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Abstract: In this study, the authors focus on quasi-hemi-slant submanifolds (qhs-submanifolds) of
(α, β)-type almost contact manifolds, also known as trans-Sasakian manifolds. Essentially, we give
sufficient and necessary conditions for the integrability of distributions using the concept of quasi-
hemi-slant submanifolds of trans-Sasakian manifolds. We also consider the geometry of foliations
dictated by the distribution and the requirements for submanifolds of trans-Sasakian manifolds with
quasi-hemi-slant factors to be totally geodesic. Lastly, we give an illustration of a submanifold with a
quasi-hemi-slant factor and discuss its application to number theory.
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1. Introduction

The most exquisite and significant Riemannian manifolds are symmetric spaces. Grass-
mannians, compact Lie groups and bounded symmetric domains are a few of the most
notable examples of this class of spaces, which are extremely important for many different
areas of mathematics. Euclidean, elliptic, and hyperbolic geometry are a few examples of
the unique geometry that exists in every symmetric space. However, these regions share
many features in common, and there is a robust explanation for this.

There are numerous perspectives from which symmetric spaces might be seen. They
can be seen as Lie triple systems, Riemannian manifolds with point reflections, parallel
curvature tensors, special holonomy, homogeneous spaces with special isotropies, special
Killing vector fields, or Lie groups with a specific involution.

Symmetric spaces are recognized to have certain properties in differential geometry
(Riemannian geometry). The so-called symmetric submanifolds are their analogues in
submanifold geometry.

A submanifold M of a Riemannian manifold M̄ is said to be a symmetric submanifold
if, for each point p in M, there exists an involutive isometry tp of M̄ that fixes p and leaves
M invariant and whose differential at p fixes the normal vectors of M at p and reflects the
tangent vectors. Any such isometry tp is referred to as an M symmetry at p.

Ferus [1–3] examined and categorized the symmetric submanifolds in Euclidean
spaces in a number of works. Interestingly, the symmetric submanifolds in Euclidean
spaces are mostly the symmetric spaces amid the orbits of isotropy representations of
semi-simple symmetric spaces. These orbits are referred to as symmetric real flag manifolds
or symmetric R-spaces. Their classification as simply connected symmetric spaces of
a compact type by Naitoh [4–6] follows further attempts by other mathematicians and
classifications in compact symmetric spaces of rank one.
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In irreducible symmetric spaces of a non-compact type and higher rank, i.e., a rank
greater than one, the only examples of symmetric submanifolds that are symmetric are
completely geodesic. In actuality, the reflecting submanifolds are fully geodesic symmetric
submanifolds. If the geodesic reflection of a Riemannian manifold M̄ in a submanifold
M has a well-defined global isometry, then the submanifold M is said to be reflective.
A reflecting submanifold must be completely geodesic because it is a linked part of the
isometry’s fixed point set. A totally geodesic submanifold of a symmetric space M̄ is
reflective precisely if it has a totally geodesic submanifold of M that is tangent to each of its
normal spaces. Any such typical, completely geodesic submanifold likewise has reflection.
Leung [7,8] categorized the reflective submanifolds as irreducible, simply connected sym-
metric spaces. Moreover, every irreducible, totally geodesic submanifold of a Hermitian
symmetric space is a slant submanifold [9,10].

On the other hand, Oubina [11] popularized the concept of (α, β)-type almost contact
manifolds, or trans-Sasakian manifolds, which are connected to locally conformal Kahler
manifolds and include both the subclasses of Sasakian and cosymplectic structures. The
types (α, 0), (β, 0), and (0, 0) of trans-Sasakian manifolds are α-Sasakian, β-Kenmotsu, and
cosymplectic manifolds, respectively. The theory of submanifolds began with the fact that
the surface extrinsic geometry evolves with ambient space. This submanifold approach
plays a significant role in image processing, mathematical physics, mechanics, computer
design, and economics. Because of the widespread relevance of such a topic, it is a lively
and intriguing research area for all mathematical experts.

Since Chen [12] defined and introduced the geometry of slant submanifolds as a logical
extension of both totally real and holomorphic immersions, various mathematicians have
studied this over the past twenty years [13–17]. In 1996, Lotta [18] studied the characteristics
of the immersion of a Riemannian manifold with a slant factor into an almost contact metric
manifold. The concept of semi-slant submanifolds of Kaehlerian manifolds was studied
in [19]. On different types of differentiable manifolds, the slant submanifolds were further
extended as pseudo-slant submanifolds, semi-slant submanifolds, bi-slant submanifolds,
and quasi-slant submanifolds [19–24]. Prasad et al. [25,26] recently researched the quasi-
hemi-slant submanifolds of cosymplectic manifolds and Sasakian manifolds, as well as the
features of integrability of distribution and completely geodesic manifolds.

We will investigate qhs-submanifolds of trans-Sasakian manifolds, which comprise
hemi-slant and semi-slant submanifolds, as a result of the previous research.

The following is a breakdown of the structure of this article. In Section 2, we cover
the fundamental concept of an almost contact metric manifold, as well as some of its
features. In Section 3, we define qhs-submanifolds of trans-Sasakian manifolds and review
some fundamental findings. Section 4 discusses the criteria for the integrability of qsh
submanifolds. In Section 4, we also demonstrate several conditions that must be met in
order for the qhs-submanifold of trans-Sasakian manifolds to be totally geodesic.

