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Abstract: With the enhanced interoperability of information among vehicles, the demand for collabo-
rative sharing among vehicles increases. Based on blockchain, the classical consensus algorithms in
collaborative IoV (Internet of Vehicle), such as PoW (Proof of Work), PoS (Proof of Stake), and DPoS
(Delegated Proof of Stake), only consider the node features, which is hard to adapt to the immediacy
and flexibility of vehicles. On the other hand, classical consensus algorithms often require mass
computing, which undoubtedly increases the communication overhead, resulting in the inability
to achieve collaborative IoV under asymmetric networks. Therefore, proposing a low failure rate
consensus algorithm that takes into account running time and energy consumption becomes a major
challenge in IoV applications. This paper proposes an AI-enabled consensus algorithm with vehicle
features, combining vehicle-based metrics and neural networks. First, we introduce vehicle-based
metrics such as vehicle online time, performance, and behavior. Then, we propose an integral model
and a hierarchical classification method, which combine with a BP neural network to obtain the
optimal solution for interconnection. Among them, we also use Informer to predict the future online
duration of vehicles, which effectively solves the situation that the primary node vehicle drops off in
collaborative IoV. Finally, the experimentations show that the vehicle-based metrics eliminate the
problem of the primary node vehicle being offline, which realizes the collaborative IoV considering
vehicle features. Meanwhile, it reduces the vehicle network system delay and energy consumption.

Keywords: AI enabled; consensus algorithm; blockchain; collaborative system; internet of vehicle;
human centric; asymmetric network

1. Introduction

With the popularity of vehicles, people pay more and more attention to the driving
experience. Nowadays, drivers are not only satisfied with the location information services
provided by vehicles, but also with the safety, effectiveness of information sharing, and
energy saving. Therefore, facing the huge number of vehicles and a rapidly changing traffic
environment, it is a crucial technical issue to reduce the possibility of communication errors
and system delays [1]. As we all know, more and more nodes of collaborative networks
among vehicles are constantly upgraded and updated. Vehicles share pictures, videos,
and control signaling collected by themselves, such as road traffic data, vehicle location data,
driving habits data, and vehicle-to-vehicle interaction data [2], so that vehicles can grasp
the surrounding environment information more quickly, to comprehensively consider and
judge their own driving state. In order to better realize information sharing and interaction
between vehicles, collaborative vehicle networking emerged [3–5].

In collaborative vehicle networking, there are many problems in data sharing. First
of all, for the stability of the vehicle networking system, the traditional centralized net-
work architecture has problems, such as single point of failure and privacy disclosure [6].
Therefore, considering the distributed characteristics of collaborative vehicle networking,
many related studies have applied blockchain to it. Technologies such as distributed ledger,
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consensus mechanism, and smart contract in blockchain can effectively solve data security
and trust problems in the process of data sharing [7]. However, traditional blockchains were
originally born in the financial industry. Moreover, many papers directly apply blockchain
to collaborative vehicle networking [8,9], without involving the inherent attributes of vehi-
cles and drivers, which is easy to cause the selected “primary node vehicle” to go offline at
any time, or the driver to interrupt the interconnection. Therefore, the main node vehicle
dropout rate is the first problem to be solved in this paper. Second, for information sharing
to be effective, vehicles must make decisions within a relatively short delay after data
collection. However, the classical consensus algorithm usually requires a large amount of
computation or frequent communication [10,11], which will lead to communication delay
and hinder the interconnection of collaborative vehicle networks. Communication delay
is the second problem to be solved in this paper. Further, it is common for researchers to
reduce the drop-off rate and system latency at the primary node through frequent commu-
nication. This undoubtedly greatly increases the energy cost of the entire system. Reducing
energy consumption is the third problem to be addressed in this paper.

Focusing on the above three aspects of the problem, based on the blockchain con-
sensus mechanism, this paper proposes a vehicle-based consensus algorithm. It uses an
objective vehicle-based rating system instead of subjective voting to assess whether there is
a malicious association in the historical behavior of nodes. The method verifies whether
nodes have a negative impact on the blockchain based on points accumulated from the
vehicle’s historical behavior. Therefore, it reduces the probability that the node is a Byzan-
tine node. The experimental results show that our algorithm greatly reduces the possibility
of interconnection disruption and effectively reduces transaction latency. Our approach
ensures the safety, stability, and effectiveness of collaborative vehicle networking while
saving energy costs significantly.

