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Abstract: The topological symmetry group of an embedding Γ of an abstract graph γ in S3 is the group
of automorphisms of γ that can be realized by homeomorphisms of the pair (S3, Γ). These groups are
motivated by questions about the symmetries of molecules in space. The Petersen family of graphs is
an important family of graphs for many problems in low-dimensional topology, so it is desirable to
understand the possible groups of symmetries of their embeddings in space. In this paper, we find all
the groups that can be realized as topological symmetry groups for each of the graphs in the Petersen
family. Along the way, we also complete the classification of the realizable topological symmetry
groups for K3,3.
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1. Introduction

In molecular chemistry, the properties of certain molecules are often strongly influ-
enced by their symmetries in space. Molecules with the same chemical structure but whose
embeddings in space are not equivalent are called stereoisomers and can often have quite
different effects. Historically, chemists have been most interested in rigid symmetries of
molecules, induced by rotations and reflections; but as our ability to synthesize molecules
advances, there is increased interest in symmetries of more “flexible” molecules such as
DNA and various long polymers. In these cases, there may be homeomorphisms of space
that deform the molecule and map it back to itself, but in a way that cannot be realized by a
combination of rotations and reflections. To describe the symmetries of these more complex
molecules, Jon Simon [1] introduced the topological symmetry group of an embedded
graph as the group of automorphisms of the graph induced by homeomorphisms of S3.
The topological approach to molecular chemistry has been fruitful and is an active area for
current and future research [2,3].

Since Simon’s original paper, considerable work has been conducted on the topic of
topological symmetry groups. This is a generalization of the study of symmetries and
achirality of knots and links, so it is a natural and important problem in low-dimensional
topology. In many cases, the motivating question is: given an abstract graph (e.g., chemical
structure of a molecule), what are the possible topological symmetry groups over all
embeddings of the graph in S3? This problem has been solved for several important
families of graphs, including complete graphs [4–7], complete bipartite graphs [8], and
Möbius ladders [9,10], as well as for some individually interesting graphs [11,12]. There
are also some broad results restricting possible topological symmetry groups for any
3-connected graph [13].
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The Petersen family of graphs, shown in Figure 1, is an important family of graphs in
low-dimensional topology. Most importantly, they form the complete set of minor-minimal
intrinsically linked graphs [14]. As a result, they are important examples to explore many
other issues surrounding linked and knotted cycles in spatial graphs [15,16]. They include
such well-known graphs as K6, the complete graph on six vertices, and the Petersen graph
itself (which gives the family its name). The family consists of all graphs related to the
Petersen graph by some sequence of ∇Y or Y∇ moves (“triangle-Y” or “Y-triangle”). A
∇Y move is an operation in which a triangle in the graph is replaced by a degree-three
vertex in the shape of a “Y”, while a Y∇move is the reverse, as shown in Figure 2.
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Figure 1. The Petersen family of graphs.
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Figure 2. ∇Y and Y∇moves.
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Our main purpose in this paper is to determine what groups can occur as topological
symmetry groups for some embedding of a graph in the Petersen family. The groups that
can arise as topological symmetry groups of some embedding of the Petersen graph itself
were determined by Chambers et al. in [11]. Here, we build on this result and complete
the classification of topological symmetry groups for the remaining graphs in the Petersen
family. Aside from the Petersen graph, which we denote by P10, and the complete graph
K6, the other graphs in the family are the complete tripartite graph K3,3,1, the graph K4,4
with an edge removed (which we denote K−4,4), and the graphs we denote P7, P8, and P9.

2. Background and Definitions

Before we begin, we introduce some terminology and some important tools from other
papers. An abstract graph (or just a graph ) γ is a pair (V, E), where V is a set of vertices,
and E ⊆ V × V is a set of edges. Since our graphs are not directed, we will denote the
edge between vertices v and w by the unordered pair {v, w}. An embedding f : γ → S3

means (1) an embedding of the vertices V in S3 and (2) for each edge {v, w}, an embedding
fv,w : [0, 1] → S3 such that fv,w(0) = f (v) and fv,w(1) = f (w), and the embeddings of
distinct edges intersect only at the endpoints. The image Γ = f (γ) is called an embedded
graph or a spatial graph .

An automorphism of a graph γ is a bijection α : V → V such that {v, w} ∈ E if and
only if {α(v), α(w)} ∈ E. The automorphisms of a graph γ form a group (the automorphism
group), denoted Aut(γ). To describe automorphism groups (and their subgroups), we will
use the following standard terms:

• The symmetry group Sn is the group of permutations of a set of n objects.
• The dihedral group Dn is the group of size 2n with presentation 〈m, r | m2 = rn = 1,

rm = mr−1〉.
• The cyclic group Zn is the group of size n with presentation 〈r | rn = 1〉.
• The direct product G × H is the Cartesian product G × H with the group operation

(g1, h1)(g2, h2) = (g1g2, h1h2).
• The semidirect product GoH is the Cartesian product G× H with the group operation

(g1, h1)(g2, h2) = (g1φh1(g2), h1h2), for some homomorphism φ : H → Aut(G). In our
arguments, unless otherwise specified, H = Z2 = 〈r | r2 = 1〉 and φr(g) = g−1 for
every g ∈ G.

A homeomorphism of S3 that takes an embedded graph Γ to itself induces an automor-
phism on the underlying abstract graph. We are interested in which automorphisms can be
induced in this way. In what follows, we will refer to a homeomorphism of S3, taking an
embedded graph Γ to itself as a homeomorphism of the pair (S3, Γ).

Definition 1. Let γ be an abstract graph, and let Γ be an embedding of γ in S3. We define the
topological symmetry group TSG(Γ) as the subgroup of Aut(γ) induced by homeomorphisms of
(S3, Γ). We define the orientation-preserving topological symmetry group TSG+(Γ) as the subgroup
of Aut(γ) induced by orientation-preserving homeomorphisms of (S3, Γ).

Definition 2. Let G be a group, and let γ denote an abstract graph. If there is some embedding Γ of
γ in S3 such that TSG(Γ) = G (resp. TSG+(Γ) = G), then we say that the group G is realizable
(resp. positively realizable) for γ. We will also say that a particular automorphism σ ∈ Aut(γ)
is realizable (resp. positively realizable) if there is a homeomorphism (resp. orientation-preserving
homeomorphism) of (S3, Γ) that induces σ (for some embedding Γ).