2. (α, β)-Type Almost Contact Manifolds

Let M̄ be a real (2n + 1)-dimensional manifold M̄ endowed with an almost contact
metric structure [27] if it admits a (1,1) tensor field ϕ, a contravariant vector field ζ, a 1-form
η, and a Riemannian metric g on M̄, which yields

ϕ2E = −E + η(E)ζ, ηoϕ = 0, ϕ(ζ) = 0, (1)

g(ϕE, F) = −g(E, ϕF), g(E, ζ) = η(E), η(ζ) = 1, (2)

g(ϕE, ϕF) = g(E, F)− η(E)η(F) (3)

for any vector fields E, F tangent to M̄.
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An almost contact metric manifold M̄ (ϕ, ζ, η, g) is stated to be a trans-Sasakian
manifold [11] if (M̄×R, J,G) belongs to the W4 class of Hermitian manifolds, where J is
the almost complex structure on (M̄×R) defined by

J(E, f
d
dt
) = (ϕE− f ζ, η(E)

d
dt
),

for any vector field E on M̄ and f is a smooth function on M̄×R with a product metric G
on M̄×R. This condition can be expressed as follows [27]:

(∇̄E ϕ)F = α(g(E, F)ζ − η(F)E) + β(g(ϕE, F)ζ − η(F)ϕE), (4)

where α, β denote smooth functions on M̄, ∇̄ denotes the Riemannian connection of d
on M̄, and we can say that such structures are trans-Sasakian structures of type (α, β) or
(α, β)-type almost contact manifolds.

If β = 0, then the M̄ manifold is known as α-Sasakian.
If α = 0, the M̄ is known as β-Kenmotsu [28].
If α = β = 0, then M̄ is a cosymplectic manifold [27,29].
The trans-Sasakian structure or (α, β)-type almost contact manifolds, as we know,

fulfills
∇̄Eζ = −αϕE + β(E− η(E)ζ), (5)

(∇̄Eη)F = αg(E, ϕF) + βg(ϕE, ϕF). (6)

A (1, 0) type of trans-Sasakian manifold is clearly a Sasakian manifold [30], whereas a
(0, 1) type of trans-Sasakian manifold is obviously a Kenmotsu manifold [31]. A (0, 0) type
of trans-Sasakian manifold is a cosymplectic manifold [25].

Now, let M be a Riemannian manifold immersed in M̄, and, throughout this article, the
induced Riemannian metric on M is indicated by d. The equations of Gauss and Weingarten
are provided by [32]

∇̄EF = ∇EF + σ(E, F), (7)

∇̄EU = −AUE +∇⊥E U (8)

for all E, F ∈ Γ(T M), U ∈ Γ(T ⊥M), wherein∇ and∇⊥ are the induced connections on M
and on T ⊥M of M, respectively. In addition, AU is the shape operator on M with normal
vector U ∈ Γ(T ⊥M) and σ is the second fundamental form of AU , defined as

g(σ(E, F), U) = g(AUE, F). (9)

The mean curvature tensor H of M is defined as follows:

H =
1
n

n

∑
i=1

σ(vi, vi) =
1
n

trace(σ). (10)

wherein {v1, v2, · · · , vn} is a local orthogonal frame of M since the dim(M) = n.
A submanifold M of an almost contact metric manifold M̄ is totally umbilical if

g(E, F)H = σ(E, F), (11)

where H is the mean curvature. If σ(E, F) = 0, a submanifold M is said to be totally
geodesic for each E, F ∈ Γ(T M), and ifH = 0, then M is said to be minimal.

For any E ∈ Γ(T M), we have

ϕE = T E +N E, (12)

where T E and N E are tangential and normal components of ψE on M, respectively.
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In the same way, for any U ∈ Γ(T ⊥M), we have

ϕU = tU + nU, (13)

where nU and tU indicate the normal and tangential parts of ψU on M, respectively.
In light of (2) and (12), we have

g(T E, F) = −g(E, T F) (14)

for any E, F ∈ Γ(T M).
In (12) and (13), the covariant derivative of projection morphisms is defined as

(∇̄ET )F = ∇ET F− T ∇EF,

(∇̄EN)F = ∇⊥E NF− N∇EF,

(∇̄Et)U = ∇EtU − t∇EU,

(∇̄Xn)U = ∇⊥X nU − n∇XU,

for all E, F ∈ Γ(T M) and U ∈ Γ(T ⊥M).
Now, we have the following definitions.

Definition 1 ([33]). Let M be a Riemannian manifold isometrically immersed in M̄, which is
almost contact metric manifold. If ϕ(Tx M) ⊆ Tx M for every point x ∈ M, a submanifold M of an
almost contact metric manifold M̄ is said to be invariant.

Definition 2 ([34]). A submanifold M of an almost contact metric manifold M̄ is said to be
anti-invariant if ϕ(Tx M) ⊆ T⊥x M, for every point x ∈ M.

Definition 3 ([26]). A submanifold M of an almost contact metric manifold M̄ is said to be slant
if the angle θ(K) between ψE and Tx M is constant for each non-zero vector E tangent to M at
x ∈ M, linearly independent on ζ for each non-zero vector E tangent to M at x ∈ M. The angle θ
is referred to as the slant angle of the submanifold in this context. If neither θ = 0 nor θ = π

2 , a
slant submanifold M is considered a valid slant submanifold.

In addition, we can also observe the following conditions.

(i) If θ = 0, a slant submanifold M is an invariant submanifold.
(ii) If θ = π

2 , it is an anti-invariant submanifold.

Moreover, the slant submanifold is hence an extension of invariant and anti-invariant subman-
ifolds [35].

Definition 4 ([31]). A semi-invariant submanifold is a submanifold M of an almost contact metric
manifold M̄ if there exist two orthogonal complementary distributions D and D⊥ on M such that

T M = D ⊕D⊥⊕ < ζ >,

where D is invariant and D⊥ is an anti-invariant distribution.

