
Citation: Roozbeh, M.; Rouhi, A.;

Mohamed, N.A.; Jahadi, F.

Generalized Support Vector

Regression and Symmetry Functional

Regression Approaches to Model the

High-Dimensional Data. Symmetry

2023, 15, 1262. https://doi.org/

10.3390/sym15061262

Academic Editors: Tsung-l Lin and

Mohammad Arashi

Received: 15 March 2023

Revised: 17 May 2023

Accepted: 17 May 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Generalized Support Vector Regression and Symmetry
Functional Regression Approaches to Model the
High-Dimensional Data
Mahdi Roozbeh 1,* , Arta. Rouhi 1 , Nur Anisah. Mohamed 2,* and Fatemeh Jahadi 1

1 Department of Statistics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University,
P.O. Box 35195-363, Semnan 35131-19111, Iran; arta_rohi@semnan.ac.ir (A.R.)

2 Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
* Correspondence: mahdi.roozbeh@semnan.ac.ir (M.R.); nuranisah_mohamed@um.edu.my (N.A.M.)

Abstract: The analysis of the high-dimensional dataset when the number of explanatory variables is
greater than the observations using classical regression approaches is not applicable and the results
may be misleading. In this research, we proposed to analyze such data by introducing modern and
up-to-date techniques such as support vector regression, symmetry functional regression, ridge, and
lasso regression methods. In this study, we developed the support vector regression approach called
generalized support vector regression to provide more efficient shrinkage estimation and variable
selection in high-dimensional datasets. The generalized support vector regression can improve the
performance of the support vector regression by employing an accurate algorithm for obtaining the
optimum value of the penalty parameter using a cross-validation score, which is an asymptotically
unbiased feasible estimator of the risk function. In this regard, using the proposed methods to analyze
two real high-dimensional datasets (yeast gene data and riboflavin data) and a simulated dataset, the
most efficient model is determined based on three criteria (correlation squared, mean squared error,
and mean absolute error percentage deviation) according to the type of datasets. On the basis of the
above criteria, the efficiency of the proposed estimators is evaluated.

Keywords: functional regression; high-dimensional data; lasso regression; ridge regression; support
vector regression

1. Introduction

There are now a variety of methods for data collecting. High-dimensional datasets
can be developed because of the nature of the data as well as the lower cost involved
in data collection. This means that the number of explanatory variables (p) is greater
than the number of observations (n) [1,2]. The multiple linear regression is a standard
statistical technique in a researcher’s toolbox. The multiple linear regression model is given
by Y = Xβ + ε where Y = (y1, . . . , yn)> is a response variable, X = (x1, . . . , xn)> is a
design matrix that includes the predictor or explanatory variables, and ε = (ε1, . . . , εn)> is
a vector of error terms with E(ε) = 0 and Var(ε) = σ2In. Furthermore, β = (β1, . . . , βp)>

is an unknown p-dimensional vector of regression coefficients that describe the relationship
between a predictor’s variable and the response. Implementing a linear regression is
problematic in such data and the results are misleading. The estimation of coefficients
using the least-squares method is in the following form:

β̂ = (X>X)−1X>Y .

In high-dimensional cases, the inverse of X>X does not exist, because the matrix is
not the full rank. In this situation, different methods are proffered to analyze the data, and
the best method is selected according to the time, accuracy, and cost (see [3–5]).
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To analyze the high-dimensional data, due to the existence of many explanatory
variables, it is possible that some of these variables are not related to the response variable.
Hence, the principal component method is a common approach among the alternative
methods to reduce the dimensions of explanatory variables.

In recent years, machine learning in data analysis has developed significantly, and many
scientists resort to this method to solve high-dimensional problems in the datasets.

Among the various methods and algorithms that are available in the field of machine
learning, support vector machines are one of the most important and widely used, and
these are a powerful tool for data classification [6].

