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Abstract: In bridge health monitoring, in order to closely monitor the structural state changes of the
bridge under heavy traffic load and other harsh environments, the monitoring system is required to
give the change process of structural modal parameters. Due to the symmetric variables of bridge
monitoring during operation, the evaluation needs to be completed by the recursive identification
of modal parameters based on environmental excitation, especially the recursive recognition of the
random subspace method with high recognition accuracy. We have studied the recursive identification
methods of covariance-driven and data-driven random subspace categories respectively, established
the corresponding recursive format, and used the model structure of the ASCE structural health
monitoring benchmark problem as a numerical example to verify the reliability of the proposed
method. First, based on the similar interference environment of the observation data at the same
time, a reference point covariance-driven random subspace recursive algorithm (IV-RSSI/Cov) based
on the auxiliary variable projection approximation tracking (IV-PAST) algorithm is established. The
recursive format of the system matrix and modal parameters is obtained. Based on Givens rotation,
the rank-2 update form of the row space projection matrix is established, and the recursive format
of the data-driven recursive random subspace method (RSSI/Data) under the PAST algorithm is
obtained. Then, based on the benchmark problem of ASCE-SHM, the response of the model structure
under environmental excitation is numerically simulated, the frequency, damping ratio and vibration
mode of the structure are recursively tracked, and their reliability and shortcomings are studied.
After improving the recursive method, the frequency tracking accuracy has been improved, with a
maximum accuracy of 99.8%.

Keywords: bridge health monitoring; recursive modal identification; statistical model updating

1. Introduction

Bridge Health Monitoring (BHM) is just one specific application of Structural Health
Monitoring (SHM) in the field of bridge engineering, and the two have the same connotation.
Bao et al. [1] describe SHM as structural health monitoring as the process of implementing
damage diagnosis strategies for aeronautical, civil and mechanical engineering structures,
clearly stating the main task of damage diagnosis in SHM. Early diagnosis of structural
damage is one of the core tasks of the health monitoring system.

Damage to a structure is reflected as changes in material and geometric properties,
including boundary constraints and connection conditions. The goal of damage diagnosis is
to try to gradually answer the following five progressively deeper questions [2]: (1) whether
there is damage; (2) the Location of the damage; (3) the type of damage; (4) the extent of
the damage; (5) Structural remaining life prediction (prognosis).

It is fully understood that for modal parameter identification of symmetric variables,
the use of the recursive stochastic subspace method is very effective. From the perspective
of bridge maintenance and management, if the degree of damage reaches a certain limit,
the predicted result of the remaining life of the structure will not meet the requirements (or
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understood as the current state assessment of the structure does not meet the requirements),
it is necessary to take certain maintenance measures to repair and strengthen the structure
(that is, damage control), and then the reliability of the structure is improved, the predicted
remaining life (or structural state assessment) will meet the requirements again, and then
continue to bear possible damage in operation.

It can be seen that bridge maintenance based on a health monitoring system is a dy-
namic cycle process including online monitoring, damage diagnosis, structural assessment,
and decision-making. Compared with the traditional detection and maintenance method,
the first three links have new theoretical connotations, which makes bridge maintenance
more scientific.

The online monitoring link of the bridge should involve more hardware development,
and the current development of related technologies in this area is very rapid [3–6], the
introduction of new sensing elements in other industries such as aviation, machinery
and other fields, as well as new sensing and transmission ideas (such as various intelli-
gent sensors, distributed sensors, wireless transmission, etc.), will greatly promote the
research of subsequent links. Due to the convenience, fast and effective characteristics of
vibration monitoring (acceleration response measurement not only does not require an
absolute reference point, but also uses environmental excitation conveniently and cheaply),
the vibration-based bridge health monitoring theory has been extensively and deeply
studied [7].

In the damage diagnosis link, according to whether the diagnostic process needs to es-
tablish a structural finite element model, it can be divided into two categories: model-based
(such as model modification method, etc.) and signal-based (such as damage index method).