Definition 5 ([19]). A semi-slant submanifold is a submanifold M of an almost contact metric
manifold M̄, if there exist two orthogonal complementary distributions D and Dθ on M such that

T M = D ⊕Dθ⊕ < ζ >,

where Dθ is the slant with slant angle θ and D is invariant. The angle θ is known as a semi-slant
angle in this scenario [36].
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Definition 6 ([21]). A submanifold M of an almost contact metric manifold M̄ is said to be a
hemi-slant submanifold of M̄, if there exist two orthogonal complementary distributions Dθ and
D⊥ on M such that

T M = Dθ ⊕D⊥⊕ < ζ >,

where Dθ is the slant with slant angle θ and D⊥ is anti-invariant. The angle θ is known as a
hemi-slant angle in this case.

3. Submanifolds of Trans-Sasakian Manifolds with Quasi-Hemi-Slant Factor

The quasi-hemi-slant submanifold (in short, qhs-submanifold) of trans-Sasakian manifolds is
discussed in this section of the work.

Note that in the presented results, Θ denotes the “submanifold of a trans-Sasakian mani-
fold M̄”.

Definition 7 ([26]). A Θ is said to be a qhs-submanifold if there exist distributions D, Dθ , and
D⊥ on M such that

(i) T M may be broken down into its constituent parts, such as

T M = D ⊕Dθ ⊕D⊥⊕ < ζ > .

(ii) The distribution D is ϕ-invariant, i.e., ϕD = D.
(iii) For any non-zero vector field E ∈ (Dθ)p, p ∈ M, the angle θ, between the distribution ϕE

and Dθ , is constant and independent of the choice of p, and E ∈ (Dθ)p.
(iv) The the distribution D⊥ is ϕ anti-invariant, i.e., ϕD⊥ ⊆ T ⊥.

In addition, the qhs-angle of M is called θ in this situation. Assume that the dimensions of
D,Dθ , and D⊥ are n1, n2, and n3, respectively. Then, we may clearly observe the situations below.

(i) If n1 = 0, then M is a hemi-slant submanifold.
(ii) If n2 = 0, then M is a semi-invariant submanifold.
(iii) If n3 = 0, then M is a semi-slant submanifold.

If D 6= {0},D⊥ 6= {0}, and θ 6= 0, π
2 , we claim that a qhs-submanifold M is proper.

This entails that a qhs-submanifold is an extension of invariant, anti-invariant, semi-
invariant, slant, hemi-slant, and semi-slant submanifolds and instances of quasi-hemi-slant sub-
manifolds.

Remark 1. The above definition can be extended by taking [26]

T M = D ⊕Dθ1 ⊕Dθ2 ⊕ · · · ⊕ Dθk ⊕D⊥⊕ < ζ > .

Thus, multi-slant submanifolds, quasi-multi-slant submanifolds, quasi-hemi-multi-slant sub-
manifolds, and so on can be defined.

Let M be a qhs-Θ. We indicate the projection of E ∈ Γ(T M) on the distribution D,Dθ

and D⊥ by P ,Q, andR respectively. Then, we can write for E ∈ Γ(T M)

E = PE +QE +RE + η(E)ζ. (15)

Now, we write
ϕE = T E +N E, (16)

where T E and N E are tangential and normal components of ψE on M.
In light of (15) and (16), we have

ϕE = T PE +NPE + T QE +NQE + T RE +NRE.
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Since ϕD = D and ϕD⊥ ⊆ T ⊥M, we obtain NPE = 0 and T RE = 0. Thus, we find

ϕE = T PE + T QE +NQE +NRE. (17)

Then, for any E ∈ Γ(T M), we can simply express

T E = T PE + T QE,

and
N E = NQE +NRE.

As a result of (17), we may obtain the following decomposition:

ϕ(T M) = D ⊕ T Dθ ⊕NDθ ⊕ND⊥

where ⊕ denotes the orthogonal direct sum.
Since NDθ ⊂ T ⊥M and ND⊥ ⊂ T ⊥M, we obtain

T ⊥M = NDθ ⊕ND⊥ ⊕ µ,

where µ is an orthogonal complement of NDθ ⊕ND⊥ in Γ(T ⊥M) and it is also an invari-
ant in terms of ϕ.

For every vector field with a non-zero value U ∈ Γ(T ⊥M), we write

ϕU = tU + nU (18)

for tU ∈ Γ(Dθ ⊕D⊥) and nU ∈ Γ(µ).

Theorem 1. Let M be a qhs-Θ of type (α, β). Then, we have

∇ET F−AN FE− T ∇EF− tσ(E, F) = α(g(E, F)ζ − η(F)E) + β(g(T E, F)ζ − η(F)T E),

σ(E, T F) +∇⊥EN F−N∇EF− nσ(E, F) = −βη(F)N E (19)

for any E, F ∈ Γ(T M).

Proof. Adopting Equations (4)–(13) and then equating the tangential and normal compo-
nents, we obtain (19).

Next, in view of Theorem 1, we present the following corollaries.

Corollary 1. Let M be a qhs-submanifold of an α-Sasakian manifold. Then, we have

∇ET F−AN FE− T ∇EF− tσ(E, F) = α(g(E, F)ζ − η(F)E),

σ(E, T F) +∇⊥EN F = N∇EF + nσ(E, F)

for any E, F ∈ Γ(T M).