The contributions of this paper are as follows:

1. Combine the principle of blockchain and consider the indicators of the driver’s
driving experience to build an integral model and classification model suitable for
collaborative vehicle networking information sharing.

2. By improving the consensus algorithm, an energy-saving AI-Enabled Proof of Vehicle
(AI-PoV) consensus algorithm is proposed to reduce the failure rate and system delay.

3. Our experiment verifies the effectiveness of the AI-PoV algorithm.

The rest of this article is organized as follows. Section 2 introduces the research content
of related work in detail. Section 3 introduces the system model and index of this paper.
Section 4 describes our AI-PoV algorithm. In Section 5, experimental results are given and
compared with the other three methods. Finally, Section 6 summarizes the full text.

2. Related Works

Data security has always been an important research objective of the Internet of
Things. Ref. [12] discussed the use of machine learning in network security research in
their paper, pointing out that while we use machine learning to maintain network security,
attackers are attempting to use machine learning to launch network attacks. Therefore,
the development of new network security technologies is imminent. Ref. [13] addressed
the issue of poor stability of intelligent systems using the radial basis function neural
network model, improving the anti-jamming ability of vehicles and protecting critical
vehicle data. Similarly, [14] found that autonomous driving technology can effectively
improve the safety performance of vehicles. They proposed a better target recognition
algorithm by combining it with vehicle perception technology. Ref. [15] proposed a data
collection framework for creating fused datasets that can distinguish harmful data from
unmanned remote-controlled vehicles to prevent damage caused by intrusion.

Much research has optimized the high delay caused by the asymmetric network
structure in the vehicle network. Ref. [16] designs a computing resource trading strategy
based on Blockchain-as-a-Service, which evaluates participants’ task delays, energy costs,
transaction prices, and participants’ reputation scores, and then allocates tasks to solve the
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problem of asymmetry between edge and terminal computing resources and capabilities.
Ref. [17], based on deep Q network to allocate resources according to the request frequency
of content and the network status of nodes, the content cache and request routing of cross-
layer cooperation are optimized, which ensures low-latency network communication in
asymmetric IoV. Ref. [18] regards edge devices as symmetrical P2P (peer-to-peer) networks,
and proposes an efficient and fault-tolerant computing offload strategy, which provides
the optimal node to interact with the vehicle and reduces the task completion delay. These
studies address the communication delay problem in asymmetric vehicular networks
by optimizing the task allocation between edge devices or by facilitating collaborative
computation among edge devices. However, they overlook the communication issues
between terminal devices. In other words, these studies only consider the communication
direction from edge to edge or from edge to terminal, but neglect the direction from terminal
to terminal. Especially, the application of blockchain technology in IoT has enormous
potential, and communication between vehicles in a blockchain environment is essential.

Much research on blockchain in IoV revolves around traditional consensus algorithms
or improved consensus algorithms. PoW (Proof of Work), is the most classic consensus
algorithm based on their computing power, in which the node that solves the problem the
fastest will obtain the right, and the system automatically generates the reward [19]. PoS
(Proof of Stake) allows the block creator to act as the verifier, using proof of equity instead of
PoW’s proof of computing power, with billing rights obtained by the node with the highest
equity. Equity is used as a vote to elect bookkeepers, and then bookkeepers take turns
keeping accounts [20]. Based on PoS, DPoS (Delegated Proof of Stake) professionalizes the
role of bookkeepers. It first selects bookkeepers with equity as votes and then takes turns
among bookkeepers to keep accounts [21]. These traditional consensus algorithms were
originally proposed to be applied in the financial field. However, the vehicle computing
resources and energy in the Internet of Vehicles are limited [22], and the security require-
ments are high, so these traditional consensus algorithms do not meet the requirements of
the vehicle network and cannot be directly applied.