The support vector regression model has the advantage that it does not look for the
minimum error, but seeks the optimal error. The optimal error is the error that makes
the model more efficient and accurate. Aircraft control without a pilot, computer quality
analysis, the design of artificial limbs, routing systems, etc., are some of the applications
of this model. Therefore, in this method, there is a need for a system that can learn
through training and pattern distinction in order to function properly in categorizing
data. Some researchers have used machine learning algorithms to increase the predictive
performance [7,8].

Functional data analysis is an important tool in statistical modeling, in which the be-
havior of the data is a function of another variable. The functional regression model is used
in many fields such as meteorology, chemometrics, diffusion tensor imaging tractography,
and other areas [9–11].

Based on [12–15], the criteria used to evaluate and compare the fitted models are the
squared correlation between the estimated and real values of the response variable (R2

or R-squared), the root mean squared error (RMSE), and mean absolute percentage error
(MAPE), which are defined as follows:

R2 =
Cov2(Yi, Ŷi)

Var(Yi)Var(Ŷi)
, RMSE =

√√√√ 1
T

T

∑
i=1

(Yi − Ŷi)2, MAPE =
1
T

T

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣,
where Yi is the real value of the response variable, Ŷi is the predicted value of the response
variable, and T is the total number of test samples. The models with higher values of
R-squared and MAPE and the models with lower values of RMSE have a better fit to
the data [16].

2. Materials and Methods

In this paper, a number of techniques for modeling high-dimensional data are intro-
duced, and the best model is then chosen based on the estimation of the response variable
and proposed criteria.

2.1. Principal Component Method

The principal component method is one of data reduction techniques that involves
reducing the dimensions and conserving as much information as possible from the ex-
planatory variables. The principal components have been organized in a non-correlational
way so that a small number of components can demonstrate a significant percentage of
the information in the primary explanatory variables. Selecting the adequate number of
components is noteworthy and various methods have been proposed to select the appro-
priate number of these components. One of the methods of finding the best number of
principal components is to retain enough components to reach a large percentage of the
total variation of the original variables. Values between 70% and 90% are usually acceptable,
although smaller values might be appropriate as the sample size increases. Another way is
to exclude the principal components that have eigenvalues that are less than the mean value
of eigenvalues. Plotting the scree diagram is an intuitive technique to find the best number
of principal components. In this diagram, we plot the eigenvalue of each component (λi)
against i. The number of components selected is the value of i that corresponds to an
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“elbow” in the curve, i.e., a change in the slope from “steep” to “shallow”. It is important to
notice that each of the proposed methods may provide different answers. The researcher
can use the method according to the dataset substance.

2.2. LASSO Regression

The basic motivation for the LASSO comes from an impressive method suggested by
Breiman [4] that minimizes the non-negative garotte as follows:

n

∑
i=1

(
Yi −

p

∑
j=1

cj β̂ jXji

)2

cj ≥ 0, ∑
j

cj ≤ s (1)

In this optimization problem, the estimators β̂ j are selected by the least square error.
Parameter s is the penalty and when it is reduced, the garotte will tighten.

This method is renowned among researchers for the death penalty. In this method,
some variables are deleted, and the rest are shrunk. In another form, the optimization
problem of the LASSO regression can be presented as follows:

n

∑
i=1

(
Yi −

p

∑
j=1

Xijβ j

)2

+ λ
p

∑
j=1
|β j|, i = 1, . . . , n, j = 1, . . . , p

One of the advantages of this method is the yielding to stable and continuous es-
timators [4]. One of the disadvantages of the LASSO method is that it has insufficient
performance in correlated explanatory variables because it selects just one variable between
correlated variables as a group and this is not the best reason. In a high-dimensional linear
regression model, LASSO at most chooses n variables from p explanatory variables with n
observations [17]. So, the effective explanatory variables may be removed.