Corollary 2. Let M be a qhs-submanifold of a β-Kenmotsu manifold. Then, we have

∇ET F−AN FE− T ∇EF− tσ(E, F) = β(g(T E, F)ζ − η(F)T E),

σ(E, T F) +∇⊥EN F = N∇EF + nσ(E, F)− βη(F)N E

for any E, F ∈ Γ(T M)
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Corollary 3. Let M be a qhs-submanifold of a cosymplectic manifold. Then we have

∇ET F = AN FE + T ∇EF + tσ(E, F),

σ(E, T F) +∇⊥EN F = N∇EF + nσ(E, F)

for any E, F ∈ Γ(T M)

Theorem 2. Let M be a qhs-Θ of type (α, β). Then, we have (see page 7 in [26])

(i) T D = D,
(ii) T Dθ = Dθ ,
(iii) T D⊥ = {0},
(iv) tNDθ = Dθ ,
(v) tND⊥ = D⊥.

Theorem 3. Let M be a qhs-Θ of type (α, β). Then, T and N , t, and n in the tangent bundle of
M fulfill the following relations.

(i) T 2 + tN = −I + η ⊗ ζ on T M.
(ii) NT + nN = 0 on T M.
(iii) N t + n2 = −I on T ⊥M.
(iv) T t + tn = 0 on T ⊥M, where I is the identity.

Proof. In view of (16) and (18) and adopting (1), on equating the tangential and normal
parts, we obtain the desired results.

Now, we have a very useful lemma.

Lemma 1. Let M be a qhs-Θ of type (α, β). Then, we have the following:

(i) T 2E = −(cos2θ)E;
(ii) g(T E, T F) = (cos2θ)g(E, F);
(iii) g(N E,N F) = (sin2θ)g(E, F)

for any E, F ∈ Dθ .

Proof. The proof is straightforward as in [37]. Thus, we will omit it.

Theorem 4. Let M be a qhs-Θ of type (α, β). Then, we have

(∇̄ET )F = AN FE + tσ(E, F) + α(g(E, F)ζ − η(F)E) + β(g(T E, F)ζ − η(F)T E),

(∇̄EN )F = nσ(E, F)− σ(E, T F)− βη(F)N E,

(∇̄Et)U = AnUE− TAUE,

(∇̄En)U = βd(N E, U)ζ − σ(E, tU)−NAUE

for any E, F ∈ Γ(T M) and U ∈ Γ(T ⊥M).

Proof. In light of Equations (4)–(14), and equating the tangent and normal components,
we obtain the desired results.

Now, from Theorem 4, we can articulate the following corollaries.

Corollary 4. Let M be a qhs-submanifold of an α-Sasakian manifold M̄. Then, we have

(∇̄ET )F = AN FE + tσ(E, F) + α(g(E, F)ζ − η(F)E)− η(F)T E),

(∇̄EN )F = nσ(E, F)− σ(E, T F),
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(∇̄Et)U = AnUE− TAUE,

(∇̄En)U = −σ(E, tU)−NAUE

for any E, F ∈ Γ(T M) and U ∈ Γ(T ⊥M).

Corollary 5. Let M be a qhs-submanifold of a β-Kenmotsu manifold M̄. Then, we have

(∇̄ET )F = AN FE + tσ(E, F) + β(g(T E, F)ζ − η(F)T E),

(∇̄EN )F = nσ(E, F)− σ(E, T F)− βη(F)N E,

(∇̄Et)U = AnUE− TAUE,

(∇̄En)U = βd(N E, U)ζ − σ(E, tU)−NAUE

for any E, F ∈ Γ(T M) and U ∈ Γ(T ⊥M).

Corollary 6. Let M be a qhs-submanifold of a cosymplectic manifold M̄. Then, we have

(∇̄ET )F = AN FE + tσ(E, F)− γ(F)T E),

(∇̄EN )F = nσ(E, F)− σ(E, T F),

(∇̄Et)U = AnUE− TAUE,

(∇̄En)U = −σ(E, tU)−NAUE

for any E, F ∈ Γ(T M) and U ∈ Γ(T ⊥M).

Theorem 5. Let M be a qhs-Θ of type (α, β). Then, we have

∇Eζ = −αT E− βϕ2E, σ(E, ζ) = −αN E (20)

for any E ∈ Γ(T M).

Proof. Using (5), (7), and (12) and equating the tangent and normal components, we ob-
tain (20).

Hence, Theorem 5 entails the following.

Corollary 7. A qhs-submanifold M of an α-Sasakian manifold satisfies ∇Eζ = −αT E and
σ(E, ζ) = −αN E.

Corollary 8. A qhs-submanifold M of a β-Kenmotsu manifold satisfies ∇Eζ = −βϕ2E and
σ(E, ζ) = 0.

Corollary 9. A qhs-submanifold M of a cosymplectic manifold satisfies∇Eζ = 0 and σ(E, ζ) = 0.

Next, we have the following interesting result.

Theorem 6. Let M be a qhs-Θ of type (α, β). Then, we have

AϕFE = AϕEF (21)

for any E, F ∈ D⊥.