Many improved consensus algorithms exist in IoV. Ref. [23] proposes a decentralized
trust management system, which uses Bayesian inference models to evaluate the reliability
of the information received from neighboring vehicles. It adopts the joint consensus mecha-
nism of PoW and PoS. The higher the share, the easier it is to find the hash value. Ref. [24]
proposed a trust management model based on blockchain, combined with a conditional
privacy protection announcement scheme for IoV. It uses a hybrid consensus algorithm
based on PoW and PBFT (Practical Byzantine Fault Tolerance). BTCPS (blockchain-based
TM with conditional privacy-preserving scheme) selects miners by PoW and uses PBFT
to reach a consensus. Many approaches were chosen for several other tasks. Ref. [25]
proposes an enhanced DPoS consensus solution with a two-stage soft security solution
to ensure the safety of vehicle data sharing and to select safe miners based on reputation.
Ref. [26] proposed a T-PBFT algorithm based on the EigenTrust model, which evaluated
the trust value of nodes through the transactions between nodes, and then selected nodes
with high trust value in the network to establish a consensus group. It optimizes the
PBFT consensus algorithm to reduce the number of nodes required by PBFT consensus by
grouping, thus reducing message complexity and increasing throughput. Although these
studies have improved traditional consensus algorithms to make them more suitable for
vehicular networks, they overlook the unique characteristics of vehicles themselves. Some
vehicle features reflect the quality of nodes to a great extent. For example, vehicles with
good communication conditions tend to have high communication efficiency, and vehicles
that violate traffic rules less often tend to better obey broadcast rules. Our study extracts the
characteristics of vehicles themselves and implements a vehicle-based consensus algorithm,
which is highly suited to IoV.

We have summarized the related works in a table, as shown in Table 1.
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Table 1. Related work summary.

Content Literature Basic Algorithm Innovation

Data security

[12] Machine Learning Machine Learning Platform

[13] RBF neural network
Radial Basis Function neural

network sliding
mode controller

[14] Fast R-CNN Multi-strategy region
proposal network algorithm

[15] Data fusion approaches Data collection framework

Asymmetric network

[16] Blockchain-as-a-Service multi-preference matching

[17] Deep reinforcement learning Cloud-edge cooperative
content-delivery strategy

[18] Mobile edge computing Task offloading and fault
tolerance algorithm

traditional consensus algorithms
[19] PoW
[20] PoS
[21] DPoS

consensus algorithms in IoV

[23] PoW,PoS Decentralized trust
management system

[24] PoW,PBFT
Blockchain-based TM

with conditional
privacy-preserving scheme

[25] DPoS Soft security solution
[26] PBFT,EigenTrust T-PBFT

3. System Models

In the consensus algorithm, selecting primary nodes is an important problem. In this
section, we list a series of models we used to select a primary node, including the Integral
model and the Classification model. The overall execution flow of the system model is
shown in Figure 1. In the context of a public chain consisting of blockchain nodes for each
vehicle, the vehicles are scored by the Integral model, with the number of each vehicle
representing its score. Vehicles are then further selected through the Classification model,
and it is worth noting that offline vehicles are demoted. Eventually, vehicles eligible to
participate in bookkeeping will be polled and become master nodes.

BP neural network

......

Informer model

A B C

Integral model

Classification model

Committer Peer

32 44 61 52 38

......

61 44 38 52 32

61 44

......

Figure 1. The flowchart of selecting the primary node.
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3.1. Integral Model

In this paper, we use the integral model to evaluate the performance of vehicles in the
consensus process [27]. Vehicles with higher scores are more likely to get the accounting
right [28]. The vehicle score is mainly affected by the following four types of features:
vehicle attribute, vehicle wealth, vehicle integrity, and vehicle performance. Each primary
indicator is also subdivided into sub-indicators, with a total of 10 reference criteria that
together determine the node’s score, as shown in Table 2.

Table 2. Integral model index description.

Primary Index Secondary Index Property

Vehicle attribute Vehicle memory frequency Discretization
Running time vehicle power Discretization

Vehicle wealth coinage Normal

Vehicle integrity

Number of forked blocks Discretization
Number of

error/invalid blocks Discretization

Traffic offense points Discretization
Last round integral Normal

Vehicle performance

Network participation
duration Discretization

Network delay Discretization
Vehicle offline times Discretization

The vehicle attribute is the relevant parameter information of the vehicle itself, includ-
ing the running frequency of the vehicle memory and the running power. The higher the
frequency of the vehicle, the better the performance; the lower the power of the vehicle,
the lower the energy consumption. So the frequency is positively correlated with the
integral, and the power is negatively correlated with the integral.

Vehicle wealth is based on the index generated by the PoS algorithm, specifically
according to the currency age of the vehicle, the older the currency is, the more you do not
want the blockchain system to be attacked, so it is positively related to the score.

Vehicle integrity is related to the performance of vehicles after several rounds of
consensus, including the number of forked blocks, the number of error/invalid or wrong
blocks, traffic offense points, and last round integral. Providing forked blocks, providing
error/invalid, or wrong blocks represents that the vehicle is providing wrong information;
the more times, the more likely they are malicious nodes. Traffic offense points reflect
the extent to which drivers abide by the rules, and vehicles that do not abide by the rules
can easily become malicious nodes. So the first two secondary indicators are positively
correlated with credits. the last two items are negatively related to the score.

