.; Solovyev, R. Developing Methods for Combinational Circuit Generation. In Proceedings of the 2022
International Russian Automation Conference (RusAutoCon), Sochi, Russia, 4–10 September 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 842–846.

10. Mark, C.; Chin, S.Y.; Shannon, L.; Wilton, S.J. Hierarchical benchmark circuit generation for FPGA architecture evaluation. ACM
Trans. Embed. Comput. Syst. 2012, 11, 1–25. [CrossRef]

11. Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.; Songhori, E.; Wang, S.; Lee, Y.J.; Johnson, E.; Pathak, O.; Bae, S.; et al. Chip
placement with deep reinforcement learning. arXiv 2020, arXiv:2004.10746.

12. Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.W.; Songhori, E.; Wang, S.; Lee, Y.J.; Johnson, E.; Pathak, O.; Nazi, A.; et al. A
graph placement methodology for fast chip design. Nature 2021, 594, 207–212. [CrossRef] [PubMed]

13. Lourenco, N.; Vianello, M.; Guilherme, J.; Horta, N. LAYGEN—Automatic Layout Generation of Analog ICs from Hierarchical
Template Descriptions. In Ph.D. Research in Microelectronics and Electronics; IEEE: Otranto, Italy, 2006; pp. 213–216. [CrossRef]

14. Lomeli-Illescas, I.; Solis-Bustos, S.A.; Martínez-Sánchez, V.H.; Rayas-Sánchez, J.E. Synthesis tool for automatic layout generation
of analog structures. In Proceedings of the 2016 IEEE ANDESCON, Arequipa, Peru, 19–21 October 2016; pp. 1–4. [CrossRef]

15. Aktuna, M.; Rutenbar, R.; Carley, L. Device-level early floorplanning algorithms for RF circuits. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 1999, 18, 375–388. [CrossRef]

16. Zhao, W.; Wang, W.; Lu, X. Auto-layout Algorithm of Project Network Diagram. In Proceedings of the 2011 Workshop on Digital
Media and Digital Content Management, Hangzhou, China, 15–16 May 2011; pp. 318–321. [CrossRef]

17. Dan, C.; Kejun, L.; Longda, Y.; Xiaofei, M.; Fangfang, Z. Behavior model analysis of transceiver characteristic based on ADS
automatic control. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Communications and
Computing (ICSPCC), Ningbo, China, 19–22 September 2015; pp. 1–4. [CrossRef]

18. Saeedi, M.; Sedighi, M.; Zamani, M.S. A Novel Synthesis Algorithm for Reversible Circuits; IEEE: Piscataway, NJ, USA, 2007;
pp. 164–169. [CrossRef]

19. Yuan, G.; Dancheng, L.; Chunyan, H.; Zhiliang, Z. An Improved Network Topology Auto-layout Solution Based on Force-Directed
Placement. In Proceedings of the 2009 Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, 12–14
August 2009; Volume 3, pp. 10–14. [CrossRef]

20. Wang, H. Using DFS Search and Enumerate Method to Find All Solutions in 13 Convex Figures in Tangram Game. In Proceedings
of the 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI), Kunming, China, 17–19
September 2021; pp. 505–509. [CrossRef]

21. Kole, D.K.; Rahaman, H.; Das, D.K.; Bhattacharya, B.B. Optimal Reversible Logic Circuit Synthesis Based on a Hybrid DFS-BFS
Technique. In Proceedings of the 2010 International Symposium on Electronic System Design, Bhubaneswar, India, 20–22
December 2010; pp. 208–212. [CrossRef]

http://doi.org/10.1088/1674-4926/31/10/105008
http://dx.doi.org/10.1109/EIConRus.2019.8657198
http://dx.doi.org/10.1109/GCCT.2015.7342678
http://dx.doi.org/10.1109/ICCE-Asia57006.2022.9954851
http://dx.doi.org/10.1109/ICCDA.2010.5541507
http://dx.doi.org/10.1145/2331147.2331152
http://dx.doi.org/10.1038/s41586-021-03544-w
http://www.ncbi.nlm.nih.gov/pubmed/34108699
http://dx.doi.org/10.1109/RME.2006.1689934
http://dx.doi.org/10.1109/ANDESCON.2016.7836218
http://dx.doi.org/10.1109/43.752922
http://dx.doi.org/10.1109/DMDCM.2011.18
http://dx.doi.org/10.1109/ICSPCC.2015.7338898
http://dx.doi.org/10.1109/ICCAD.2007.4397245
http://dx.doi.org/10.1109/HIS.2009.322
http://dx.doi.org/10.1109/CISAI54367.2021.00103
http://dx.doi.org/10.1109/ISED.2010.47