Proof. Let E, F, G ∈ D⊥. Adopting (2) in (9), we obtain

g(AϕFE, G) = −g(ϕσ(E, G), F). (22)
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By virtue of (7) and (22), we have

g(AϕFE, G) = −(ϕ∇̄GE, F) + g(ϕ∇GE, F). (23)

Since ψ∇GE ∈ Γ(T ⊥M), from (23), we obtain

g(AϕFE, G) = g((∇̄G ϕ)E, F)− g((∇G ϕ)E, F). (24)

Now, for E ∈ D⊥ and ψE ∈ Γ(T ⊥M), utilizing (8) in (24), one obtains

g(AϕFE, G) = g((∇̄G ϕ)E, F)− g(AψEG, F). (25)

Now, interchanging E and F in (22), we obtain

g(AϕEF, G) = g(σ(F, G), ϕE). (26)

Due to the symmetry of σ such that σ(F, G) = σ(G, F), by (26), we have

g(AϕEG, F) = g(AϕEF, G). (27)

Employing (27) in (25), we have

g(AϕFE, G)− g(AϕEF, G) = g((∇̄Gψ)E, F). (28)

Adopting (2) and (4) in (28), we obtain

g(AϕFE−AϕEF, G) (29)

= αη(F)g(E, G)− αη(E)g(F, G)− βη(F)g(ϕE, G) + βη(E)(ϕF, G).

Thus, (29) yields

AϕFE−AψEF = αη(F)E− αη(E)F− βη(F)ϕE + βη(E)ϕF. (30)

Since E, F ∈ D⊥ is a distribution orthogonal to the distribution < ζ >, it follows that

η(E) = η(F) = 0.

As a result of the restrictions in (30), we obtain

AϕEF = AϕFE.

This completes the proof.

Lemma 2. Let M be a qhs-Θ of type (α, β). Then, we have

T ([G, H]) = 0,

N ([G, H]) = ∇⊥G ϕH −∇⊥H ϕG

for any G, H ∈ D⊥.

Proof. Let G, H ∈ D⊥. Adopting covariant differentiation as in (4), we obtain

∇̄G ϕH − ϕ(∇̄G H) = αg(G, H)ζ. (31)

Employing (7), (8), (12), and (13) in (31), we obtain

−AϕHG +∇⊥G ϕH − T (∇G H)−N (∇G H)− tσ(G, H)− nσ(G, H) = αg(G, H)ζ. (32)
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Now, equating the tangent and normal parts of (32), we obtain

AϕHG + T (∇G H) + tσ(G, H) = −αg(G, H)ζ, (33)

∇⊥G ϕH = N (∇G H) + nσ(G, H). (34)

Interchanging G and H in (33) and (34) and using (21), we can easily obtain the desired
results.

Lemma 3. Let M be a qhs-Θ of type (α, β). Then, we have

g([E, F], ζ) = 2αg(T E, F),

g(∇̄EF, ζ) = αg(T E, F)− βg(E, F)

for any E, F ∈ Γ(D ⊕Dθ ⊕D⊥).

Proof. If F ∈ Γ(D ⊕Dθ ⊕D⊥), then

g(∇̄EF, ζ) + g(F, ∇̄Eζ) = 0. (35)

Adopting Equation (2) in (35), we obtain

g(∇̄EF, ζ)− αg(ϕE, F) + βg(E, F)− βη(E)η(F) = 0. (36)

Since Y ∈ Γ(D⊕Dθ ⊕D⊥), and it is a distribution orthogonal to the < ζ >-distribution,
it entails that

η(E) = η(F) = 0.

Thus, in view of (36), we have

g(∇̄EF, ζ) = αg(ϕE, F)− βg(E, F). (37)

By swapping E and F in the equation above, we obtain

g(∇̄FE, ζ) = αg(ϕF, E)− βg(F, E) (38)

By (2) and (38), we obtain

g(∇̄FE, ζ) = −αg(ϕE, F)− βg(E, F). (39)

Subtracting (39) from (37), we have

g([E, F], ζ) = 2α(ϕE, F). (40)

Using (12), (37), and (40), we obtain the desired results.

Corollary 10. For a qhs-submanifold M of an α-Sasakian manifold, we have

g([E, F], ζ) = 2αg(T E, F), g(∇̄EF, ζ) = α(T E, F).

Corollary 11. For a qhs-submanifold M of a β-Kenmotsu manifold, we have

g([E, F], ζ) = 0, (∇̄EF, ζ) = −βg(E, F).

Corollary 12. For a qhs-submanifold M of a cosymplectic manifold, we have

g([E, F], ζ) = 0, g(∇̄EF, ζ) = 0.



Symmetry 2023, 15, 1270 11 of 18

4. Integrability of Distributions

The integrability criteria of the distributions involved in the formulation of qhs-Θ are
examined in this section.

Theorem 7. Let M be a proper qhs-Θ of type (α, β). Then, the distribution D⊕ < ζ > is
integrable if and only if

g(∇ET F−∇FT E, T QG) = g(σ(F, T E)− σ(E, T F),NQG +NRG)

for all E, F ∈ Γ(D⊕ < ζ >) and G ∈ Γ(Dθ ⊕D⊥).

Proof. For all E, F ∈ Γ(D⊕ < ζ >) and G ∈ Γ(Dθ ⊕D⊥), adopting (3), we have

g([E, F], G) = g(ϕ∇̄EF, ψG)− g(ϕ∇̄FE, ϕG). (41)

Using (4) and the concept of covariant differentiation, we have

g(ϕ(∇̄EF), ϕG) = g(∇̄E ϕF, ϕG).

Therefore, from (41), we obtain

g([E, F], G) = g(∇̄E ϕF, ϕG)− g(∇̄F ϕE, ϕG). (42)

Using (7) and (12) in (42), we obtain

g([E, F], G) = g(∇ET F + σ(E, T F), ϕG)− g(∇FT E + σ(F, T E), ψG). (43)

Setting G = QG +RG and using Equation (16) in (43), we have

g([E, F], G) = g(∇ET F + σ(E, T F), T QG + T RG +NQG +NRG)

−g(∇FT E + σ(F, T E), T QG + T RG +NQG +NRG).