2.3. Ridge Regression

Occasionally in regression models, the researchers encounter the collinearity between
the explanatory variables, and this usually occurs in high-dimensional models. Andrei
Nikolayevich Tikhonov, who is renowned for his important findings in topology, functional
analysis, physics, and mathematics, presented the Tikhonov regularization as a solution
to this ill-conditioned problem. Since X>X is not invertible in high-dimensional cases,
the least-squares regression method is not applicable. In this regard, the problem can
be solved using the ridge method, in which positive value k is added to matrix X>X.
Although the ridge regression estimator of coefficients is biased, same as LASSO estimation,
there are some values for k, in which the variance of the ridge estimation is less than the
variance of the least-squares estimation, such that the mean-squared error of the ridge
estimator is smaller than the variance of the least-squares estimator. The ridge estimator of
β is calculated as follows:

β̂ =
(

X>X + kI
)−1

X>Y , k ≥ 0, (2)

where k is called the ridge parameter and its value is very important to find the appropriate
model [18–22].

2.4. Functional Regression Model

Recently, due to the expansion of data types, modern technological innovations in
data collection, data storage, and so on, the functional datasets are very observable and
applicable [23]. This dataset uses many scientific fields. For example, neuroscientists look
at patterns of functional connectivity between signals in different brain regions measured
over time using magnetic resonance imaging in order to treat patients [24]. To analyze this
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type of dataset, firstly, it is necessary to convert the discrete dataset into the continuous
dataset in order to apply one of the following methods.

Smoothing of Functional Data

At first, the discrete dataset must be converted into a continuous dataset, and this can
be carried out by estimating a curve or a straight line using the smoothing method, such as
the Fourier basis for periodical datasets and the spline approach for other datasets.
In general, under the assumption of the linear combination between the variables, the func-
tional model can be considered as follows:

Yi =
k

∑
j=1

cjφj(ti) + εi = f (ti) + εi, (3)

where f is a linear combination of the coefficients, φj’s are the basic functions and cj’s are the
coefficients. Overall, any vector in a vector space can be represented as a linear combination
of the base vectors and any continuous function in a functional space can be written as a
linear combination of the basic functions. The basic functions can be represented by one of
the following cases:

• Fourier basis:
The majority of the Fourier basis functions are used for a dataset that is periodical,
such as weather datasets that denote that it is usually cold in winter and warm in
summer. The Fourier bases are represented as follows:

{1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(mωt), cos(mωt)},

where ω is called the frequency period and is equal to 2π
p , and p is the recurrence

period. For instance, the recurring period for the weather dataset is 365 days;

• Spline basis:
The spline functions are polynomial functions that first divide a discrete dataset into
equal parts and then fit the best curve to each part. If its degree is zero, it estimates
using the vertical and horizontal lines, and if its degree is one, it computes linearly
and the higher degrees are computed as a curve. In addition, the area of the curve that
is at the junction can be smoothed, and the points that are located at the junction are
called knots. If there are numerous knots, they cause a low bias, and a high variance
will lead to a rough fitting of the graph. It is important to note that there must be at
least one observation in each knot.
Some other basis functions include the constant, power, exponential, etc. The non-
parametric regression function can be demonstrated as follows:

Yi = f (ti) + εi, i = 1, . . . , n,

where the errors are independent and have an identical distribution with the zero
mean and variance σ2. To estimate f (ti), according to the basis functions, we have

f̂ (ti) =
p

∑
j=1

cjφj(ti),

where φj(t) is the basis function that depends on the type of data and cj are the
coefficients. For estimating the functional coefficients, the sum of squares error is
minimized as follows:

H(c) =
n

∑
i=1

(Yi − f (ti))
2 =

n

∑
i=1

(Yi −
p

∑
j=1

cjφj(ti))
2. (4)
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The above equation can be rewritten in matrix form

H(c) = (Y −Φc)>(Y −Φc).

According to the least squares problem, the solution of the above minimization prob-
lem is ĉ = (Φ>Φ)−1Φ>Y . So, we have:

Ŷ = ĉ>Φ = Φ(Φ>Φ)−1Φ︸ ︷︷ ︸
S

Y = SY

where S is called a smoothing matrix.
Selecting the number of basis functions is very important because the small number
of basis functions leads to a large bias value and small variance value that yield to the
under-fitting of the fitted model, and a large number of basis functions leads to a small
bias value and a large variance value that yield to the over fitting of the fitted model.