The signal-based damage index method is directly extracting dynamic characteris-
tics (or dynamic fingerprints) that can reflect structural damage based on monitoring
signals, and directly determine whether the damage is damaged or not according to their
changes. These dynamic characteristics include structural frequency [8–10], structural
mode shape (including modal guarantee criterion MAC and coordinate mode guarantee
criterion COMAC [11,12], strain mode or curvature mode [13–16], modal flexibility [17]
(including damage localization vector DLV method [18], uniform load flexural surface
method [19,20]), modal strain energy [21–25], etc. Farrar’s I-40 bridge-based damage test
study clarifies that although various damage index methods can correctly diagnose the most
severe damage conditions, the effect is not satisfactory when the damage is mild [26,27].
Several current studies have demonstrated that environmental conditions, particularly
changes in temperature, interfere significantly with injury diagnosis [28–31]. In short,
although the damage index method does not require detailed design information of the
structure, it can generally only answer the first-level question of damage diagnosis, that is,
to determine whether the damage occurs, and it is difficult to give damage localization and
quantitative answers.

The model modification method integrates the two complementary technologies of
structural finite element analysis and dynamic monitoring, which is more conducive to
answering more in-depth questions in diagnosis, especially when the initial state infor-
mation such as design documents and bridge formation tests of new bridges is easier to
obtain. After nearly half a century of development, the model modification theory has
been relatively mature [32], and has achieved many successful applications in machinery,
aviation and other fields.

Condition assessment techniques based on health monitoring are a more in-depth
issue. Reasonable structural state definition, scientific evaluation system and methods
are all key issues worthy of studying [33–39]. At present, in general, research in this area
mainly focuses on how to use monitoring and processing information to extend the use
of structural reliability methods and the use of traditional structural assessment methods,
and there has been some progress in some aspects.

In general, in multiple-input multiple-output (MIMO) subspace recognition appli-
cations, less attention is paid to the automation of the recognition process because the
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total recognition workload is not large, and the final recognition results are often selected
manually. In the field of SHM, such as bridge health monitoring, huge amounts of monitor-
ing data are often generated, and the huge workload would prevent the achievement of
the monitoring goals if this approach is adopted, so they need to be improved to achieve
automatic modal identification (AMI) without human intervention. In addition, automatic
recognition not only saves a lot of tedious human effort due to its automation, but also
overcomes the inevitable subjectivity of human intervention and the inability to base final
inferences on comprehensive and complex comparisons by introducing scientific discrimi-
nant methods. Finally, the study of automatic modal recognition can also contribute to the
diffusion of modal analysis tools to the general user community.

The CMIF method (or FDD method), SSI, and PolyMAX are three methods that have
been widely used in bridge health monitoring for operational modal analysis under environ-
mental stimuli [40], and the idea of implementing automatic modal parameter identification
in various methods is mainly to simulate the “logical” process during the human inter-
vention. The CMIF method is used to automatically identify the modal parameters of the
Hong Kong Tingjiu cable-stayed bridge for one year, but the author does not elaborate
on the specific implementation process of the method [41]. The modal consistency index
(essentially the modal guarantee criterion MAC value) is proposed to be defined, the MAC
value of the singular vector corresponding to the point near the peak of the maximum
singular value discrete curve, and the MAC value of the singular vector corresponding
to the peak point is greater than the predetermined critical value. Then the point belongs
to the homemade region, otherwise, it belongs to the noise mode, and then complete the
modal parameter identification according to the idea of FDD, the key of the method is
to determine the appropriate critical MAC value [42]. Magalhães [43] adopts a similar
method, and the corresponding feature of the peak is judged to be the true mode by the
criterion that there are homemade regions on both sides of a peak on the maximum singular
value discrete curve and the number of frequency points belonging to the homemade is
greater than the number of critical points, and the paper claims to receive good results.
Mcmillan [44] proposes to first determine the corresponding frequency bandwidth of each
mode (decompose the singular values of the intersectoral matrix formed after data group-
ing, draw the average MAC-frequency curve between the vectors corresponding to the
largest singular value of each group. The frequency width of the average MAC value
greater than a predetermined value is the frequency bandwidth of the mode), and then
identify the modal parameters through the inverse Fourier transform according to the
idea of FDD. Yue [45] designed a threshold value to present the damage index to obtain
information regarding the existence of structural damage. The threshold can be used to
distinguish a damaged state from an undamaged state.