Since ϕD⊥ ∈ T ⊥M, which implies that T RG = 0, as a result of the above expressions,
we obtain

g([E, F], G) = g(∇ET F−∇FT E, T QG) + g(σ(E, T F)− σ(F, T E),NQG +NRG).

Since the distribution D⊕ < ζ > is integrable, we obtain the required result.

Theorem 8. Let M be a proper qhs-Θ of type (α, β). Then, the slant distribution Dθ⊕ < ζ > is
integrable if and only if

g(ANT FG−ANT GF, H) = g(AN FG−ANGF, T PH)

+g(∇⊥FNG−∇⊥GN F,NRH)

for all Y, Z ∈ Γ(Dθ⊕ < ζ >) and H ∈ Γ(D ⊕D⊥).

Proof. For all F, G ∈ Γ(Dθ⊕ < ζ >), using H = PH +RH ∈ Γ(D ⊕D⊥) and employing
(3) and (4), we obtain

g([F, G], H) = g(∇̄FψG, ψH)− g(∇̄G ϕF, ϕH). (44)

Adopting (8) and (12) in (44), we obtain

g([F, G], H) = g(AN FG−ANGF, ϕH) + g(∇⊥FNG−∇⊥GN F, ϕH) (45)

−g(∇̄FT 2G− ∇̄GT 2F, H) + g(ANT GF−ANT FG, H)
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Now, using (16) and Lemma 1 in (45), we obtain

sin2θg([F, G], H) = g(AN FG−ANGF, T PH) + g(∇⊥FNG−∇⊥G NY,NRH)

−g(ANT FG−ANT GF, H).

Since the distribution Dθ⊕ < ζ > is integrable, we obtain the required result.

Theorem 9. If a proper qhs-Θ of type (α, β) satisfies the conditions that, for all F, G ∈ Γ, (Dθ⊕ <
ζ >)

∇⊥FNG−∇⊥GN F ∈ NDθ ⊕ µ,

ANT FG−ANT GF ∈ Dθ ,

AN FG−ANGF ∈ D⊥ ⊕Dθ ,

then the slant distribution Dθ⊕ < ζ > is integrable.

Theorem 10. Let M be a proper qhs-Θ of type (α, β). Then, the anti-invariant D⊥ is integrable if
and only if

∇⊥G ϕH −∇⊥H ϕG ∈ NDθ ⊕ µ (46)

for all G, H ∈ Γ(D⊥) and F = PF +QF ∈ Γ(D ⊕Dθ).

Proof. For all G, H ∈ Γ(D⊥) and F = PF +QF ∈ Γ(D ⊕Dθ), adopting (3) and (4), we
have

g([G, H], F) = g(∇̄G ϕH, ϕF)− g(∇̄H ϕG, ϕF). (47)

Using (8) and (16) in (47), we have

g([G, H], F) = g(AϕG H −AϕiHG, T PF + T QF) + g(∇⊥G ϕH −∇⊥H ϕG,NQF). (48)

By Lemma 3 and (48), we find

g([G, H], F) = g(∇⊥G ϕH −∇⊥H ϕG,NQF).

Since the anti-invariant distribution D⊥ is integrable, we obtain the desired result.

5. Totally Geodesic Foliations

Geodesicness and foliations are important geometric qualities that are associated with
submanifolds. We examine the geometry of the foliations of qhs-Θ of type (α, β) in this
section, as well as some requirements for total geodesicness.

Theorem 11. Let M be a proper qhs-Θ of type (α, β). Then, M is totally geodesic if and only if

g(σ(E,PF) + cos2θσ(E,QF), U) = g(∇⊥ENT QF, U)− g(∇⊥EN F, nU)

+g(ANQFE +ANRFE, tU)

for all E, F ∈ Γ(T M) and U ∈ Γ(T ⊥M).

Proof. For all E, F ∈ Γ(T M), U ∈ Γ(T ⊥M), using (15), we obtain

g(∇̄EF, U) = g(∇̄EPF, U) + g(∇̄EQF, U) + g(∇̄ERF, U). (49)

In view of (3), we obtain

g(ϕ∇̄EF, ϕU) = g(∇̄EF, U). (50)
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Using (4), we obtain

g(ϕ∇̄EF, ϕU) = g(∇̄E ϕF, ϕU). (51)

Employing (2), (7), (12), (50), and (51) in (49), we obtain

g(∇̄EF, U) = g(σ(E,PF), U)− g(∇̄ET 2QF, U)− g(∇̄ENT QF, U)

+g(∇̄ENQF, ϕU) + g(∇̄ENRF, ψU).

Adopting (7), (12), and Lemma 1 in the above equation, we have

g(∇̄EF, U) = g(σ(E,PF) + cos2θσ(E,QF), U)− g(∇̄⊥ENT QF, U) (52)

−g(ANQFE +ANRFE, tU + nU) + g(∇⊥ENQF +∇⊥ENRF, tU + nU).

Since N F = NPF +NQF +NRF and NPF = 0, we obtain

g(∇̄EF, U) = g(σ(E,PF) + cos2θσ(F,QF), U)− g(∇̄⊥ENT QF, U)

−g(ANQFE +ANRFE, tU) + g(∇⊥EN F, nU).

Since M is totally geodesic, we obtain the desired result.

Theorem 12. Let M be a proper qhs-Θ of type (α, β). Then, anti-invariant distribution D⊥ is a
totally geodesic foliation on M if and only if

g(AψGF, T PH + T QH) = g(∇⊥F ϕG,NQH),

g(AϕGF, tU) = g(∇⊥F ϕG, nU)

for all F, G ∈ Γ(D⊥), H ∈ Γ(D ⊕Dθ) and U ∈ Γ(T ⊥M).