Vehicle performance is related to the network, including the duration of participation
in the network, network delay, and vehicle offline times. These indicators reflect the
communication efficiency of the vehicle. So the first secondary index is positively related to
the integral, and the latter two are negatively related to the integral. The vehicle attribute
index aims to select vehicles with high computational efficiency, vehicle wealth and vehicle
integrity aim to improve the fault tolerance rate of communication, and vehicle performance
aims to select vehicles with low delay communication.

These indicators can guide us to choose a terminal with high efficiency, high fault
tolerance, and low delay. In asymmetric IoV, terminals with good performance can share
some tasks of the server, thus reducing the negative impact brought by asymmetric network
structure. We use these metrics to score the vehicle by training a model through a BP neural
network, which is described in detail in Section 4.1.
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3.2. Classification Model

According to the previous subsection, we obtain a training model. The vehicle score
can be obtained by inputting various index parameters. In this subsection, based on the
vehicle scores derived from the model in Section 3.1, we use the classification model to
further classify the vehicles so as to select the vehicles suitable as master nodes. Vehicle
levels are first divided into three levels: A, B, and C. Ii is defined as the integral of a vehicle
and is derived from the Integral model. Two constants, Ihigh and Ilow, are used to classify
the vehicle to different levels. If Ii > Ihigh, the node is assigned to Level A; If Ilow < Ii < Ihigh,
the node is assigned to Level B. If the Ii < Ilow, nodes are classified as Level C. This process
is shown in Figure 2.

Figure 2. Classification conditions.

Vehicles at different levels have different permissions, among which vehicles at Level
A can obtain the bookkeeping right by polling; In Level B, vehicles have alternate book-
keeping rights. They can be used as excellent terminals to undertake some computing
tasks, which is more advantageous than asymmetric centralized communication structure.
Although there are no bookkeeping rights can still store information and verify other con-
sensus vehicle bookkeeping is correct, as long as the active participation in the consensus
is likely to rise to A; Level C vehicles are most likely Byzantine vehicles, which deprived
them of the right to participate in the consensus. This practice can greatly improve the
enthusiasm of vehicles, prevent Byzantine vehicles from obtaining accounting rights caused
by bad effects, and even prohibit their participation in the consensus.

In the initial stage, the vehicles have not gone through the consensus process, so there
will be no negative score. Whether they can enter Level A is largely determined by vehicle
performance and network conditions. Therefore, most vehicles are in Level A or Level B,
and there may even be no vehicles entering Level A, so the accounting consensus vehicles
are temporarily selected from Level B. After several rounds of consensus, the number of
points of vehicles with good performance will increase and be upgraded, while the number
of points of vehicles with poor performance will decrease and be downgraded.

For Level A vehicles, we want them to be online, so we need to predict their online
status. This can further improve the fault tolerance rate of communication. This is a time
series prediction problem because we are applying it to vehicles. The online status of a
vehicle is mainly affected by the following features: time, public transport conditions, air
temperature, rainfall, and vehicle life as shown in Table 3.

Table 3. Vehicle online status evaluation indicators description.

Indicators Explanation

Time Time collected information
Public transport condition Public transport conditions at the location of the vehicle

Air temperature Air temperature at the location of the vehicle
Rainfall Rainfall conditions at vehicle location

Vehicle life The service life of the vehicle
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Time is the period for collecting relevant information, and time series are used to
predict the online status of vehicles. The public transportation situation is a rating of
the public transportation in the city where the vehicle is located. The convenience of
public transportation has a significant impact on the use of vehicles. When local public
transportation can meet people’s travel needs, they will reduce the use of vehicles. Climate
is also an important factor affecting vehicle use. When the temperature is too high or
too low, or when it is raining, people tend to choose vehicles for travel due to comfort
considerations. Therefore, we selected the air temperature and rainfall of the city where the
vehicle is located as indicators. Considering human usage patterns, the longer the vehicle
is used, the more dependent people are on using the vehicle. Therefore, vehicle life is also
an important indicator.

Considering the limitations of vehicle performance and delay, we not only need to
improve the online accuracy of the predicted vehicles but also need to consider the predicted
time and the length of the model running time [29]. Therefore, we used the Informer model
for prediction, which is described in detail in Section 4.2. When the prediction result of a
Level A vehicle is offline for too long, it will be downgraded.