The recognition automation of SSI and PolyMAX methods is carried out on the basis
of stable graphs, which essentially use stable maps to automatically eliminate false modes.
Rainieri [46] proposes the simplest automatic identification method, which determines
whether the modal estimation of each order of the system is a stable point, and takes the
number of stable points to reach an artificially specified critical value as the judgment
condition for the true mode after determining whether the modal estimation of each
order of the system is a stable point. Deraemaeker [47] defines the i-th order “modal
transformation norm” (MTN) based on the modal decomposition of the positive value
spectrum (Fourier transform of the positive time-delay cross-correlation function) of the
response power spectrum, which describes the importance of the i-th modal component
in the spectrum. Select the structure order, calculate the MTN of each order mode and
arrange it in descending order, use the identification results of the previous one period
as a reference, compare the distance between the mode arranged in this period and the
mode of each order in the previous one period, and determine that the nearest mode is the
estimated result of the mode in this period.

Another type of automatic recognition method based on stable graphs is clustering.
Magalhães [48] defines the distance between stable points as the sum of the relative fre-
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quency difference and (1-MAC), and the distance between classes is defined as the shortest
distance between any two points between the two classes, and then the system clustering
algorithm is applied to condense the stable points, and finally, the class containing the
number of stable points greater than a certain predetermined value is the real modal class.
The fuzzy C-means clustering method is applied to realize the automatic identification
of the covariance-driven random subspace method [49]. In addition, some single-modal
criteria such as modal phase collinearity (MPC) and modal mean phase deviation (MPD)
are used to eliminate spurious modes.

2. Automatic Modal Identification Based on the RSSI-Cov/Ref Algorithms

This section proposes automatic modal parameter identification based on the SSI and
DBSCAN algorithms. The identification process is as follows.

(1) Step 1: Determine the initial period T0 and sampling data length N0, select the
number of observation data matrix row blocks i, the number of auxiliary variable channels
r, the delay length h and the number of row blocks m, and set the corresponding Hankel

matrix
∼
Ym+h,i,N0 and

∼
Ξ

ref

1,m,N0−i−h+1 according to the new weighting mechanism.
(2) Step 2: The covariance matrix ĈỸξ̃

= ŨS̃ṼT is decomposed by SVD.
(3) Step 3: Obtain the extended observable matrix under the new mechanism.
(4) Step 4: The system matrices A and C are obtained.
(5) Step 5: The structural modal parameters fi, ζi and φi in the initial period are obtained.
(6) Step 6: Assign initial values W(0), P(0) to recursive variables W, P.
(7) Step 7: Set the block observation vector Ỹk and auxiliary variable block column

vector ξ̃
re f
k containing the latest sampling time data according to the formula.

(8) Step 8: Recursive update W (t), P (t).
(9) Step 9: Solve system matrices A and C.
(10) Step 10: Obtain the structural modal parameter ft, ζt and φt at the current time t.
(11) Step 11: t = t + 1, repeat the solution process in steps (7) to (10) until the end of the

data period.
For the recursive identification of the above auxiliary variables, it is worth pointing

out that when the process and measurement noise do not meet the broadband white noise
assumption, such as band-pass white noise, as long as the autocorrelation length of the
noise is less than the delay length h∆t of the auxiliary variable (that is, it is less than the
autocorrelation length of the output measurement), the symmetric modal parameters can
be correctly identified, and when h = 1, it will degenerate into the classical covariance
driven random subspace identification.

2.1. Hankel Matrix Weighting Mechanism

In both offline random subspace modal identification and online identification, the
covariance Toeplitz matrix can be obtained by sorting the measured output of each channel
into the following Hankel matrix (assuming the number of sampling points in the period is
N0), and then the product of its block matrix.

Y1,2i,N0 =
Y1,i,N0−i

Yi+1,i,N0

=


y1 y2 . . . yN0−2i+1
y2 y3 . . . yN0−2i+2
. . . . . . . . . . . .
yi yi+1 . . . yN0−i




yi+1 yi+2 . . . yN0−i+1
yi+2 yi+3 . . . yN0−i+2
. . . . . . . . . . . .
y2i y2i+1 . . . yN0


2il×(N0−j+1)

(1)

T1,N0 = Yi+1,2i,N0YT
1,i,N0−i (2)
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In the above formula, the three numbers in the Y1,i,N0−i and Yi+1,i,N0 subscripts corre-
spond to the subscripts of the observation data column vector of the upper left element of
the matrix, namely the observation discrete time series number, the number of row blocks
of the matrix and the observation time series number of the observation data of the lower
right element.