Proof. For any F, G ∈ Γ(D⊥), H = PH +QH ∈ Γ(D ⊕Dθ). Now using (3) and (4), we
have

g(∇̄FG, H) = g(∇̄F ϕG, ϕH).

Adopting (8) and (16), we obtain

g(∇̄FG, H) = −g(AϕGF, T PH + T QH) + g(∇⊥F ϕG,NQH). (53)

Now, for any F, G ∈ Γ(D⊥), U ∈ Γ(T ⊥M), employing (3) and (4), we have

g(∇̄FG, U) = g(∇̄F ϕG, ϕU).

Using (8) and (13), we obtain

g(∇̄FG, U) = −g(AϕGF +∇⊥F ϕG, tU + nU) (54)

= −g(AϕGF, tU) + g(∇⊥FNG, nU).

Since anti-distribution (D⊥) defines a totally geodesic foliation on M, (53) and (54)
give the desired result.

Theorem 13. Let M be a proper qhs-Θ of type (α, β). Then, the distribution Dθ⊕ < ζ > defines
a totally geodesic foliation on M if and only if

g(∇⊥GNH,NRE) = g(ANHG, T PE)− g(ANT HG, E),

g(ANHG, tU) = g(∇⊥GNH, nU)− g(∇⊥GNT H, U)
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for all G, H ∈ Γ(Dθ⊕ < ζ >), E ∈ Γ(D ⊕D⊥) and U ∈ Γ(T ⊥M).

Proof. Let E = PE +RE ∈ Γ(D ⊕D⊥) and G, H ∈ Γ(Dθ⊕ < ζ >). Then, using (3), (4),
(8), (12), (13), and Lemma 1, we have

sin2θg(∇̄G H, E) = g(ANT HG, E)− g(ANHG, ϕE) + g(∇⊥GNH, ϕE). (55)

Now, employing (16) with the fact that NPE = 0 in (55), one obtains

sin2θg(∇̄G H, E) = g(ANT HG, E)− g(ANHG, T PE) + g(∇⊥GNH,NRE). (56)

Now, for any G, H ∈ Γ(Dθ⊕ < ζ >), U ∈ Γ(T ⊥M), adopting (3), (4), (8), and (12),
we have

g(∇̄G H, U) = −g(∇̄GT 2H, U)− g(∇̄GNT H, U) + g(−ANHG +∇⊥GNH, ϕU).

Now, in light of (13) and Lemma 1, and from the above equation, we obtain

sin2θg(∇̄G H, U) = −g(∇⊥GNT H, U)− g(ANHG, tU) + g(∇⊥GNH, nU). (57)

Since the distribution Dθ⊕ < ζ > defines a totally geodesic foliation on M, from (56)
and (57), we obtain the desired result.

Theorem 14. Let M be a proper qhs-Θ of type (α, β). Then, the distribution D⊕ < ζ > defines a
totally geodesic foliation on M if and only if

g(∇ET F, T QG) = −g(σ(E, T F),NQG +NRG),

g(∇ET F, tU) = −g(σ(E, T F), nU)

for all E, F ∈ Γ(D⊕ < ζ >), G = QG +RG ∈ Γ(Dθ ⊕D⊥) and U ∈ Γ(T ⊥M).

Proof. Let G = QG +RG ∈ Γ(Dθ ⊕D⊥) and E, F ∈ Γ(D⊕ < ζ >). Using (3) and (4), we
gain

g(∇̄EF, G) = g(∇̄E ϕF, ψG).

Now, employing (7), (12), (16), and N F = 0 in the above equation, we find

g(∇̄EF, G) = g(∇ET F, T QG) + g(σ(E, T F),NQG +NRG). (58)

For any E, F ∈ Γ(D⊕ < ζ >) and U ∈ Γ(T ⊥M), adopting (3), (4), (16), and N F = 0,
we obtain

g(∇̄EF, U) = g(∇̄ET F, ϕU).

In view of (7) and (13), we have

g(∇̄EF, U) = g(∇ET F, tU) + g(σ(E, T F), nU). (59)

Since distribution (D⊕ < ζ >) describes a totally geodesic foliation on M,
from (58) and (59), we obtain the desired result.

6. Related Example

Example 1. Let M̄ =
{
(x1, · · · , x10, z) ∈ R11 : z 6= 0

}
, where (x1, x2, x3, · · · , x9, x10, z) is the

standard coordinate in R11. We choose the vector fields

Ei = e−z ∂
∂xi

, where i = 1, 2, · · · , 10, E11 = e−z ∂
∂z .

The metric g is defined as
g = e2zG,



Symmetry 2023, 15, 1270 15 of 18

where G is the Euclidean metric on R11. Then, {Ei}i=1,2,··· ,11 is an orthonormal frame basis
of M̄.

Define a 1-form η by

η = ezdz, η(U) = g(U, E11), ∀ U ∈ T M̄.

Next, we define a tensor field ϕ of type (1, 1) by

ϕ

{
5

∑
i=1

(
xi

∂

∂xi
+ xi+5

∂

∂xi+5
+ z

∂

∂z

)}
=

5

∑
i=1

(
xi

∂

∂xi+5
− xi+5

∂

∂xi

)
.

Then, we have

ϕ(Ei) = Ei+5, ϕ(Ei+5) = −Ei, ϕ(E11) = 0, 1 ≤ i ≤ 5.