4. AI-POV Consensus Algorithm

In this section, based on the classical consensus algorithm, we proposed AI-PoV by
adding BP neural network to the integral model and Informer prediction model to the
classification model respectively [30,31]. In the context of each vehicle as a public chain
composed of blockchain nodes, the higher the score, the better the reliability of the node.
In the hierarchy model, the nodes qualified to participate in accounting are selected for
polling and become primary nodes.

4.1. BP Neural Network in Integral Model

For the indicators in the integral model, many studies put forward many neural
network models to solve it. We selected the most representative BP algorithm to our
integral model [32]. The structure diagram of BP neural network model in AI-PoV is shown
in Figure 3.
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y2

y3

y4
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...
... z
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Figure 3. BP neural network model in AI-PoV.
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After all indicators are determined, this paper hopes to determine the vehicle integral
after consensus according to these indicators [33]. Different indicators have different impact
factors on the results. At this time, BP neural network can be used to conduct error analysis
between its own results and standard results through its own training, and then modify
the weight value to know some rules, and obtain the result closest to the expected output
value at the given input value. At present, the input layer is the secondary index in the
integral model, that is, X = (x1, x2 . . . x10); the hidden layer corresponds to the primary
index, which is Y = (y1, y2 . . . y4); The output layer corresponds to the integration result
Z ∈ [−1, 1]. The vector W = (w11, w12 . . . w103) represents the weight between the input
layer and the hidden layer, and the vector Wv = (v11, v21, v31, v41).

There are two types of input data: discrete data and normally distributed data. For dis-
crete data, most of the integrals will increase or decrease by 1 as the index increases one
cycle. Only the error or invalid block provided has a greater impact, which is twice that of
other indicators. As a result, its weight is large. Once you have a Byzantine node doing evil,
it is going to have an important effect on the final integral. To show the different degrees of
influence of different secondary indexes on the results, we quantified the input data [34].
The quantization results of discrete data are shown in Table 4.

Table 4. Quantitative results of discrete indicators.

Indicators Attribute Range

Vehicle memory frequency Interval (GHz) (0,1] (1,2] (2,3] (3,4] (4,5] (5,+∞)
Score 0 1 2 3 4 5

Running time vehicle power Interval(W) (0,200] (200,400] (400,600] (600,800] (800,1000] (1000,+∞)
Score 5 4 3 2 1 0

Number of forked blocks Interval (0,2] (2,4] (4,6] (6,8] (8,10] (10,+∞)
Score −1 −2 −3 −4 −5 −6

Number of error/invalid blocks Interval (0,1] (1,2] (2,3] (3,4] (4,5] (5,+∞)
Score −2 −4 −6 −8 −10 −12

Traffic offense point Interval (0,2] (2,4] (4,6] (6,8] (8,10] (10,+∞)
Score −2 −4 −6 −8 −10 −12

Network participation duration Interval(h) (0,12] (12,24] (24,36] (36,48] (48,60] (60,+∞)
Score 1 2 3 4 5 6

Network delay Interval (ms) (0,20] (20,40] (40,60] (60,80] (80,100] (100,+∞)
Score 5 4 3 2 1 0

Vehicle offline times Interval (0,2] (2,4] (4,6] (6,8] (8,10] (10,+∞)
Score 5 4 3 2 1 0

Based on the following reasons, some initial input data are normalized in this pa-
per: (1) To avoid some numerical problems leading to deviation of results; (2) improve
the speed of convergence, namely training efficiency; (3) data quantization is needed to
unify evaluation standards; (4) in BP, sigmoid function is often used as transfer function,
and normalization can prevent neuron output saturation caused by excessive net input
absolute value. Since the integral may be negative, the data are normalized to [−1,1].
The normalization of discrete data is shown in Equation (1).

result =
v−mean

max−min
(1)

where v is the value before normalization, min is the minimum value of an attribute, max is
its maximum value, mean is the mean value, and result is the normalized result.

The non-discrete data need to be normalized and converted into values distributed at
(0,1) through the normal distribution function. The normal distribution function is denoted
as X ∼ (µ, σ2), and µ = 100, σ = 10 is set.