Note that for any embedding Γ of an abstract graph, TSG+(Γ) is an index of two
subgroups of TSG(Γ). Further, if a group G is positively realizable by some embedding Γ,
then G is also realizable [4]. This is because we can add identical chiral knots to every edge
of the embedding Γ to rule out any orientation-reversing homeomorphisms. This yields a
new embedding Γ′ with TSG(Γ′) = TSG+(Γ′) = TSG+(Γ) = G. As a result, for any graph
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γ, we are interested in finding (1) the groups that are positively realizable for γ and (2) the
groups that are realizable, but not positively realizable, for γ.

For example, these groups have been found for K6 and the Petersen graph P10:

Theorem 1 ([4]). The groups that can be positively realized for the complete graph K6 are

D6, D5, D3, D2,Z6,Z5,Z3,Z2, D3 × D3, D3 ×Z3,Z3 ×Z3, (Z3 ×Z3)oZ2.

The groups that can be realized (but not positively realized) for K6 are

D4,Z4, (D3 × D3)oZ2, (Z3 ×Z3)oZ4.

Theorem 2 ([11]). The groups that can be positively realized for the Petersen graph P10 are

D5, D3,Z5,Z3,Z2.

The groups that can be realized (but not positively realized) for P10 are

Z5oZ4 and Z4.

We now turn to some of the important tools we will use in this paper. The follow-
ing result is very useful in showing that certain groups can be realized as a topological
symmetry group. (In [17], this is called the Subgroup Corollary.)

Subgroup Theorem ([17]). Let Γ be an embedding of a 3-connected graph in S3. Suppose that Γ
contains an edge e that is not pointwise fixed by any non-trivial element of TSG+(Γ). Then, for
every H ≤ TSG+(Γ), there is an embedding Γ′ of Γ with H = TSG+(Γ′).

The next three results give us powerful tools for restricting which automorphisms or
groups can be realized for a particular graph γ.

Finite Order Theorem ([18]). Let φ be a non-trivial automorphism of a 3-connected graph γ that
is induced by a homeomorphism h of (S3, Γ) for some embedding Γ of γ. Then, there exists another
embedding Γ′ of γ such that the automorphism φ is induced by a finite order homeomorphism
f ∈ (S3, Γ′), and f is orientation reversing if and only if h ∈ (S3, Γ) is orientation reversing.

Smith Theory ([19]). Let h be a non-trivial finite order homeomorphism of S3. If h is orientation
preserving, then fix(h) is either the empty set or is homeomorphic to S1. If h is orientation reversing,
then fix(h) is homeomorphic to either S0 (two distinct points) or S2.

Subgraph Lemma. Let γ be an abstract graph and γ′ be a subgraph of γ so that every automor-
phism of γ fixes γ′ setwise. Assume that Γ is an embedding of γ and let Γ′ be the embedding of γ′

induced by Γ. Then, TSG(Γ) ≤ TSG(Γ′) and TSG+(Γ) ≤ TSG+(Γ′).

Proof. Observe that every element in TSG(Γ) is a homeomorphism of S3 taking Γ to itself
setwise. Hence, every element in TSG(Γ) also takes Γ′ to itself setwise and so is an element
of TSG(Γ′). Thus, TSG(Γ) is a subset of TSG(Γ′) that is also a group under the same
operation. The same argument holds for TSG+(Γ).

In the remainder of the paper, we will classify the realizable topological symmetry groups
for the remaining graphs in the Petersen family: K3,3,1, K−4,4, P7, P8, and P9. First, however, we
will complete the classification of the topological symmetry groups for K3,3 begun by Flapan
and Lawrence [10]. Since K3,3 is a subgraph of several of the graphs in the Petersen family,
this will help in our classification of the other graphs, particularly K3,3,1 and K−4,4.
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3. The Graph K3,3

The graph K3,3 is the complete bipartite graph with two sets of three vertices, as shown
in Figure 3. The positively realizable groups were determined by Flapan and Lawrence [10],
so our primary goals are to review their results, to give a more detailed accounting of the
subgroups of Aut(K3,3), and to determine the groups that are realizable but not positively
realizable for K3,3.

1

2

3

4

5

6

Figure 3. The complete bipartite graph K3,3 with vertex sets {1,2,3} and {4,5,6}.

We begin by describing the automorphism group for K3,3. Using the labeling in
Figure 3, we can permute the vertices in {1, 2, 3}, and we can (independently) permute the
vertices in {4, 5, 6}. We can also interchange the two sets of vertices. It is convenient to
view these automorphisms as a set of permutations of the six vertices, hence as a subset of
S6. As a result, we have (also see [10]):

Aut(K3,3) ∼= (S3 × S3)oZ2 = 〈(12), (123), (45), (456), (14)(25)(36)〉 ⊂ S6

(This group is sometimes referred to as the wreath product of S3 by Z2. Here, the
semidirect product uses the homomorphism φ : Z2 → Aut(S3× S3), where φr(a, b) = (b, a)
for each (a, b) ∈ S3 × S3.)

3.1. Subgroups of Aut(K3,3)

We wish to list (up to isomorphism) the subgroups of Aut(K3,3). Nikkuni and
Taniyama [20] listed representatives from each (non-trivial) conjugacy class of Aut(K3,3)
and determined which classes were realizable by orientation-preserving automorphisms
of S3 (positively realizable) and which were realizable by orientation reversing automor-
phisms (negatively realizable). No automorphisms are in both categories.

Positively Realizable: (12) (45), (14) (25) (36), (123), (123) (456), (142536);
Negatively Realizable: (12), (1425) (36), (12) (456).

The following Table 1 lists the number of permutations in each conjugacy class:
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Table 1. This table lists the number of permutations in each conjugacy class of Aut(K3,3).

Conjugacy Class Number of Elements

identity 1
(12) 6

(12) (45) 9
(14) (25) (36) 6

(123) 4
(123) (456) 4
(1425) (36) 18
(142536) 12
(12) (456) 12

Total 72

To find the subgroups of Aut(K3,3), we begin with the subgroups of S6. Up to iso-
morphism, there are 29 distinct subgroups (see, for example, ref. [10]; these can also be
generated from a computational group theory program such as GAP). Recall that S3 ∼= D3;
we will use D3 in this list. We list the groups in order of decreasing size.