The starting point of the new weighting mechanism is that when processing the data
of any time period, the weighting value of the most recent observation data is taken as 1,
and the observation data is multiplied by the weighting coefficient of

√
β for each forward

sampling period of 1 unit. So, the weighted Hankel matrix of the initial period is:

Ỹ1,2i,N0 =
Ỹ

re f
1,i,N0−i

Ỹi+1,i,N0

=


√

βN0−1yre f
1

√
βN0−2yre f

2 . . .
√

β2i−1yre f
N0−2i+1√

βN0−2yre f
2

√
βN0−3yre f

3 . . .
√

β2i−2yre f
N0−2i+2

. . . . . . . . . . . .√
βN0−iyre f

i

√
βN0−i−1yre f

i+1 . . .
√

βiyre f
N0−i



√

βN0−i−1yi+1
√

βN0−i−2yi+2 . . .
√

βi−1yN0−i+1√
βN0−i−2yi+2

√
βN0−i−3yi+3 . . .

√
βi−2yN0−i+2

. . . . . . . . . . . .√
βN0−2iy2i

√
βN0−2i−1y2i+1 . . .

√
β0yN0


(3)

Although the form of the above formula is the same as that of the old update formula,
because the new block column vector is set according to the formula and the formula, the
data of the entire period can meet the principle of weighting according to the different
distance from the “current time”, and ensure that the weight of the same observation vector
y is equal when it appears in different positions.

2.2. Auxiliary Variable Projection Approximation Subspace Tracking Algorithm (IV-PAST)

The recursive calculation needs to first determine the initial values W(0) and P(0). For
W(0), there are two ways to assign the initial value: one is to perform offline identification in
the initial period of data to obtain the left singular vector Ur group integration W(0) of the
covariance matrix, and the other is to take any full-rank matrix such as the formula as the
initial value. P(0) = C−1

hξ (0) can also be used as the initial value. This simple assignment
only affects the modal tracking results in a short time after the initial period, and has no
effect on the stability of the tracking results in the later period of the algorithm.

P(0) = Er′ (4)

W(0) = Ur (5)

W(0) = [ Er′ 0r′×(l−r′) ]
T

(6)

where Er′ is the identity matrix of order r’. The auxiliary variables are discussed as follows.
(1) Selection of auxiliary variable ξ(t): it should be orthogonal to the noise in the random
measurement signal z(t). Generally, the measurement signal after a certain time delay can
be taken or the signal can be grouped, with some channels as the measurement signal and
some channels as the auxiliary variable signal. (2) The length of the auxiliary variable
ξ(t): there is no limit to the length. When the value is equal to the length of the signal
z(t), the recursive formula can also be simplified, but in theory, the greater the length of
the auxiliary variable, the better the tracking accuracy. When the auxiliary variable ξ(t) is
taken as h(t), the method will degenerate into Yang’s projection approximation algorithm
(PAST), and then the formula of the signal subspace basis vector result will degenerate into
the formula.
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2.3. RSSI/DATA Algorithm

The data-driven random subspace method refers to the projection of the “future”
output data Hankel matrix row space to the “past” output data Hankel matrix row space to
complete data compression without traditional covariance calculation, and the symmetric
system matrix will finally be obtained from the projection result. Since the projection matrix
is obtained by QR decomposition, and the extended observable matrix Oi is calculated by
SVD decomposition, it is necessary to update the QR decomposition and then introduce
subspace tracking technology to obtain Oi, then the tracking modal parameters can be
recursively calculated.

In the initial period T0, in the offline data-driven recognition algorithm, the row space
of the “future” output data Hankel matrix Yi+1,i,N0 is projected to the row space of the
“past” output Hankel matrix Y1,i,N0−i. The projection result is obtained by the following
QR decomposition:

Y1,2i,N0 =
Y1,i,N0−i

Yi+1,i,N0

=

⌊
R11(N0) 0
R21(N0) R22(N0)

⌋[
QT

1 (N0)
QT

2 (N0)

]
(7)

The sequence product P(N0) of the Givens rotation matrix is introduced (It is also an
orthogonal matrix, there is PPT = I), so that it meets

Y1,2i,N0+1 =

[ √
βR11(N0) 0 YN0−2i+2√
βR21(N0)

√
βR22(N0) YN0−i+2

]
P(N0)PT(N0)

 QT
1 (N0) 0

QT
2 (N0) 0

0 1

 (8)