2.5. Support Vector Regression Approach

Although support vector machines (SVMs) are powerful tools in classification, they
are not well known in regression. A support vector regression (SVR) is a model of support
vector machines, that takes continuous values instead of discrete values in the response
variables. In support vector machines, we know that when there is a small amount of data
in the margin, the dividing line is appropriate, despite the fact that in the SVR, when there
is more data in the margin, the model is outperformed. The purpose of this section is to fit
a model on the data {xk, yk}N

k=1 using a support vector regression, in which the response
variable is continuous. The support vector regression model is defined as:

y = f (x, W) = W>x + b, (5)

where W is the coefficient of the support vector regression and b is the intercept.

2.5.1. The Kernel Tricks in the Support Vector Machine

If there is no linear boundary between the datasets, the data will be moved to a new
space, a new linear boundary must be found for the data in that new space, and x must be
changed to Φ(x) in the whole issue discussed above. Thus, all of the data enter a new space,
so computing the inner product Φ(x)Φ(x)> is very difficult, and it therefore introduces a
new way to calculate the inner product without changing it to a new space.

One of these ways is to use the kernel trick. The four most popular kernels for SVMs
are as follows:

• Linear kernel: The simplest kernel function is the product of the inner product of
< x, y > plus an optional constant value of c as the intercept:

k(x, y) = x>y + c;

• Polynomial kernel: When all training data are normalized, the polynomial kernel is
appropriate. Its kernel form is as follows:

k(x, y) = (αx>y + c)d,

where the parameters intercept (c), slope (α), and the degree of polynomials (d) can be
adjusted according to the data;

• Gaussian kernel: A sample of a radial function and its kernel are as follows:

k(x, y) = exp
(
‖x− y‖2

2σ2

)
,
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where parameter σ is adjustable and significantly determines the smoothness of the
Gaussian kernel;

• Sigmoid kernel: It is known as a multilayer perceptron (MLP) kernel. The sigmoid
kernel originates from the neural network technique, where the bipolar sigmoid
function is often utilized as an activation function for artificial neurons. This kernel
function is defined as follows:

k(x, y) = tanh(αx>y + c),

in which there are two adjustable parameters, the slope (α) and the intercept (c).

• Example 1: The results of the SVR for the two-dimensional data, which is simulated
with the four mentioned kernels, can be shown in Figure 1. The top right diagram
shows the SVR model with a linear kernel, the top left diagram shows the polynomial
kernel, the bottom right diagram shows the sigmoid kernel, and the bottom left
diagram shows the radial kernel in which the squared correlation between the real
data and predicted data R2 are shown. According to Figure 1, it can be concluded that
the model with the radial kernel has better performance than the other kernels;

• Example 2: As an interesting example, we can refer to real data (faithful) in R software.
The dataset contains two variables: “eruptions” is the eruption time in minutes of the
old faithful geyser, and is used as the response variable; and “waiting” is the waiting
time between eruptions in minutes in Yellowstone National Park, Wyoming, USA as
the predictor. The results of the support vector regression with introduced kernels are
shown in Figure 2. For these fitted models, the sigmoid kernel has not performed well,
but the other kernels have had acceptable results.

Figure 1. SVR model for the simulated data.
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Figure 2. SVR model for the faithful data.

2.5.2. Generalized Support Vector Regression

As seen, the ridge, LASSO, and elastic net regression models are used by applying
a penalty parameter subject to minimizing the complexity or to reducing the number of
features selected in the final model. In the generalized support vector regression (GSVR)
method, although the error fit may not be minimized, it can be flexible in order to make the
final model more efficient. In this method, the optimal error is selected by minimizing the
cross-validation criterion, which is defined as follows:

C.V. =
1
N

N

∑
k=1

(
yk − f̂ (−k)(x, W)

)2
, (6)

where f̂ (−k)(x, W) is the estimator obtained by omitting the kth observation (xk, yk).
Furthermore, the error fit is defined as follows:

R =
1
2
‖W‖2 + c

(
N

∑
i=1
|yi − f (xi, W)|ε

)

where

|y− f (x, W)|ε =

{
0, |y− f (x, W)| ≤ ε

|y− f (x, W)| − ε, o.w
. (7)

3. Results Based on the Analysis of Real Datasets
3.1. Yeast Gene Data

In this section, the real high-dimensional data about the yeast genes are analyzed (http:
//www.exploredata.net/Downloads/Gene-Expression-Data-Set, accessed on 1 January
1997). This dataset of 4381 genes in 10 different ranges of time have been measured by
Spellman. The information about genes are the explanatory variables and the times are
considered as the response variable. More information about yeast gene data can be found
in [25,26] that contain 4381 randomly selected genes as the predictor variables and a target

http://www.exploredata.net/Downloads/Gene-Expression-Data-Set
http://www.exploredata.net/Downloads/Gene-Expression-Data-Set
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variable denoting the cell cycle state as a response variable. The functional regression
model for yeast gene data can be considered as follows:

Yi =
4381

∑
j=1

Xj(t)β j(t) + εi, i = 1, · · · , 23. (8)

First, the explanatory variables are converted into the continuous curves using the
spline basis function, which is depicted in Figure 3.

Figure 3. Yeast gene data curves.

Using the principal component regression, we select the sufficient number of curves
with a sufficient amount of data information (around 0.73 percent). Based on the scree
diagram in Figure 4, it shows that five principal components are sufficient for describing
these data.

Figure 4. Scree diagram for the yeast gene data.

According to Figure 5, we see that the amount of smoothness of converted variables is
appropriate for these types of data.

According to Figure 5, we see that the amount of smoothness of the converted variables
is appropriate for these types of data. The diagnostic plots of the functional principal
component regression model depicted in Figure 6 identifies the goodness of fit. As it can
be seen in this figure, the residuals do not follow a specific pattern, and the standardized
residuals fall in the interval from −2 to 2, which is satisfactory for the functional principal
component regression model.



Symmetry 2023, 15, 1262 9 of 21

Figure 5. Diagram of the functional coefficients of the yeast gene data.

Figure 6. Diagnostic plots for the functional principal component regression model for the yeast
gene data.

The cross-validation plots of the LASSO and ridge regression models versus the
penalty parameter are depicted in Figure 7 in order to obtain the optimal values of the
penalty parameter, which are 1.62 and 845.10, respectively.
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Figure 7. Penalty cross-validation diagram for the yeast gene data.

The R-squared values for the functional principal component, LASSO, and ridge
regression models are 0.9350, 0.7778, and 0.8079, respectively. Now, the gene data are
modeled using the SVR as follows:

Yi = w0 +
4381

∑
j=1

wjXj + εi, (9)

where Xj are the introduced genes, Yi are the times, and wi are the coefficients of the SVR
model. Using the four proposed kernels, the modeling implements and the results are
shown in Figure 8. As shown in this figure, the R-squared values for the linear, polynomial,
radial, and sigmoid kernels are equal to 0.9657, 0.7665, 0.8363, and 0.9442, respectively.
To compare the results intuitively, the straight line y = x is plotted in all of the diagrams
of Figure 8. Therefore, according to these results, the linear and sigmoid kernels have
performed better than the other kernels.

Figure 8. The diagram of the real values versus the fitted values for the SVR of the yeast gene data.
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In Figure 9, the cross-validation criterion is used to obtain the optimal error value of
the GSVR model, which is equal to 0.66. Furthermore, the optimal values of parameters γ
and c are equal to 0 and 0.01, respectively.

Figure 9. GSVR cross-validation diagram for the yeast gene data.

Table 1 displays the summarized results and compares the fitted models based on the
introduced criteria for the yeast gene data. According to the R-squared values, the SVR
with the linear kernel, LASSO, and ridge have had satisfactory results. Based on the RMSE
values, LASSO is more efficient than the other models. The SVR with linear and sigmoid
kernels and the functional principal component regression have performed well based on
the MAPE criterion. In general, the SVR model with the linear kernel has performed better
than the other models.