S6, A6, S5, (D3 × D3)oZ2, A5, S4 ×Z2, D3 × D3, (Z3 ×Z3)oZ4, S4, A4 ×Z2,

Z5oZ4, (Z3 ×Z3)oZ2, D3 ×Z3, D4 ×Z2, A4, D6, D5,Z3 ×Z3,Z2 ×Z4,Z2 ×Z2 ×Z2,

D4, D3,Z6,Z5, D2,Z4,Z3,Z2, id

We can immediately eliminate the groups whose order does not divide 72: S6, A6, S5,
A5, S4 × Z2, Z5oZ4, D4 × Z2, D5, Z5. Next, observe that Aut(K3,3) = (D3 × D3)oZ2 has
8 elements of order 3, all of which commute. The groups S4 and A4 also have 8 elements of
order 3, but in these groups, they do not all commute. Hence, Aut(K3,3) cannot contain S4,
A4, or A4 ×Z2 as a subgroup.

We can also observe that the only elements of Aut(K3,3) of order 4 are conjugate to (1425)
(36), and it is easy to check that this permutation does not commute with any order two
permutation (other than its square (12) (45)). Hence, Z2 ×Z4 is not a subgroup of Aut(K3,3).

Finally, we consider the group Z2 ×Z2 ×Z2. This group contains seven involutions,
all of which commute with each other. There are three conjugacy classes of involutions in
Aut(K3,3): (14) (25) (36) does not commute with any other involutions, (12) (45) commutes
with only two other involutions (namely (12) and (45)), and (12) commutes with six other
involutions (namely (45), (46), (56), (12) (45), (12) (46), and (12) (56)). However, the six
involutions that commute with (12) do not commute with each other. So, it is impossible
to find seven involutions in Aut(K3,3), all of which commute with each other. Hence,
Z2 ×Z2 ×Z2 is not a subgroup of Aut(K3,3).

The remaining subgroups of S6 can all be realized as subgroups of Aut(K3,3). Table 2
gives a generating set of permutations for a subgroup in each isomorphism class.

Table 2. Generating sets for subgroups of Aut(K3,3).

Subgroup Generating Set

(D3 × D3)oZ2 (12), (123), (45), (456), (14) (25) (36)
(Z3 ×Z3)oZ4 (123), (456), (1425) (36)
(Z3 ×Z3)oZ2 (123), (456), (14) (25) (36)
D3 × D3 (12), (123), (45), (456)
D3 ×Z3 (12), (123), (456)
Z3 ×Z3 (123), (456)
D6 (12) (56), (142,536)
D4 (12), (1425) (36)
D3 (12), (123)
D2 (12), (45)
Z6 (142,536)
Z4 (1425) (36)
Z3 (123)
Z2 (12)
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Theorem 3. The subgroups of Aut(K3,3) = (D3 × D3)oZ2, up to isomorphism, are

(D3 × D3)oZ2, D3 × D3, (Z3 ×Z3)oZ4, (Z3 ×Z3)oZ2, D3 ×Z3,

D6,Z3 ×Z3, D4, D3,Z6, D2,Z4,Z3,Z2, id

3.2. Topological Symmetry Groups of K3,3

Flapan and Lawrence determined which subgroups of Aut(K3,3) are positively realizable.

Theorem 4 ([10]). The non-trivial groups that occur as TSG+(Γ) for some embedding Γ of K3,3 are

D3 × D3, (Z3 ×Z3)oZ2, D3 ×Z3, D6,Z3 ×Z3, D3,Z6, D2,Z3,Z2

We will show that the remaining four non-trivial subgroups are realizable (although
not positively realizable).

Theorem 5. The groups that are realizable but not positively realizable for K3,3 are (D3×D3)oZ2,
(Z3 ×Z3)oZ4, D4, and Z4.

Proof. Figure 4 illustrates an embedding of K3,3 with topological symmetry group
(D3 × D3)oZ2. The vertices {1, 2, 3} are arranged symmetrically around a geodesic circle,
while the vertices {4, 5, 6} are arranged around a complementary geodesic circle; in other
words, the two circles are the cores of complementary tori whose union is S3. The permuta-
tion (12) is realized by the reflection in the sphere containing {4, 5, 6} and perpendicular to
the circle through {1, 2, 3}; similarly, (45) is realized by reflection in the sphere containing
{1, 2, 3} and perpendicular to the circle through {4, 5, 6} (in Figure 4, these two spheres can
be pictured as the planes containing the two geodesic circles). The permutations (123) and
(456) are realized by the rotations of order 3 around each of the geodesic circles. Finally, the
permutation (14) (25) (36) is realized by the homeomorphism of S3 that interchanges the two
complementary tori. Together, these permutations generate Aut(K3,3) = (D3 × D3)oZ2.

1

2

3

4

5

6

Figure 4. An embedding Γ of the graph K3,3 with TSG(Γ) = (D3 × D3)oZ2. The geodesic circles are
shown for reference but are not part of the graph.
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To obtain an embedding with topological symmetry group (Z3 ×Z3)oZ4, we add the
knot 817 (shown in Figure 5) to each edge of the embedding in Figure 4. This is the knot
with the fewest crossings, which is negative amphicheiral, meaning that it is not equivalent to
its inverse (the result of changing orientation) or to its mirror image, but it is equivalent to
the inverse of its mirror image. The permutation (12) must be realized by an orientation-
reversing homeomorphism, which fixes the edge {3, 6}; this would require an isotopy
between 817 and its mirror image, which is impossible. So, this embedding does not allow
the transposition (12). However, it does allow the rotations (123) and (456) as before.
Moreover, it allows the permutation (1425) (36) = (12) (14) (25) (36), generated by first
interchanging the complementary tori, and then reflecting in a sphere. This combination
first inverts the edges (and their respective knots), and then takes the mirror images. Since
817 is equivalent to the inverse of its mirror image, the result is isotopic to the original
embedding. So the topological symmetry group contains (Z3 ×Z3)oZ4 (generated by the
3-cycles and the 4-cycles); since this group has index 2 in Aut(K3,3), and the topological
symmetry group does not contain (12) (and so is not equal to Aut(K3,3)), the topological
symmetry group must equal (Z3 ×Z3)oZ4.

Figure 5. The negative amphicheiral knot 817 and the fully amphicheiral figure 8 knot.