=

[
R11(N0 + 1) 0 0
R21(N0 + 1)

√
βR22(N0) ỸN0−i+2

]
PT(N0)

 QT
1 (N0) 0

QT
2 (N0) 0

0 1

 (9)

= R(N0 + 1)QT(N0 + 1) =
[

R11(N0 + 1) 0
R21(N0 + 1) R22(N0 + 1)

](
QT

1 (N0 + 1)
QT

2 (N0 + 1)

)
(10)

The QR decomposition of Y1,2i,N0+1 in the formula above should be recursively solved
for modal parameter tracking. However, the formula and subsequent solutions that the
information of the Q matrix is not required for modal tracking. In fact, only the solution
R(N0 + 1) can be recursively solved, which can be obtained from the formula.[√

βR11(N0) 0 YN0−2i+2√
βR21(N0)

√
βR22(N0) YN0−i+2

]
P(N0)PT(N0)

[√
βR11(N0) 0 YN0−2i+2√
βR21(N0)

√
βR22(N0) YN0−i+2

]T

(11)

=

[
R11(N0 + 1) 0 0
R21(N0 + 1)

√
βR22(N0) ỸN0−i+2

][
R11(N0 + 1) 0 0
R21(N0 + 1)

√
βR22(N0) ỸN0−i+2

]T

(12)

R21(N0 + 1)R21
T(N0 + 1) = βR21(N0)R21

T(N0) + YN0−i+2YT
N0−i+2 − ỸN0−i+2ỸT

N0−i+2 (13)

It can be seen from the recognition theoretical formula that the extended observable
matrix Oi can be obtained from the SVD decomposition. Since the eigenvector in the
eigenvalue decomposition (EVD) is the same as the left singular vector of the SVD decom-
position, Oi can also be obtained from the EVD decomposition of the “correlation” matrix
of R(N0 + 1) on the left of the formula.

3. Numerical Studies
3.1. ASCE-SHM Symmetric Model Structure

The symmetric frame model of the ASCE benchmark problem is studied to test the
methods developed in this paper, as Figure 1 [17]. This numerical example adopts a scaled
model of a bridge steel structure frame. The frame is made of hot-rolled 300W grade
steel (nominal yield strength 300 Mpa), and the cross-section is specially designed for
testing. In order to simplify the research, this paper treats the structure as a simplified shear
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beam model, that is, a 4-degree-of-freedom structure, and the simplified model is shown
in Figure 2, so the cross-sectional characteristics of the beams, columns and supporting
components of the structure will not be described here. The qualities of each layer of the 4-
degree-of-freedom finite element simplified model of the frame structure are m1 = 3452.4 kg,
m2 = m3 = 2652.4 kg, m4 = 1809.9 kg. The interlayer stiffness is k1 = k2 = k3 = k4 = 67.9 MN/m;
The damping matrix is 1%, 0.7%, 0.8%, 0.9% calculated according to Rayleigh damping,
and the damping ratio of each order is set respectively, and the coefficients corresponding
to the mass matrix and the stiffness matrix are 1 s−1 and 5 × 10−5 s, and the theoretical
frequencies of the structure are 9.41 Hz, 25.54 Hz, 38.66 Hz and 48.01 Hz, respectively.
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3.2. RSSI/COV Recursive Tracking

The simulation applies excitation Fi, i = 1 . . . 4, at each floor slab of the structure, the
sampling frequency is 250 Hz, the sampling time length is, and the following three working
conditions are considered:

(1) The excitation Fi and measurement noise vi are independent broadband Gaus-
sian white noise, and the structural stiffness K, mass M and damping matrix C remain
unchanged, that is, the structural modal characteristics remain unchanged.
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(2) The excitation Fi and measurement noise vi is changed to narrowband independent
Gaussian white noise within 50, and the structural characteristic matrices K, M and C
remain unchanged.

(3) The excitation Fi and measurement noise vi is independent wideband white Gaus-
sian noise, but the interlayer stiffness K1 of the first layer of the structure is linearly
attenuated to 0.5 K1 between the 10th and 15th seconds (the frequency fi of each order of
the structure will also be linearly attenuated during this period), and the mass matrix M
and the damping ratio ςi of the structure remain unchanged (the damping matrix C must
change accordingly according to Rayleigh’s damping theory).