Table 1. Comparison of the proposed approaches for the yeast gene data.

Criterion R2 RMSE MAPE
Method

Functional principal component 0.9350 22.1786 0.1569

Ridge regression 0.9526 27.2272 0.2551

LASSO regression 0.9584 18.8379 0.2194

SVR with linear kernel 0.9657 23.1250 0.1428

SVR with polynomial kernel 0.7665 50.0320 0.2920

SVR with sigmoid kernel 0.9442 29.8033 0.1583

SVR with radial kernel 0.8363 45.0107 0.2702

GSVR 0.9178 22.8142 0.1614

3.2. Riboflavin Data

To demonstrate the performance of the suggested techniques for the high-dimensional
regression model, we analyze the riboflavin production dataset (also known as vitamin B2)
in Bacillus subtilis, which can be found in the R package “hdi”. Riboflavin is one of
the B vitamins that are water soluble. Riboflavin is naturally present in some foods, is
added to some food products, and is available as a dietary supplement. This vitamin
is an essential component of two major coenzymes, flavin mononucleotide (FMN; also
known as riboflavin-5’-phosphate) and flavin adenine dinucleotide. In this dataset, based
on n = 71 observations, there exists a single scalar response variable as the logarithm of the
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production rate of riboflavin and p = 4088 explanatory variables representing the logarithm
of the expression level of 4088 gene surfaces. Foremost, the variables in the riboflavin data
are converted into the continuous curves according to the number of optimized basic
functions, and these can be observed in Figure 10. So, the functional regression model for
these data can be considered as follows:

Yi =
4088

∑
j=1

Xj(t)β j(t) + εi, i = 1, · · · , 71, (10)

where Yi is the logarithm of the riboflavin production rate for the ith individual, Xj(t)
expresses the logarithm of the level of jth gene, and β j(t) is a functional coefficient of
jth gene.

Figure 10. Riboflavin production data curves.

Based on the scree diagram in Figure 11, we see that 12 principal components are
sufficient for describing these data, which have around 0.81 percent of information about
the data.

Figure 11. Scree diagram for the riboflavin production data.

According to Figure 12, we see that the amount of smoothness of the converted
variables is appropriate for these types of data. To check the validity of the estimated
model, we verify the diagnostic plots of the functional principal component regression
model depicted in Figure 13. As it can be seen in this figure, the residuals do not follow
a specific pattern and the standardized residuals fall in the standard interval; therefore,
the functional principal component regression model is appropriate.
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Figure 12. Diagram of the functional coefficients for the riboflavin production data.

Figure 13. Diagnostic plots for the functional principal component regression model for the riboflavin
production data.

The cross-validation plots of the LASSO and ridge regression models are presented in
Figure 14 in order to obtain the optimal values of the penalty parameters, which are 0.0335
and 6.2896, respectively.
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Figure 14. Penalty cross-validation diagram for the riboflavin production data.

The R-squared values for the functional principal component, LASSO, and ridge
regression are 0.6863, 0.7617, and 0.7848, respectively. Now, the riboflavin production data
are modeled using the SVR for different kernels, as follows:

Yi = w0 +
4088

∑
j=1

wjXj + εi, (11)

where Xj are the logarithm of gene surfaces, Yi are the logarithm of the riboflavin pro-
duction rate, and wi are the coefficients of the SVR model. Using four proposed kernels,
the modeling implements and the results are shown in Figure 15. To compare the results
intuitively, the straight line y = x is plotted in all of the diagrams in this figure. As shown
in Figure 15, the R-squared values for the linear, polynomial, radial, and sigmoid kernels
are equal to 0.8319, 0.3337, 0.7461, and 0.7345, respectively. Therefore, according to these
results, the linear kernel has performed better than the other kernels.

Figure 15. The diagram of the real values versus the fitted values for the SVR of the riboflavin
production data.