To realize D4 as the topological symmetry group, we begin with the embedding in Figure 4
and add the fully amphicheiral figure 8 knot (see Figure 5) to the edge {3, 6}. The figure 8
knot is isotopic to both its inverse and its mirror image, so this embedding is preserved by
the reflection (12) (which sends edge {3, 6} to its mirror image) and by the homeomorphism
realizing (14) (25) (36) (which sends edge {3, 6} to its inverse). These two permutations generate
a subgroup of Aut(K3,3) isomorphic to D4 (note that the 4-cycle (1425) (36) is the product (12)
(14) (25) (36)); however, since this embedding does not allow the permutation (123) (since only
edge {3, 6} has a knot tied in it), its topological symmetry group is not the full automorphism
group. However, the only proper subgroup of Aut(K3,3) that contains D4 is D4 itself, so this
embedding has a topological symmetry group isomorphic to D4.

Finally, to realize Z4, we add the Figure 8 knot to the edge {3, 6}, as in the last paragraph,
and then add the knot 817 to the edges {1, 4}, {1, 5}, {2, 4} and {2, 5}. As before, the
knot 817 does not allow the permutations (12) (since it is chiral) or (14) (25) (36) (since it is
noninvertible), but it does allow the product (1425) (36) (since it is isotopic to the inverse of its
mirror image). This reduces the topological symmetry group from D4 to Z4, as desired.

4. The Graph K3,3,1

The Petersen graph K3,3,1 is the complete tripartite graph with two sets of three vertices
labeled {1, 2, 3}, {4, 5, 6} and one singleton vertex labeled {7}, as shown in Figure 6.

In order to determine which groups are realizable for the graph K3,3,1, we first ob-
serve that K3,3,1 contains the graph K3,3 as a subgraph (induced by the set of vertices
{1, 2, 3, 4, 5, 6}), and every automorphism of K3,3,1 fixes the subgraph K3,3 setwise. Further,
since the remaining vertex 7 is fixed by every automorphism of K3,3,1, we conclude that
Aut(K3,3,1) = Aut(K3,3).

If σ is a realizable automorphism of K3,3,1, then there exists a homeomorphism
h : S3 → S3 taking some embedding Γ of K3,3,1 to itself, which realizes σ. Let Γ′ de-
note the embedding of K3,3 induced by Γ. Then, h also takes Γ′ to itself and realizes the
automorphism σ|K3,3 . Since Nikkuni and Taniyama’s list [20] gives all realizable automor-
phisms of K3,3 (see Section 3.1), every realizable automorphism of K3,3,1 is an extension of
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one of these. However, not all automorphisms that are realizable for K3,3 are realizable for
K3,3,1.

7

2

3

4

5

6

1

Figure 6. The graph K3,3,1 with vertex sets {1, 2, 3}, {4, 5, 6}, and {7}.

Lemma 1. No automorphism conjugate to (123) is realizable for any embedding of K3,3,1.

Proof. First, fix some embedding Γ′ of K3,3,1. Proceeding by contradiction, assume that (123)
is realizable for Γ′. Then, (123) is induced by a homeomorphism h′ of (S3, Γ′). Since h′ also
induces the automorphism (123) on the subgraph K3,3, it must be orientation preserving [20].
Furthermore, vertices 4,5,6, and 7 are fixed, and so are the edges between them. By the Finite
Order Theorem, there exists a re-embedding of Γ′, say Γ, such that (123) is induced by a
finite order homeomorphism h of (S3, Γ). Moreover, since h is a finite order homeomor-
phism and is orientation preserving, by Smith Theory, fix(h) = ∅ or is homeomorphic to S1.
However, the subgraph composed of {4, 5, 6, 7} and edges {4, 7},{5, 7}, and {6, 7}, which
has a Y shape, is contained in fix(h) but does not embed in a circle. This contradicts Smith
Theory; therefore, (123) is not positively realizable. This implies that no automorphism
conjugate to (123) is realizable either.

Lemma 2. No order 6 automorphism of K3,3,1 is realizable.

Proof. Assume there exists an automorphism in Aut(K3,3,1) of order 6 that is induced by a
homeomorphism h′ : S3 → S3 for some embedding Γ′ of K3,3,1. Note that up to conjugation,
the only order 6 automorphism of K3,3,1 is (142536). Since h also realizes the automorphism
(142536) on the subgraph K3,3, it must be orientation preserving [20]. Furthermore, by the
finite order theorem, there exists another embedding Γ such that (142536) is induced by
a finite order orientation-preserving homeomorphism h : S3 → S3. Smith Theory implies
that fix(h) = ∅ or is homeomorphic to S1, however, since vertex 7 ∈ fix(h), it follows that
fix(h) is homeomorphic to S1.

Next, consider h3, which induces the automorphism (15) (43) (26). Notice, this au-
tomorphism fixes the midpoints of the edges {1, 5}, {4, 3}, and {2, 6}. Since fix(h) ⊆
fix(h3) ⊆ S1 = fix(h), it follows that fix(h3) = fix(h) = S1. Since h3 fixes the midpoints
of the edges {1, 5}, {4, 3} and {2, 6}, so must h. Let us consider then the orbit of the edge
{1, 5} under h: {{3, 4}, {2, 6}, {1, 5}}. Notice, h must fix the midpoint of edge {1, 5} under
the action of the rotation inducing (142536). However, h takes edge {1, 5} to edge {3, 4},
fixing the midpoint of both, which implies these edges intersect in the embedding Γ. This is
a contradiction, so no order 6 automorphism is realizable for any embedding of K3,3,1.

From the Subgraph Lemma (using the subgraph K3,3) and Theorem 4, the possible
topological symmetry groups for embeddings of K3,3,1 are the following: D6, D4, D3, D2,
Z6, Z4, Z3, Z2, D3 × D3, D3 ×Z3, Z3 ×Z3, (D3 × D3)oZ2, (Z3 ×Z3)oZ4, (Z3 ×Z3)oZ2.

Lemma 3. The group Z3 ×Z3 is not positively realizable for any embedding of K3,3,1.
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Proof. The group Z3×Z3 must be generated from an ordered pair of order 3 automorphisms
α and β so that 〈α, β〉 = Z3 ×Z3. Since automorphisms conjugate to (123) are not realizable
by Lemma 1, the only possibilities for α and β are (123) (456) and its conjugates (123) (465),
(132) (456), and (132) (465). Each pair of these automorphisms either are inverses and together
generate Z3, or the product of α and β gives an automorphism conjugate to (123), which is
not realizable by Lemma 1. Thus, Z3 ×Z3 is not realizable for any embedding of K3,3,1.