First, you need to simulate the source data (i.e., acceleration “measurement” data)
needed to obtain the tracking algorithm, and you need to solve the structural response of
the simplified model at different inputs. For working case 1 and working case 2, because the
structural characteristic matrix is invariant in the dynamic response problem of linear time-
invariant (LTI) system, there are various methods such as model superposition method,
stepwise integration method, state space method, etc. can be used; For working case 3,
the modal superposition method is no longer applicable because the structural stiffness
matrix and damping matrix C change during the time period, that is, the response problem
of the linear parameter change (LPV) instant-changing structure. If it is assumed that the
structural characteristics only change at the sampling point moment, and the “zero-order
hold” assumption is satisfied when it does not change during the sampling interval, the
following two methods can be used to approximate the calculation.

For the state space method, because the state transition matrix of the time-varying
structure is difficult to obtain, it is approximated by the assumption of “zero-order retention”
to apply it to the current sampling period, first the state variable and output variable at
the endpoint of the sampling interval are obtained by recursion of the state equation
of the sampling interval according to the state equation recursion method of the time-
invariant structure, and then the structural characteristic matrix is updated, and then the
next 1 sampling interval is recursively calculated according to the new state equation until
the entire period.

For the stepwise integration method, first, discretize the time of the vibration differen-
tial equation, and only require the structure to be accurately satisfied at the discrete time
series point, then assume that the structural characteristic matrix in the sampling interval
is unchanged, that is, the time-invariant structure in the interval, assume the acceleration
change law in the time period, and finally solve the motion-related quantity at the end
moment of the sampling interval according to the motion law. If the Newmark− β method
is used to solve (γ = 1/2, β = 1/4), it is an unconditional convergence algorithm.

In case 1, the white Gaussian noise excitation Fi, 5% rms measurement of white
Gaussian noise v1, and the front 10 s history waveform and normalized autocorrelation
function of the structural acceleration response y1 based on state-space recursion is shown in
Figure 3. Since the excitation and noise both satisfy the wideband white noise assumption,
the auxiliary variable delay h = 1 is taken, that is, the classical covariance-driven random
subspace method is used for recursive identification.

Since there is no structural damage, a large amnesia factor β = 0.9995 can be taken,
and in order to determine the number of rows and blocks i of formula 3 of the data matrix
forming the covariance matrix, recursive identification is carried out in four cases of i = 10,
30, 50, 80 respectively (the first 3s of the data are used as the initial period, and the offline
batch algorithm is applied to it, and U, after the decomposition of the covariance matrix
SVD is used as the initial value W(0), P(0), and the obtained frequency and damping ratio
results, are shown in Figures 4–7 (“S.F.” Represents the true structural frequency, “S.D.R.”
represents the true structural damping ratio).
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Figure 3. Time history waveform and normalized autocorrelation function (τ > 0) for Gaussian
white noise excitation force F1, measuring white noise v1 and acceleration response y1 in working
condition 1.
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Figure 4. Tracking results of the 1st frequency and damping ratio of working case 1 under a different
number of rows and blocks.
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Figure 5. Tracking results of second-order frequency and damping ratio of working condition 1 under
a different number of rows and blocks.
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Figure 6. Tracking results of the 3rd frequency and damping ratio of working case 1 under a different
number of rows and blocks.
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Figure 7. Tracking results of the 4th frequency and damping ratio of working case 1 under a different
number of rows and blocks.

From the identification results of frequency and damping ratio in Figures 2–7, it can be
seen that in the initial recursion period, such as within 30 s, there is a process of stabilizing
to the real characteristics of the structure (but the difference percentage is still relatively
small) under different row block number i. After the stabilization period such as 30 s,
the recognition effect of different row block numbers for low-order modes is very small,
and the difference is slightly larger in high-order modes, indicating that the number of
different line blocks has a greater impact on the tracking of high-order frequencies than
that of low-order modes. Overall, frequency tracking accuracy is good, as their percentage
difference curve for true frequency is shown in Figure 3, with a value of about 0.2% and a
maximum value of 0.59%.

Comprehensive Figure 8 can be seen that when the number of row blocks is 10, the
recognition results of the frequency and damping of each order are quite different from
the real value, but when the number of row blocks is higher than 10, that is, when they
are taken as 30, 50 and 80, respectively, the difference percentage of each order decreases
greatly and tends to be stable, which reflects the influence of the number of row blocks on
the recognition results, indicating that the number of correlation submatrices needs to be
determined high enough.
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Figure 8. Percentage difference in frequency and percentage difference in damping ratio for different
number of row blocks i.