Symmetry 2023, 15, 1262 15 of 21

In Figure 16, the cross-validation criterion is used to obtain the optimal error value of
the GSVR model, which is equal to 0.14. Furthermore, the optimal values of parameters
γ and c are equal to 1 and 10, respectively. Table 2 displays the summarized results and
compares the fitted models based on the introduced criteria for the riboflavin production
data. According to the R-squared values, the SVR with the sigmoid kernel and GSVR
have had satisfactory results. Based on the RMSE values, the SVR with the linear kernel
and GSVR are more efficient than the other models. The GSVR and SVR with the linear
kernel have performed well based on the MAPE criterion. In general, the GSVR model has
performed better than the other models.

Figure 16. GSVR cross-validation diagram for the riboflavin production data.

Table 2. Comparison of the proposed approaches for the riboflavin production data.

Criterion R2 RMSE MAPE
Method

Functional principal component 0.6863 0.4238 0.0535

Ridge regression 0.7848 0.4025 0.0498

LASSO regression 0.7617 0.5365 0.0733

SVR with linear kernel 0.8319 0.3056 0.0352

SVR with polynomial kernel 0.3337 0.7170 0.0854

SVR with sigmoid kernel 0.9442 29.8033 0.1583

SVR with radial kernel 0.7461 0.6217 0.0754

GSVR 0.8363 0.3071 0.0339

3.3. Simulated Dataset

Then, we performed some Monte Carlo simulation studies to examine the proposed
models. Due to high-dimensional problem, as mentioned before, the number of explanatory
variables should be greater than the number of observations (p > n). Therefore, the ex-
planatory variables with a dependent structure are simulated from the following model for
n = 200 and p = 540:

xij = (1− ρ2)
1
2 zij + ρzip, i = 1, . . . , n, j = 1, . . . , p, (12)

where the random numbers zij are the independent standard normal distribution, and ρ2

determines the correlation between any two explanatory variables, which is equal to 0.9 in
this research [27]. Hence, the response variable is obtained from the following formula:

y = Xβ + ε,
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where βi for i = 1, . . . , 0.4p are generated from the standard normal distribution and
βi = 0 for i > 0.4p. Furthermore, the values of the errors εi are generated randomly and
independently from the normal distribution with zero mean and σ2 = 1.44. According to
these types of data, firstly, the functional curves related to the explanatory variables are
estimated. As seen in Figure 17, the simulated explanatory variables are converted into the
continuous curves using the B-spline basic function.

Figure 17. Simulated data curves.

Using the principal component regression analysis, we select the required number
of curves with a sufficient amount of information about the data (around 0.70 percent),
based on the scree diagram plotted in Figure 18, in which eight principal components can
be found and are sufficient for describing these data.

Figure 18. Scree diagram of the simulated data.

According to Figure 19, we see that the amount of smoothness of the converted
variables is appropriate for the simulated dataset. To check the validity of the estimated
model, we turn to the diagnostic plots of the functional principal component regression
model depicted in Figure 20. As it can be seen in this figure, the residuals do not follow a
specific pattern, the standardized residuals fall in the standard interval; therefore, the func-
tional principal component regression model is appropriate for the high-dimensional
simulated data.
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Figure 19. Estimation of the functional coefficients of the simulated data.

Figure 20. Diagnostic plots for the functional principal component regression model of the simu-
lated data.

The cross-validation plots of the LASSO and ridge regression models are presented in
Figure 21 to obtain the the optimal values of the penalty parameter.
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Figure 21. Penalty cross-validation for the simulated data.

The R-squared values for the functional principal component, LASSO, and ridge
regression are obtained and they are 0.9738, 0.9983, and 0.9981, respectively. Now, we will
remodel the simulation data using the SVR for different kernels, as follows:

Yi = w0 +
540

∑
j=1

wjXj + εi, i = 1, · · · , 200, (13)

where wi are the coefficients of the SVR model. Using the four proposed kernels, the mod-
eling implements and the results are shown in Figure 22. As shown in this figure, the R-
squared values for the linear, polynomial, radial, and sigmoid kernels are equal to 0.9989,
0.5901, 0.2229, and 0.9607, respectively. Therefore, according to these results, the linear and
radial kernels have had outstanding results rather than the other kernels.