In fact, this argument allows us to conclude that any group that contains Z3 ×Z3 as a
subgroup is also not realizable. Hence, D3 × D3, D3 × Z3, (D3 × D3)oZ2, (Z3 × Z3)oZ4,
and (Z3 ×Z3)oZ2 are also not positively realizable for any embedding of K3,3,1.

From Lemma 2, a topological symmetry group for K3,3,1 cannot contain a 6-cycle, so
D6 and Z6 are also not realizable for K3,3,1. This reduces our list of possibilities for realizable
topological symmetry groups of K3,3,1 to D4, D3, D2, Z4, Z3, and Z2.

Theorem 6. A non-trivial group is positively realizable for K3,3,1 if and only if it is one of D3, D2,
Z3, and Z2.

Proof. Since D4 and Z4 are not positively realizable for K3,3 (by Theorem 4), they are not
positively realizable for K3,3,1 by the Subgraph Lemma. It only remains to show that D3,
D2, Z3, and Z2 are positively realizable. First, consider the embedding Γ1 in Figure 7. Let
h denote a 2π

3 rotation about the axis perpendicular to the plane and passing through
vertex 7. Then, h induces the automorphism (123) (456). Let g denote the rotation of 180◦

around the axis bisecting edges {1, 4} and {3, 5} and passing through vertex 7. Then, g
induces the automorphism (14)(26)(35). It follows that TSG+(Γ1) contains the subgroup
〈h, g | hg = gh−1〉 ∼= D3. However, the only remaining possible topological symmetry
group that contains D3 is D3 itself. Hence, TSG+(Γ1) ∼= D3. Since the edge {1, 6} is not
fixed by any element of TSG+(Γ1) by the Subgroup Theorem, there is another embedding
Γ′1 for which TSG+(Γ′1) ∼= Z3.

Now, consider the embedding Γ2 of K3,3,1 given in Figure 8. The arrows pointing
outward from the hexagon denote the edges connected to vertex 7, which is fixed to the
point at infinity. Now, we induce the automorphism (14) (25) (36) by rotating the hexagon
by π, and we induce the automorphism (12) (45) by rotating the hexagon about the axis
containing the edge {3, 6}. These two automorphisms generate a group isomorphic to D2,
so D2 ≤ TSG+(Γ2). However, the only remaining possible topological symmetry group
that contains D2 is D2 itself. Therefore, TSG+(Γ2) ∼= D2. Since the edge {1, 6} is, once
again, not fixed by any element of the topological symmetry group, the Subgroup Theorem
tells us there is another embedding that positively realizes Z2.

1

2

3

4

5

6 7

Figure 7. An embedding Γ1 of the graph K3,3,1 with TSG+(Γ1) = D3.
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5

6

4

2

3

1

Figure 8. An embedding Γ2 of the graph K3,3,1 with TSG+(Γ2) = D2. Vertex 7 is at ∞.

Theorem 7. The groups that are realizable but not positively realizable for K3,3,1 are D4 and Z4.

Proof. We have already dealt with all other subgroups of Aut(K3,3,1), so it only remains
to show that D4 and Z4 are realizable. Let Γ3 of K3,3,1, be the embedding in Figure 9.
Here, we are viewing the embedding in R3, together with the point at infinity (to give
S3). The vertices 3 and 6 are on a vertical straight line; the vertex 7 is also on this line, at
the point at infinity, denoted ∞. The vertices {1, 3, 2} are arranged along a straight line
perpendicular to the line through vertices {3, 6, ∞} at vertex 3, while the vertices {4, 6, 5} are
arranged along a straight line perpendicular to the line through vertices {3, 6, ∞} at vertex
6, which is at a right angle to the line containing {1, 3, 2}. Let h denote the homeomorphism
obtained by rotating the axis containing {3, 6, ∞} by π

2 , followed by a reflection about
the plane perpendicular to this axis and bisecting edge {3, 6}. Then, h induces the order
4 automorphism (1425) (36). Let g be the reflection of Γ3 through the plane containing
vertices {3, 4, 5, 6, ∞}. Then, g induces the automorphism (12). Therefore, 〈h, g | hg =
gh−1〉 ∼= D4 ≤ TSG(Γ2). However, the only proper subgroup of Aut(K3,3,1) that contains
D4 is D4 itself, so this embedding has a topological symmetry group isomorphic to D4.

1 23

4

5

6

∞

∞

Figure 9. An embedding Γ3 of the graph K3,3,1 with TSG+(Γ3) = D4. Vertex 7 is at ∞.
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To obtain an embedding Γ3 with the symmetry group Z4, we add the knot 817 to edges
{1, 4}, {1, 6}, {2, 4}, and {2, 6}. The permutation (12) must be realized by an orientation
reversing homeomorphism taking 817 to its mirror image, which is impossible. There-
fore, this embedding does not allow for (12). However, it does allow for the permutation
(1425)(36) = (12)(14)(25)(36),realized by the homeomorphism h above. This homeomor-
phism takes 817 to the mirror image of its inverse; since 817 is a negative amphicheiral
knot, this is equivalent to the original knot. Thus, TSG(Γ3) is reduced in this embedding
to Z4.

5. The Graph K−
4,4

The Petersen graph K−4,4 is the complete bipartite graph K4,4 with an edge removed,
with vertex sets labeled {1, 2, 3}, {4, 5, 6}, and {v, w}, as shown in Figure 10.

1

2

3

4

5

6

v w

Figure 10. The graph K−4,4.

Like K3,3,1, K−4,4 contains a K3,3 subgraph (induced by the vertices {1, 2, 3, 4, 5, 6}),
which is fixed by every automorphism of the graph. Moreover, an automorphism of K−4,4
interchanges v and w if it interchanges the sets {1, 2, 3} and {4, 5, 6}, and fixes v and w
otherwise. So, Aut(K−4,4)

∼= Aut(K3,3). Hence, as with K3,3,1, every realizable automorphism
of K−4,4 must also be realizable for K3,3. The converse, however, is not true. As with K3,3,1,
automorphisms conjugate to (123) are not realizable. The proof is almost identical to
Lemma 1, and the details are left to the reader.

Lemma 4. No automorphism conjugate to (123) is realizable for any embedding of K−4,4.