Figure 8 can also be seen that after taking a high enough number of row blocks, such
as in the next three higher row block numbers, the frequency and damping ratio of each
order mode The recognition value and the true value difference percentage are roughly the
same, both of which are about 20%.

In addition, after determining the number of rows and blocks that is high enough,
such as 30, 50, and 80, the percentage difference between the frequency and damping ratio
of each order of the structure is about 10~20%, and the maximum difference percentage
reaches 76% when i = 10. Based on the above observations, i = 50 was finally determined
(this value was taken in subsequent studies in this paper).

The tracking results of the mode component ratio (the ratio of the 4th component φ4j
of the j-mode shape to the other components φij) at this time are shown in Figure 9. It
can be seen from the figure that the components of each mode shape are better than the
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tracking results. The percentage difference between the component ratio and the true value
in the period of 30–150 was 0.54%, 1.17%, 1.49% and 1.6%, respectively, and the average
deviation was 1.2%.
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Figure 9. Recursive tracking results of the mode shape component ratio of each order in working
case 1 when the number of rows and blocks i = 50.

In the above recursion, the structure order r’ is taken as 4 (this value is also taken in the
rest of this article), which is the true order of the structure. The determination of order is a
common problem of all time-domain mode identification methods, which can theoretically
be determined by the number of non-zero singular values or significant singular values
decomposed by the SVD decomposition of the initial time period covariance matrix, as
shown in Figure 10 of the first 20 singular values in this example, it can be seen that there is
a significant difference between the 8th and 9th singular values, and the remaining singular
values are basically zero, so it can be concluded that the state space order is 8. However, in
practical applications, their differences may not be obvious, at this time you can also do a
power spectrum analysis of the measurement channel, especially if the power spectrum
of each channel is superimposed in the same diagram, then the number of their common
peak is the number of structural orders, the result of this example is shown in Figure 10, it
can be clearly seen that the structural order is 4.
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Figure 10. Distribution of singular values (SV-singular values) and power spectrum for each
measurement channel.

In case 2, both the excitation and measurement noises are narrowband white noise, and
the power spectrum and autocorrelation function graphs for the excitation component u1 of
Layer 1, the measurement noise (5% mean squared value) v1, and the Layer 1 measurement
response y1 are shown in Figure 11. It can be seen from the figure that the excitation and
noise have a certain autocorrelation length (about 50∆t), and it is advisable to use the
delayed measurement output as an auxiliary variable for recursive identification, and the
classical covariance random subspace method may not be ideal. Taking i = 50, β = 0.9995 the
percentage intensity of the mean square value of the noise is 2%, and Figure 12 shows the
comparison of the recursive recognition results of the structure frequency fi and damping
ratio ξ in the case of classical SSI with delay h = 1 and auxiliary variable SSI at h = 20.
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Figure 11. Time limit for operating case 2 with excitation u1, noise v1, and power spectrum and
autocorrelation function of measured output y1.
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Figure 12. Frequency and damping ratio results of recursive identification of h = 1 (blue line) and
h = 20 (red line) in working condition 2.

It can be seen from the figure that the damping ratio of the two is similar, but the
recognition effect is better when the frequency result h = 20, especially in the first-order
mode. From 5 s to 50 s, the percentage difference between the frequency of each order and
the true value was 0.73%, 0.17%, 0.28% and 0.20% when h = 1, and 0.39%, 0.15%, 0.10%
and 0.26% at h = 20, respectively. The percentage difference between the damping ratio of
each mode shape and the true value was 41.3%, 36.3%, 16.9% and 18.0% at h = 1, and 46.7%,
36.3%, 28.2% and 27.4% at h = 20, respectively. When h = 20, the comparison between the
component ratio of each mode shape and the true value is shown in Figure 12, and the
average percentage difference between the component ratio of each mode shape and the
true value is 0.73%, 1.19%, 1.51% and 3.77%, respectively, which shows that the recursive
recognition accuracy of mode shape is very high.