So far, the data preprocessing stage has been completed, and then the forward propa-
gation of data and the backpropagation of errors are carried out to learn the weights of each
index. In forward propagation, the input signal is transmitted backward from the input
layer to the output layer through the hidden layer, and the output signal is generated here.
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If the error exceeds a certain range with the expected result, the error signal backpropaga-
tion process is started: In the process of backpropagation of error signals, the error signals
propagate forward successively from the output layer, and the weights between ends are
corrected according to the error feedback. The above process will lead to the actual output
constantly approaching the expected output [35]. Specific steps and relevant formulas are
as follows:

1. Initialization of weights. We assign the initial weights w and v as random numbers;

v = Random(·) & w = Random(·) (2)

2. Input the pre-processed data successively to obtain the hidden layer results, as shown
in Equation (3). yi is the output value of the hidden layer, wij is the weight value
of the input layer to the hidden layer, and xi is the input value of the input layer.
In Equation (4), f (x) is the activation function. In order to add nonlinear factors
so that the results can approximate arbitrarily complex functions, we use the tanH
activation function, which facilitates the control of the hidden layer output range at
[−1,1];

yi = f

(
10

∑
i=1

wijxi

)
j = 1, 2, 3, 4 (3)

f (x) =
ex − e−x

ex + e−x (4)

3. Input the data of the hidden layer successively to obtain the results of the output layer.
zi is the output value of the output layer, vij is the weight value of the hidden layer to
the output layer, and xi is the input value of the hidden layer;

zi = f

(
4

∑
j=1

vj1xj

)
(5)

4. Calculate the weight of the backpropagation error adjustment weight w and v;

∆vj1 = η(d1 − z)(1− z)zyj j = 1, 2, 3, 4 (6)

∆wij = η(d1 − z)z(1− z)vj1
(
1− yj

)
yjxi j = 1, 2, 3, 4

v′j1 = vj1 − ∆vj1

w′ij = wij − ∆wij

where η stands for learning efficiency and is a constant.
5. Calculate the cell result of the output layer again according to the new weight, if d1 −

z < ε or reach the maximum number of learning times, then Stop training, or move
on to step 2.

4.2. Informer in the Classification Model

To better classify vehicles, we predict the online situation of vehicles to ensure that
the selected primary node vehicles avoid dropping off. For vehicle online state prediction,
a lightweight model Informer is adopted [36]. Informer is a supervised learning model
based on attention mechanism, which is composed of an encoder and a decoder. The en-
coder is used to obtain the long-term dependence of the long sequence input, and the
decoder can further realize the sequence prediction. The structure diagram of Informer
model in AI-PoV is shown in Figure 4.
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Original dataset

real-time 
temperature

......

Linear interpolation
 fill

Data handling

Feature Filtering

Multi-head ProbSparse  
Self-attention

Encoder

Self-Attention 
Distilling

Masked Multi-head ProbSparse  
Self-attention 

Decoder

Multi-head Attention

Full connectivity 
layer

Output

Log-Cosh loss Backpropagation

Multi-head ProbSparse  
Self-attention

Self-Attention 
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Figure 4. Informer model in AI-PoV flow chart.

The main content of model input is the influence factor of the first t moments after
standardization X = (x1, x2, . . . , xt)T , because the features of large variance will greatly
affect the convergence and accuracy of the model, we conducted standard deviation stan-
dardization on the data [37].

z =
x− x̄

σ
(7)

where σ is the standard of original data; x is the original data; x̄ as the original data of the
mean; z is the standardized data.

The prediction process first carries out feature processing on the original data set
and then inputs the processed feature sequence into Informer’s encoding and decoding
architecture to capture the long-term correlation between input and output. Finally, the pre-
diction result is obtained through the full connection layer Y = (Yt+1, Yt+2, . . . , Yt+n)T .
After calculating the loss function of the output prediction result, the inverse gradient
propagation is carried out to optimize the model continuously [38]. In regression problems,
the loss function we commonly use is the MSE (Mean Square Error) function. The MSE
function quantifies the error of the model by squaring the error in a way that can make the
model very sensitive to outliers in the data. There are many chance conditions in the use of
vehicles, and our data will have more outliers for which the MSE function is not suitable.
Therefore, we trained the Informer model using the Log-Cosh loss function, which is more
robust to outliers. These two loss functions are represented as Equation (8) below.
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MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (8)

Log− Cosh(y, yi) =
n

∑
i=1

log(cosh(ŷi − yi))

where yi is the true value and ŷi is the predicted value.

5. Performance Evaluation

To verify the effectiveness of the AI-PoV, this section shows a comparative experiment.
First, we compare the informer prediction ability in vehicle online duration. Secondly, we
compare the AI-PoV with PoW and other classical consensus algorithms in the vehicle-
based methods.

5.1. Experiment Environment

The energy consumed in the implementation of the consensus algorithm is measured
in a stand-alone environment. The experimental hardware environment is shown in Table 5.