As for K3,3,1, this means that no group that contains Z3 ×Z3 is realizable for K−4,4; the
proof is the same as Lemma 3. We can now reduce our list of possible topological symmetry
groups for embeddings of K−4,4 to the following: D6, D4, D3, D2, Z6, Z4, Z3, Z2.

Theorem 8. A non-trivial group is positively realizable for K−4,4 if and only if it is one of D6, D3,
D2, Z6, Z3, and Z2.

Proof. Since D4 and Z4 are not positively realizable for K3,3, they are not positively re-
alizable for K−4,4 by the Subgraph Lemma. It remains to show that the other groups are
positively realizable. Let Γ1 be the embedding of K−4,4 in Figure 11, where vertices v and w
are placed at antipodal points of a geodesic circle and equidistant from the plane through
the midpoints of edges {1, 5}, {3, 4} and {2, 6}. This embedding has a glide rotation h
obtained by rotating the picture by 2π

3 around the axis going through vertices v and w
while rotating by π around the circular waist of the picture. Then, h induces the order
6 automorphism (142536) (vw). Consider the line perpendicular to the axis containing



Symmetry 2023, 15, 1267 13 of 20

v and w and passing through the midpoint of edge {3, 4}. A rotation by π about this
line is a homeomorphism g that induces (16) (25) (34) (vw). Since hg = gh−1, it follows
that D6 ≤ TSG+(Γ1); but since D6 is the largest remaining possible group, this means
TSG+(Γ1) ∼= D6. Since the edge {1, 4} is not fixed by any element of this group, the Sub-
group Theorem implies that every subgroup of D6 is also positively realizable for some
embedding of K−4,4.

1

2

v

6

5 4

3

w

Figure 11. An embedding Γ1 of the graph K−4,4 with TSG+(Γ2) = D6.

Theorem 9. The groups that are realizable but not positively realizable for K−4,4 are D4 and Z4.

Proof. It only remains to show that D4 and Z4 are realizable. Let Γ2 be the embedding
of K−4,4 in Figure 12. The vertices {1, 2, 3, 4, 5, 6} are arranged as in Figure 9; the vertices v
and w are placed symmetrically on the axis containing the edge {3, 6}. Let h denote the
homeomorphism obtained by rotating the axis containing {3, 6, v, w} by π

2 , followed by
a reflection about the plane perpendicular to this axis and bisecting edge {3, 6}. Then, h
induces the order 4 automorphism (1425)(36)(vw). Let g be the reflection of Γ2 through
the plane containing vertices {3, 4, 5, 6, v, w}. Then, g induces the automorphism (12).
Therefore, 〈h, g | hg = gh−1〉 ∼= D4 ≤ TSG(Γ2). However, the only proper subgroup of
Aut(K3,3,1) that contains D4 is D4 itself, so this embedding has a topological symmetry
group isomorphic to D4.

To obtain an embedding Γ3 with the symmetry group Z4, as above, we add knot
817 to edges {1, 4}, {1, 6}, {2, 4}, and {2, 6}. The permutation (12) must be realized by
an orientation reversing homeomorphism that takes 817 to its mirror image, which is
impossible. Therefore, this embedding does not allow for (12). However, it does allow for
the permutation (1425) (36) (vw) = (12) (14) (25) (36) (vw), generated by h. This takes 817 to
itself in each edge (since 817 is negative amphicheiral). Thus, TSG(Γ3) is reduced to Z4.
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1 23

4

5

6

w

v

Figure 12. An embedding Γ2 of the graph K−4,4 with TSG+(Γ2) = D4.

6. The Graph P7

Consider the graph P7 with the vertices labeled as in Figure 13. We begin by determin-
ing the automorphism group of the abstract graph P7.

a

b c

w

1

2 3

Figure 13. An embedding Γ of the graph P7 with TSG+(Γ) = D3.

Theorem 10. The automorphism group Aut(P7) is isomorphic to D3 × D3.

Proof. As we can see from Figure 13, P7 has three vertices (labeled 1, 2, 3) of degree
5, three vertices (labeled a, b, c) of degree 4, and one vertex (labeled w) of degree 3. So,
every automorphism must fix each of these three sets (setwise). Moreover, the vertices in
each set have the same neighbors (and within each set, the vertices are either all adjacent,
or all independent), so the vertices in each set can be permuted independently. Hence,
Aut(P7) = S3 × S3 × S1

∼= D3 × D3.

The subgroups of D3 × D3 are D3 × D3, D3 × Z3, D3 × Z2, (Z3 × Z3)oZ2, Z3 × Z3,
Z3×Z2, Z2×Z2, D3, Z3, Z2 and the trivial group (this can easily be checked with a program
such as GAP). We make two important observations:
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1. An automorphism of P7 that fixes the vertices 1, 2 and 3 will fix the 3-cycle through
these vertices and the vertex w. Hence, by Smith Theory, it cannot be realized by a
non-trivial orientation-preserving homeomorphism.

2. An automorphism of P7 that fixes the vertices a, b and c will fix the subgraph in-
duced by {a, b, c, w}, which does not embed in a circle. So, again by Smith Theory,
such an automorphism cannot be realized by a non-trivial orientation-preserving
homeomorphism.

Theorem 11. A non-trivial group is positively realizable for P7 if and only if it is one of D3, Z3 or Z2.

Proof. Suppose Γ is an embedding of P7, and H = TSG+(Γ). Then, H is isomorphic to a
subgroup of D3 × D3, where the first factor corresponds to permutations of {1, 2, 3}, and the
second factor corresponds to permutations of {a, b, c} (the vertex w is fixed by every element
of H). Suppose (σ, ρ) ∈ H. If there is a second permutation ρ′ such that (σ, ρ′) ∈ H, then
(σ, ρ)(σ−1, (ρ′)−1) = (id, ρ(ρ′)−1) ∈ H. However, by our observations above, this means
ρ(ρ′)−1 = id as well, so ρ′ = ρ. So, for each permutation σ, there is at most one permutation ρ
such that (σ, ρ) ∈ H. So, the projection to the first component gives an isomorphism from H
to a subgroup of D3. So, every positively realizable group is isomorphic to a subgroup of D3.