The linearity of d and ψ yields that

η(E11) = 1, ϕ2(U) = −U + η(U)E11,

g(ϕU, ϕV) = g(U, V)− η(U)η(V)

for any vector fields U, V on M̄. As a result, M̄ (ϕ, ζ, η, g) defines an almost contact metric
manifold with ζ = E11. In addition, let ∇̄ be the Levi–Civita connection with respect to
metric g. Using basic calculations, the following expressions are obtained:

[Ei, ξ] = e−zEi, [Ei, Ej] = 0, 1 ≤ i 6= j ≤ 10.

The Riemannian connection ∇̄ of the metric d is given by

2g(∇̄UV, W) = Ug(V, W) + Vg(W, U)−Wg(U, V)

− g(U, [V, W])− g(V, [U, W]) + g(W, [U, V]).

By Koszul’s formula, we obtain the following relations:

∇̄Ei Ei = −e−zζ, ∇̄ζ ζ = 0, ∇̄ζ Ei = 0, ∇̄Ei ζ = e−zEi, 1 ≤ i ≤ 10.

Hence, considering Equations (4)–(6), we observe that M is a trans-Sasakian manifold
of type (0, e−z), where α = 0 and β = e−z.

Next, we define a submanifold M of M̄ by the immersion f as follows:

f (u1, u2, u3, u4, u5, u6, u7) = e−z(u1, u3, 0,
1√
2

u5,
1√
2

u6, u2, u4 cos θ,

u4 sin θ,
1√
2

u5,
1√
2

u6, u7),

where 0 < θ < π
2 .

Now, it is easy to observe that tangent bundle T M = Span{X1, X2, X3, X4, X5, X6, X7},
where

X1 = e−z ∂

∂x1
, X2 = e−z ∂

∂x6
, X3 = e−z ∂

∂x2
, X4 = e−z{cos θ

∂

∂x7
+ sin θ

∂

∂x8
},

X5 = e−z 1√
2
{ ∂

∂x4
+

∂

∂x9
}, X6 = e−z 1√

2
{ ∂

∂x5
+

∂

∂x10
}, X7 = e−z ∂

∂z
.
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Using the almost contact structure ϕ, we obtain

ϕX1 = e−z ∂

∂x6
, ϕX2 = −e−z ∂

∂x1
, ϕX3 = e−z ∂

∂x7
,

ϕX4 = −e−z{cos θ
∂

∂x2
+ sin θ

∂

∂x3
}, ϕX5 = e−z 1√

2
{− ∂

∂x4
+

∂

∂x9
},

ϕX6 = e−z 1√
2
{− ∂

∂x5
+

∂

∂x10
}, ϕX7 = 0.

If have the following distributions

D = Span{X1, X2},Dθ = Span{X3, X4},D⊥ = Span{X5, X6}

then the distributions D, Dθ , and D⊥ will be invariant, slant with slant angle θ, and anti-
invariant distributions, respectively. Taking into account the above and Definition 7, we
state that M is a qhs-submanifold of M̄.

7. Some Applications of Pontryagin Numbers in Number Theory to Submanifolds

According to the Hirzebruch signature theorem [38], the signature of a smooth mani-
fold can be expressed by the linear combination of Pontryagin numbers. These numbers are
certain characteristic classes or Pontryagin classes of real vector bundles. The Pontryagin
classes lie in cohomology groups with degrees of multiples of four.

Moreover, for a real vector bundle B over a manifold M, its i-th Pontryagin class pi(B)
is defined as

pi(B) = pi(B,Z) ∈ H4i(M,Z), (60)

where H4i(M,Z) is a 4i-cohomology group of manifold M with integer coefficients. Simi-
larly, the total Pontryagin class

p(B) = 1 + p1(B) + p2(B) + · · · ∈ H∗(M,Z),

for two vector bundles B1 and B2 over M. In terms of the individual Pontryagin classes pi,

2p1(B1 ⊕B2) = 2p1(B1) + 2p1(B2). (61)

It should be noted that the Pontryagin classes of a smooth manifold are defined to be
the Pontryagin classes of its tangent bundle.

Now, in light of (60), (61), and Definition 7, we have

p(T M) = 1 + p1(D) + p2(Dθ) + p3(D⊥) + p4(< ζ >) ∈ H∗(M,R), (62)

where p1, p2, p3, p4 are the Pontryagin numbers.

2p1(D ⊕Dθ ⊕D⊥⊕ < ζ >) = 2p1(D) + 2p1(Dθ) + 2p1(D⊥) + 2p1(< ζ >). (63)

Thus, we articulate the following.

Theorem 15. Let M be a proper qhs-Θ of type (α, β). Then, the Pontryagin classes of tangent
bundle TM are given by (63).

Corollary 13. Let M be a proper qhs-Θ of type (α, β) and the Pontryagin classes of tangent bundle
TM be given by (63); then, H4i(M,R) is a cohomology group of trans-Sasakian manifolds M̄ of
type (α, β).
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8. Conclusions

In this paper, we have quantified the submanifolds (qhs-submanifolds) of trans-
Sasakian manifolds or (α, β)-type almost contact metric manifolds with with quasi-hemi-
slant factors. Essentially, we present some sufficient and necessary criteria for the integra-
bility of distributions using the notion of quasi-hemi-slant submanifolds in trans-Sasakian
manifolds. We have also analyzed the distribution and specifications of quasi-hemi-slant
submanifolds of trans-Sasakian manifolds, which determine the geometry of foliations
as a totally geodesic geometry. Finally, we illustrate an example of a quasi-hemi-slant
submanifold of a trans-Sasakian manifold and describe a link between number theory in
terms of Pontryagin classes and cohomology groups.
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