Table 5. The experiment hardware workbench.

Item Description

Computer Thinkpad X1 Carbon 6th
CPU Intel Core i5-8250U CPU@ 1.60 GHz
GPU Nvidia GeForce RTX 2080

Memory 8 GB
Network Description Intel(R) Dual Bnad Wireless-AC 8365
Power of node vehicle 50–60 (W)

Measurement Unit E (energy): J; T (time): s; P (power): W

The computer simulates the startup of multiple nodes on the command line by modify-
ing the port number. Take two nodes as an example. Node information is shown in Table 6.
Power meter sets the sampling interval to 1 s and measures the energy consumption of all
nodes during the algorithm by measuring the total power of the cluster.

Table 6. Node information.

Item Node1 Node2

IP address localhost localhost
Port number 8010 8020

WebSocket port number 7001 7002
WebSocket address ws://localhost:7001 ws://localhost:7002

The experimental software environment is shown in Table 7. The written framework
is packaged into an executable jar package through Maven install. The port number and
service port number of the jar package are different for different nodes and are placed on
the local machine. Run the following command to run node1: java -jar blockchain01.jar.
In this case, node1 can generate blocks. Then run node2 node, which can connect to node1.
node1 propagates block or blockchain information to node2, and the two nodes reach an
agreement. The process of starting a new node is similar. The data analysis system of the
electric detector runs in the machine, and its function is to save the indicators measured by
the power meter and export them in xls and other formats.
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Table 7. The experiment software workbench.

Item Description

Operating system Windows 10
JDK 1.8.0

Python 3.7
Framework SpringBoot 2.4.3

Project management Maven 3.6
Server Tomcat

Monitoring software The data analysis system of electric detector obtains the energy consumption data of
experimental node obtained by HOPI-9800 power meter through USB interface

5.2. Online Duration Prediction Based on Informer

In collaborative IoV, the accuracy and convenience of vehicle online time prediction
directly affect the accuracy and efficiency of vehicle interconnection. In this section, we
compare the informer used in this study and the commonly used prediction methods
(Random Forest, LSTM, and XGBoost) in terms of prediction accuracy and prediction time.

Our data comes from the Weather Big Data interface service provided by China
Meteorological Data Network (http://www.nmic.cn/Market/index.html, accessed on
1 July 2019). We selected data recorded at weather stations in Shenyang and Dalian, two
cities in Liaoning Province, China, to obtain meteorological data for April 2019–June 2019,
including temperature, precipitation, and other data. Vehicle usage data were obtained
from vehicle research in 2019 of Liaoning highway in China, including vehicle life, vehicle
violation, vehicle usage time, and other data. Firstly, the data are pre-processed, the data
of temperature and precipitation are recorded every 0.5 h to obtain a total of 4368 sets of
data, and the time periods of vehicle use are divided to obtain a total of 4687 sets of data.
The two datasets are matched for time periods, and for the missing parts in data collection,
we used a linear interpolation method to fill in.

We implemented Informer, Random Forest, LSTM, and XGBoost using the PyTorch
deep learning framework, dividing the data into two groups, 5000 for training and 1687 for
testing. The parameters of the model are set as follows: the initial learning rate of Informer
is set to 0.0001 and the weight matrix is randomly initialized, which uses Log-Cosh as the
loss function for model training, the batch size is set to 32, and the number of iterations is 8;
the max_features of Random Forest is set to 0.8, n_estimators is set to 69, max_depth is set
to 8, LSTM is set to 2 layers, the number of neurons is set to 32 in layer 1 and 160 in layer 2
by super optimization; n_estimators is set to 1000, Subsample is set to 0.8, colsample_bytree
is set to 0.8, and learning_rate is set to 0.8. is set to 0.8 and learning_rate is set to 0.1.

We conducted four comparative experiments, and the specific experimental results
are shown in Figures 5 and 6. We define the criterion for evaluating model complexity as
Complexity = a ∗ Smin + b ∗Mmin + c ∗ Tmean. where Smin is the minimum storage space
required by the model, Mmin is the minimum memory required for the model to run and
Tmean is the mean of the running time; a, b, and c are the coefficients that normalize their
corresponding metrics.

As seen in Figure 5, Informer’s prediction accuracy is not always the highest, but it
still performs well for long time series prediction. As seen in Figure 6, Informer has lower
complexity and will be more suitable for collaborative IoV with less load on the endpoints
in practical applications.

http://www.nmic.cn/Market/index.html
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Figure 6. Comparison of the complexity.