Conversely, consider the embedding Γ of P7 in Figure 13. For this embedding TSG+(Γ) ∼=
D3, generated by the rotation of order 3 around the axis through vertex w (perpendicular to
the page), and the rotation of order 2 around the axis through vertices 1, a and w. Since the
edge {1, 2} is not fixed by any element of this group, the Subgroup Theorem implies that
there are embeddings of P7 that positively realize every subgroup of D3.

Since the subgroups of D3 are positively realizable, they are also realizable. It remains
to ask whether any subgroups of D3 × D3 are realizable, but not positively realizable.

Theorem 12. The only group that is realizable, but not positively realizable, for P7 is Z2 ×Z2.

Proof. Suppose Γ is an embedding of P7 with H = TSG(Γ) 6= TSG+(Γ). Then, TSG+(Γ)
is a normal subgroup of H of index 2. Since TSG+(Γ) is a subgroup of D3, |TSG+(Γ)| ≤
|D3| = 6, so |H| ≤ 12. Hence, H 6= D3 × D3, D3 ×Z3, or (Z3 ×Z3)oZ2. Additionally, |H|
must be even, so H 6= Z3 ×Z3. It remains to consider D3 ×Z2, Z3 ×Z2 and Z2 ×Z2.

Suppose H has an element h of order 6. Since h is not in a subgroup of D3, it must be
orientation reversing. Since H ≤ D3 × D3, h = (σ, ρ) for some σ, ρ ∈ D3. Without loss of
generality, suppose σ is a 3-cycle and ρ is a 2-cycle; we can assume h induces the permuta-
tion (123) (ab) (c) (w) on the vertices of P7. Then, h2 induces the permutation (132) (a) (b)
(c) (w). However, this means h2 is a non-trivial orientation-preserving homeomorphism
that fixes the subgraph induced by {a, b, c, w}, which violates Smith Theory. So, H cannot
have an element of order 6, which means H 6= D3 × Z2 or Z3 × Z2. The only possibility
that remains is Z2 ×Z2.

Consider the embedding of P7 shown in Figure 14. Here, the vertices 1, 2, 3, a, b, w
are placed at the vertices of a regular octahedron, and c is placed at the center of the
octahedron. The edge {1, 2} is in the horizontal plane containing vertices 1, 2, 3, c, w. Let
h be the reflection in the vertical plane containing the vertices 3, a, b, c, w, interchanging
vertices 1 and 2, and let g be the reflection in the horizontal plane, interchanging vertices
a and b. Then, hg is the rotation of order 2 about the axis through vertices 3, c, w. So,
TSG(Γ) ∼= Z2 ×Z2. Hence, Z2 ×Z2 is the only group that is realizable, but not positively
realizable for P7.
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a

b

c

w

1 2

3

Figure 14. An embedding Γ of the graph P7 with TSG(Γ) = Z2 ×Z2.

7. The Graph P8

Consider the graph P8 with the vertices labeled as in Figure 15. We begin by determin-
ing the automorphism group of the abstract graph P8.

1

32

4 5

76

8

Figure 15. An embedding Γ of the graph P8 with TSG(Γ) = Z2.

Theorem 13. The automorphism group Aut(P8) is isomorphic to D4.

Proof. We first observe that vertex 1 is the only vertex of degree 5, and hence is fixed by
every automorphism of P8. Since vertex 8 is the only vertex of degree 3 that is adjacent to
vertex 1, it is also fixed by every automorphism.

The vertices 2, 3, 4, and 5 of degree 4 are fixed as a set by every automorphism of P8,
and form a 4-cycle in the graph. Hence, the group of automorphisms of this subgraph is
isomorphic to D4. Since vertices 6 and 7 are each adjacent to a different pair of non-adjacent
vertices in the 4-cycle, every automorphism of the 4-cycle induces a unique permutation of
the set {6, 7} (and of course fixes vertices 1 and 8). So, every automorphism of the 4-cycle
induces a unique automorphism of P8. Hence, Aut(P8) ∼= D4.

The subgroups of D4 are D4, Z4, D2, Z2 and the trivial group. We will see that only Z2
and the trivial group are either realizable or positively realizable for P8.

Theorem 14. A non-trivial group is realizable or positively realizable for P8 if and only if it is Z2.
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Proof. Suppose Γ is an embedding of P8. We first observe that any non-trivial element
h ∈ TSG(Γ) must either fix or interchange the vertices 6 and 7. Since h must also fix
vertices 1 and 8, this means that if h fixes 6 and 7, then it fixes the subgraph induced by
{1, 6, 7, 8}. This subgraph does not embed in a circle, so by Smith Theory, h cannot be an
orientation-preserving homeomorphism of S3. So, any orientation-preserving element of
TSG(Γ) must interchange vertices 6 and 7.

However, for any non-trivial h ∈ TSG(Γ), h2 is an orientation-preserving homeomor-
phism that fixes vertices 6 and 7 (since h either fixes or interchanges them). So, h2 must be
the identity. Hence, every non-trivial element of TSG(Γ) has order 2. This means TSG(Γ)
cannot be isomorphic to D4 or Z4.

If h and g are both non-trivial orientation-preserving elements of TSG(Γ), then they
both interchange vertices 6 and 7, so the product hg is an orientation-preserving homeo-
morphism of S3 that fixes vertices 1, 6, 7, and 8. Hence, hg is the identity, so g = h−1 = h.
Hence, TSG+(Γ) ≤ Z2.

Suppose TSG(Γ) ∼= D2 ∼= Z2 ×Z2. This group has three non-trivial elements; since the
product of two orientation-reversing homeomorphisms is orientation preserving, at least one
of the three is orientation preserving. Additionally, by the previous paragraph, at most one
is orientation preserving. So, there are two orientation-reversing homeomorphisms h and g,
and the product hg. Since hg is orientation preserving, it interchanges vertices 6 and 7; hence,
one of h or g must interchange these vertices and the other one fixes them. However, only
two automorphisms of P8 interchange vertices 6 and 7 and have order two: the permutations
(1) (8) (67) (23) (45) and (1) (8) (67) (24) (35). So two of the elements of TSG(Γ) induce these
permutations on the vertices, and the third induces the product (1) (8) (6) (7) (25) (34). In
particular, the homeomorphism h that induces (1) (8) (6) (7) (25) (34) is orientation reversing,
and by Smith Theory has a fixed point set homeomorphic to S2. So vertices 2 and 5 are on
opposite sides of the sphere, as are vertices 3 and 4. Without loss of generality, suppose vertices
2 and 3 are on one side of the sphere, and 4 and 5 are on the other side. Then, the edges {2, 4}
and {3, 5}must pass through the sphere. So, h fixes a point on each of these edges, and hence
must fix these edges setwise. However, this contradicts that h({2, 4}) = {3, 5}, since edges
{2, 4} and {3, 5} are disjoint. Hence, it is impossible for TSG(Γ) ∼= D2.