Symmetry 2023, 15, 1272 28 of 28

22. Chakraborty, S.; Engels, C. Lower Bounds for Lexicographical DFS Data Structures. In Proceedings of the 2022 Data Compression
Conference (DCC), Snowbird, UT, USA, 22–25 March 2022; p. 449. [CrossRef]

23. Palanisamy, V.; Vijayanathan, S. A Novel Agent Based Depth First Search Algorithm. In Proceedings of the 2020 IEEE 5th
International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 30–31 October 2020;
pp. 443–448. [CrossRef]

24. Borovskiy, V.; Müller, J.; Schapranow, M.P.; Zeier, A. Binary search tree visualization algorithm. In Proceedings of the 2009
16th International Conference on Industrial Engineering and Engineering Management, Beijing, China, 21–23 October 2009;
pp. 108–112. [CrossRef]

25. Hou, B.; Khanal, B.; Alansary, A.; McDonagh, S.; Davidson, A.; Rutherford, M.; Hajnal, J.V.; Rueckert, D.; Glocker, B.; Kainz,
B. 3-D Reconstruction in Canonical Co-Ordinate Space From Arbitrarily Oriented 2-D Images. IEEE Trans. Med Imaging 2018,
37, 1737–1750. [CrossRef] [PubMed]

26. Doncel, V.R.; Nikolaidis, N.; Pitas, I. An Optimal Detector Structure for the Fourier Descriptors Domain Watermarking of 2D
Vector Graphics. IEEE Trans. Vis. Comput. Graph. 2007, 13, 851–863. [CrossRef] [PubMed]

27. Bingjian, J.; Sheng, J.; Tang, Z. PDK design of 0.13um SOI process. In Proceedings of the 2015 IEEE 11th International Conference
on ASIC (ASICON), Chengdu, China, 3–6 November 2015; pp. 1–4. [CrossRef]

28. Chen, S.G. Generating large scale undirected graph for solving flow network problems. In Proceedings of the 2010 IEEE Interna-
tional Conference on Industrial Engineering and Engineering Management, Macao, China, 7–10 December 2010; pp. 1334–1338.
[CrossRef]

29. Bücker, H.M.; Sohr, C. Reformulating a Breadth-First Search Algorithm on an Undirected Graph in the Language of Linear
Algebra. In Proceedings of the 2014 International Conference on Mathematics and Computers in Sciences and in Industry, Varna,
Bulgaria, 13–15 September 2014; pp. 33–35. [CrossRef]

30. Salmeh, R. Impacts of impedance mismatch on the performance of RF mixers. In Proceedings of the 2011 IEEE Symposium on
Wireless Technology and Applications (ISWTA), Langkawi, Malaysia, 25–28 September 2011; pp. 27–31. [CrossRef]

31. Parsons, G.F. The parallel flow intersection: A new high capacity urban intersection. In Proceedings of the 5th Advanced Forum
on Transportation of China (AFTC 2009), Beijing, China, 17 October 2009; pp. 143–150. [CrossRef]

32. Bulakh, D.; Zhestkov, S. Logic gates placement algorithm for visualization of integrated circuits netlists. In Proceedings of the
2019 International Seminar on Electron Devices Design and Production (SED), Prague, Czech Republic, 23–24 April 2019; pp. 1–4.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/DCC52660.2022.00060
http://dx.doi.org/10.1109/ICCCA49541.2020.9250826
http://dx.doi.org/10.1109/ICIEEM.2009.5344285
http://dx.doi.org/10.1109/TMI.2018.2798801
http://www.ncbi.nlm.nih.gov/pubmed/29994453
http://dx.doi.org/10.1109/TVCG.2007.1050
http://www.ncbi.nlm.nih.gov/pubmed/17622672
http://dx.doi.org/10.1109/ASICON.2015.7517077
http://dx.doi.org/10.1109/IEEM.2010.5674412
http://dx.doi.org/10.1109/MCSI.2014.40
http://dx.doi.org/10.1109/ISWTA.2011.6089546
http://dx.doi.org/10.1049/cp.2009.1603
http://dx.doi.org/10.1109/SED.2019.8798460

	Introduction
	Overview of Layout Splicing Methods
	Device Addressing Model
	Addressing Ports of Normally Placed Devices
	Addressing Ports after Rotation Operation
	Addressing Ports after Mirror Operation

	Dimension Vector for RFIC Device PCell in Compound Process
	Layout Splicing Scheme
	Strategies for Handling Ring Structures
	Method for Detecting Overlapping Devices in Circuit Layouts
	Rotation and Mirror Operations

	The Complete PCell-Splicing Process
	Commercial EDA Software Integration
	Results and Discussion
	Generating Circuit Layout Based on Netlist Files
	Layout in Reverse Engineering

	Conclusions
	References