5.3. Performance Comparison of AI-PoV

AI-PoV is more suitable for collaborative IoV because it considers vehicle features.
On the one hand, we eliminate the possibility of selecting the vehicle that is about to come
off the line as the primary node vehicle. In this section, we use computers to simulate
vehicles as a node in the blockchain.We first compared AI-PoV algorithm and PoW, PoS
and DPoS algorithm respectively in the possibility of the selected primary node vehicle
disconnection within 50 s, 200 s, 350 s, 500 s, 650 s, and 800 s. On the other hand, AI-
PoV algorithm reduces the time delay caused by a large number of calculations, thus
reducing the energy consumption of collaborative IoV. We compare the delay and energy
consumption of AI-PoV algorithm and three other classical algorithms.

The tools used in the data sources of the pre-experimental simulation include the traffic
flow simulation tool VanetMobiSim (version 1.1) and the network simulation tool OPNET
(version 14.5). In this experiment, VanetMobiSim tool is used to generate simulated roads
in two areas, which are 4000 m and the number of vehicles is 800–1000. In the simulation
experiment in Section 5.3.2, data sets of 7:30 and 16:30 in these two areas were selected,
respectively. The trajectory of the vehicle is generated by VanetMobiSim and then imported
into the OPNET simulation environment of the mobile node to simulate the communication
between vehicles.

5.3.1. The Possibility of Primary Node Vehicle Offline

In the four groups of data generated by VanetMobiSim tool in two areas at different times,
we selected 100 node vehicles proportionally to analyze the possibility of vehicle disconnection.
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As shown in Figure 7, the experimental results show that the possibility of the main
node vehicle selected by AI-PoV going offline is zero within 50 s and 200 s. In the other
three methods, the possibility of primary node vehicle offline is about 30% and 50%. In 350
s to 800 s, the probability of the primary node selected by the AI-PoV going offline is 5%
to 10%. In the other three methods, the possibility of primary node vehicle offline is 70%
to 85%. AI-PoV greatly reduces the risk of primary node vehicle offline and avoids the
communication cost of re-selecting primary node vehicle.
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1.0

po
ss

ib
ilit

y

possibility of the selected primary node vehicle going offline
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PoS
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Figure 7. Comparison of the possibility of the selected primary node vehicle going offline within 50 s,
200 s, 350 s, 500 s, 650 s, and 800 s (compared with PoW, PoS, and DPoS).

5.3.2. Delay and Energy Consumption

The energy consumption of the system is positively correlated with the computational
complexity, that is, in collaborative networking of vehicles, the energy consumption is
positively correlated with the latency.

As shown in Figure 8, the more nodes there are, the more delay the collaborative IoV
system will generate. When the number of nodes is the same, AI-PoV saves nearly half of
the time delay compared with other algorithms and nearly half of the computing energy.

As shown in Figures 8 and 9, compared with the three most widely used consensus
algorithms, AI-PoV solves the immediate off-line problem of primary node vehicles and
realizes the challenge of considering vehicle features in collaborative IoV. At the same time,
it reduces the system delay in the blockchain environment, reduces the system energy
consumption, and has better applicability for collaborative IoV.
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6. Conclusions

We want to solve the problem of communication cost caused by asymmetric IoV
structure through the cooperation between vehicles in the blockchain environment. The im-
plementation of vehicle-based collaborative IoV is closely related to avoiding off-line of
primary node vehicle and reducing delay. Therefore, it is a big challenge to reduce the delay
while avoiding the off-line of the primary node vehicle. To solve it, this paper proposed
a novel consensus algorithm. Specifically, we have used blockchain as a prototype and
established indicators based on vehicles, proposed integral and rating models, and used
the BP algorithm and the Informer model to solve the problem. After scoring the vehicles,
classification is performed, and further vehicle selection is done through offline prediction
to select the optimal master node for broadcasting and proposing. Experimental results
show that, compared with existing consensus algorithms, the master node selected by
AI-PoV has high efficiency, high fault tolerance, avoiding the vehicle dropout of the master
node, and reducing the communication delay between vehicles. Through the consensus
among vehicles, it can replace part of the data sharing of the traditional centralized IoV and
alleviate the negative impact of communication delay caused by its asymmetric network
structure. In the future, we plan to expand our work in three main areas. Firstly, we
broaden the vehicle indicators referenced by the Integral model through the extensive
collection and feature screening of vehicle information. Secondly, we aim to improve the
accuracy of the prediction by optimizing the Informer model in the Classification model.
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