We conclude that TSG(Γ) ≤ Z2 as well. It remains to show that we can realize Z2.
Consider the embedding Γ of P8 shown in Figure 15 and the vertical axis through the
vertices 1 and 8. A half turn around this axis is an orientation-preserving symmetry
of Γ (realizing the permutation (1) (8) (67) (23) (45)). This is orientation preserving, so
TSG(Γ) = TSG+(Γ) ∼= Z2.

8. The Graph P9

We consider the graph P9 with the vertices labeled as in Figure 16. To begin, we
determine the automorphism group of the abstract graph P9.

1

2

3 4

5

6

a

b

c

Figure 16. The graph P9.
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Theorem 15. The automorphism group of P9 is isomorphic to D6.

Proof. We first observe from Figure 16 that there are six vertices of degree 3, labeled 1
through 6, and three vertices of degree 4, labeled a, b, c. Every automorphism of P9 must
fix these two sets of vertices (setwise). The subgraph H induced by vertices 1 through 6 is
a hexagon, so Aut(H) = D6. Every automorphism of H permutes the pairs of antipodal
vertices: {1, 4}, {2, 5} and {3, 6}. Since the three vertices a, b, c are each adjacent to the two
vertices in one of these pairs (and none of the vertices in the other pairs), the permutation
of these pairs determines the permutation of a, b, c. In other words, each automorphism of
H induces a unique automorphism of P9. Hence, Aut(P9) ∼= Aut(H) = D6.

So, every possible topological symmetry group for P9 is isomorphic to a subgroup of
D6. We first show there is an embedding of P9 whose orientation-preserving topological
symmetry group is D6 itself.

Theorem 16. A non-trivial group is realizable or positively realizable for P9 if and only if it is one
of D6, D3, D2, Z6, Z3, or Z2.

Proof. We will show that every subgroup of Aut(P9) = D6 is positively realizable, and
hence also realizable. Consider the embedding Γ shown in Figure 17. Here, the cycle
123,456 is embedded as a great circle of S3, and the cycle abc is embedded as the great circle,
which is perpendicular to the disk bounded by the first great circle at the center of the disk.
The vertices are equally spaced around each of the great circles.

1

2 3

4

56

a

b

c

r

Figure 17. An embedding Γ of P9 with TSG(Γ) = D6.

We consider the following two motions: first, the glide rotation g, which (1) rotates
around the axis abc by 1/6 of a full turn, and (2) rotates around the axis 123456 by 1/3 of a
full turn; and secondly, the rotation r by a half turn around the axis through vertices 1, a
and 4 (as shown in Figure 17). Both g and r are orientation-preserving homeomorphisms.
So, g induces the permutation (abc) (123456) on the vertices, and r induces the permutation
(a) (bc) (1) (4) (26) (35). It is easy to check that gr = rg−1 = (ab)(c)(12)(36)(45), so these
two motions generate a group isomorphic to D6. Since TSG+(Γ) must be a subgroup of
Aut(P9) = D6, this means TSG+(Γ) ∼= D6.

Since the edge {1, 2} is not pointwise fixed by any non-trivial element of the topological
symmetry group, applying the Subgroup Theorem to Γ shows that every subgroup of D6 is
also positively realizable.

9. Conclusions and Future Work

Table 3 summarizes our results, listing all groups that can be positively realized or
realized for each of the graphs in the Petersen family.
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Table 3. Realizable topological symmetry groups for the Petersen family.

Graph Positively Realizable Realizable (Not Positively)

K6
D6, D5, D3, D2,Z6,Z5,Z3,Z2

D3×D3, D3×Z3,Z3×Z3, (Z3×Z3)oZ2
D4,Z4, (D3 × D3)oZ2, (Z3 ×Z3)oZ4

K3,3,1 D3, D2, Z3 and Z2 D4 and Z4

K−4,4 D6, D3, D2, Z6, Z3 and Z2 D4 and Z4

P7 D3, Z3 and Z2 Z2 ×Z2

P8 Z2 None

P9 D6, D3, D2, Z6, Z3 and Z2 None

P10 D5, D3,Z5,Z3 and Z2 Z5oZ4 and Z4

One motivation for this project was to investigate how ∇Y and Y∇ moves affect
the set of realizable topological symmetry groups of a graph. So far, we do not see any
pattern to the changes, but the sample size of 7 graphs is still very small. It would still be
interesting to examine another ∇Y family of graphs, such as the Heawood family of 20
graphs bookended by the Heawood graph and K7. Topologically, this family contains the
smallest intrinsically knotted graphs [21], and the topological symmetry groups for K7 [6]
and the Heawood graph [12] are already known.

Question 1. Which groups are realizable (and positively realizable) for each of the graphs in the
Heawood family? Are there any patterns in how topological symmetry groups behave under ∇Y
and Y∇-moves?

As we saw with K3,3, K3,3,1 and K−4,4, it may be more useful to look at subgraphs, since
the symmetries of the larger graph are often restricted by the symmetries of its subgraphs.
From this perspective, it would be useful to have a census of the realizable topological
symmetry groups for all “small” 3-connected graphs—for example, for all such graphs
with 10 or fewer vertices.

Question 2. Which groups are realizable (and positively realizable) for each “small” 3-connected
graph (e.g., 10 or fewer vertices)?

Finally, there are many infinite families of graphs whose topological symmetry
groups would be interesting to explore. Previous papers have studied complete graphs [6],
complete bipartite graphs [8] and Möbius ladders [10]. Another interesting family is
the generalized Petersen graphs. The generalized Petersen graph P(n, k) has vertices
{u0, u1, . . . , un−1, v0, v1, . . . vn−1} and edges {ui, ui+1}, {ui, vi} and {vi, vi+k} for each i
(with the subscripts computed modulo n). The Petersen graph itself is P(5, 2).

Question 3. Which groups are realizable (and positively realizable) for the generalized Petersen
graph P(n, k)?

These are just a few of the many possibilities for future research into topological
symmetry groups.
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