Figure 22. The diagram of the real values versus the fitted values for the SVR of the simulated dataset.
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In Figure 23, the cross-validation criterion is used to obtain the optimal error value of
the GSVR model, which is equal to 0.36. Furthermore, the optimal values of parameters
γ and c are equal to 0.0 and 0.10, respectively. Table 3 displays the summarized results
and compares the fitted models based on the introduced criteria for the simulated dataset.
According to the R-squared values, the SVR with the linear kernel and GSVR have had a
satisfactory result. Based on the RMSE values, the GSVR is more efficient than the other
models. The LASSO, ridge regression, SVR with linear kernel, and GSVR have performed
well based on the MAPE criterion. Generally, the GSVR has performed better than the
other models.

Figure 23. GSVR cross-validation diagram for the simulated dataset.

Table 3. Comparison of the proposed approaches for the the simulation data.

Criterion R2 RMSE MAPE
Method

Functional principal component 0.9738 82.4995 0.0015

Ridge regression 0.9981 8.0627 0.0001

LASSO regression 0.9983 7.6356 0.0001

SVR with linear kernel 0.9989 7.8584 0.0001

SVR with polynomial kernel 0.5901 237.1014 0.0024

SVR with sigmoid kernel 0.2229 1102.886 0.0186

SVR with radial kernel 0.9607 39.6032 0.0003

GSVR 0.9984 6.4692 0.0001

Moreover, we are reminded that modeling is completed and the figures are depicted
using R software with e1071, fda.usc, glmnet, and hdi libraries.

4. Conclusions

The analysis of the high-dimensional data due to the non-invertibility of matrix X>X
is not possible with classical methods. Among the various modern methods and algorithms
for solving the high-dimensional challenges, a support vector regression approach is a
widely used and is a powerful technique in the field of machine learning, and can be a
suitable choice for predicting high-dimensional datasets. In statistical modeling where
the behavior of the data is a function of another variable, a functional data analysis is
an essential tool. Therefore, in this research, some methods are the same as those for
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the functional principal components, LASSO, ridge, and support vector regression (with
linear, polynomial, radial, and sigmoid kernels) and extended from the support vector
regression (generalized support vector regression) using the cross-validation criterion,
and were proposed to analyze and predict the high-dimensional datasets (yeast gene,
riboflavin production, and simulated datasets). The numerical experiments showed that
the generalized support vector regression and support vector regression with the linear
kernel can be effectively applied to predict the high-dimensional datasets. As is known,
obtaining the optimal value of the ridge parameter is not generally simple and it depends on
the criterion used in the prediction problem and dataset. Furthermore, the ridge regression
method combats the multicollinearity problem and estimates the parameters by adding
shrinkage parameter k to the diagonal elements of X>X, which leads to distortion of the
data [28,29]. LASSO is based on balancing the opposing factors of bias and variance to
build the most predictive model. In fact, LASSO shrinks the regression coefficients toward
zero by penalizing the regression model with a l1-norm penalty term. In high-dimensional
datasets, these properties may lead to shrink some coefficients of the effective predictors
toward zero. This is the main drawback of LASSO. Another challenge in the LASSO method
is the bias-variance trade-off in modeling which is related to the shrinkage parameter of
the LASSO approach. Bias refers to how correct (or incorrect) the model is. A very simple
model that makes a lot of mistakes is said to have a high bias. A very complicated model
that performs well with its training data is said to have a low bias. Unfortunately, many
of the suggestions made, for example that sample size (n) should be greater than 100 or
that n should be greater than five times the number of variables, are based on minimal
empirical evidence, which is a drawback of the principal component regression method.
Furthermore, the reduction in dimensionality that can often be achieved through a principal
components analysis is possible only if the original variables are correlated; if the original
variables are independent of one another, a principal components analysis cannot lead to
any simplification. To combat these drawbacks, as new research for the future, we suggest
to improve the support vector regression method using penalized mixed-integer non-linear
programming that can be solved using metaheuristic algorithms.
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