In case 3, the excitation and noise are both Gaussian white noise, which satisfies
the noise assumption of subspace recognition, but the linear attenuation of the structural
stiffness and the damping ratio of each mode remains unchanged, the state space model is
a differential equation with a variation coefficient due to the change of stiffness matrix k
and damping matrix c due to time, and its structure is a linear parameter change system.
At this point, a “zero-order hold” can be taken after time discretization, and the state space
method can be used to approximate the state and structure response within the sampling
interval. When the linear attenuation reaches 50% of the original stiffness, the delay h = 1
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is used, the measurement noise is 1% mean squared error, and the structural frequency
results identified recursively with different forgetting factors are shown in Figure 13.
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Figure 13. Results of the component ratio of each mode shape identified by recursive identification
of time delay h = 20 in working case 2.

It can be seen from Figure 14 that different forgetting factors have a great influence on
the tracking accuracy of the region of decreasing stiffness, and the tracking is more accurate
when the value is small in the low-order frequency of the structure, such as the 1st and
2nd order frequencies in this figure, this trend is clear, but it does not change much after
β = 0.997; In the higher-order frequency tracking of the structure, the lower forgetting factor
tends to cause greater tracking oscillations during the period when the structure frequency
is unchanged, so it is necessary to balance these two considerations, and β = 0.997 is used in
the subsequent parts of this example. Of course, it is more ideal to use a variable forgetting
factor, a small forgetting factor in the stiffness change part, and a large forgetting factor
in the stiffness unchanged part, but because the time point of the stiffness change cannot
be known in advance during the recursion process, it is necessary to establish a suitable
discriminant according to the recursion results to change the forgetting factor, which will
be a big challenge.
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Figure 14. Structural frequency recursion recognition results under different amnesia factor β under
working condition 3.
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After determining β = 0.997, the effects of different percent noise levels (i.e., noise
mean square value and signal mean square value percentage NL) such as NL = 1%, 5%,
10% and 20% on the recursive results of structure frequency are shown in Figure 15. It
can be seen from the figure that the difference between different noise levels for frequency
regression recognition is small, and the robustness of the method is very good. When the
percentage noise level of mean square value is NL = 20%, the first 3s period is used as
the initial batch period, and the percentage difference between the frequency fi of each
order structure and the true frequency is 1.45%, 0.68%, 0.39% and 0.31% in the 5s to 50 s
period, respectively.
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Figure 15. Structural frequency recursive identification results at different noise levels under operat-
ing condition 3.

The tracking results of the structural damping ratio at the noise level NL = 20% are
shown in Figure 16, and the percentage difference between the damping ratio and the true
damping ratio of each order is 71.1%, 63.3%, 56.9% and 36.5% in the 5 s to 50 s period,
respectively, and the damping ratio results at lower noise are shown in Figure 17, which
shows that the oscillation of the damping ratio is directly related to the noise level as
expected, which is likely to be caused by another reason such as the algorithm itself.
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Figure 16. Recursive identification results of structural damping ratio in working case 3 (β = 0.997,
NL = 20%).

The tracking results of the mode shape component ratio of each order under the noise
level NL = 20% are shown in Figure 18, and the average percentage difference from the true
value is 4.57%, 4.04%, 3.55% and 5.10%, respectively, and the mode shape tracking accuracy
is very ideal.
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Figure 17. Recursive identification results of structural damping ratio under different noise levels
under working condition 3 (β = 0.997).
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Figure 18. Recursive identification results of mode component ratio in working case 3 (β = 0.997,
NL = 20%).

3.3. RSSI/DATA Recursive Tracking

For data-driven stochastic subspace recursive identification, the numerical model of
4 degrees of freedom shear beam in the ASCE-SHM benchmark problem is still used to
verify the recognition effect. The model incentive method is still to apply the excitation Fi
at each floor slab, i = 1, . . . 4. The sampling frequency is 250 Hz, the sampling time length
is 50 s, and the following two working conditions are considered:

(1) The excitation Fi and measured noise vi are independent broadband Gaussian white
noise, and the structural stiffness K, mass M and damping matrix C remain unchanged,
that is, the structural mode characteristics remain unchanged;

(2) The excitation Fi and measurement noise vi are independent wideband Gaussian
white noise, but the interlayer stiffness k1 of the first layer of the structure is linearly
attenuated to 0.5 k1 between the 10th and 15th seconds, and the mass matrix M and the
structural damping ratio ξi remain unchanged.

For working case 1, according to the research results in the previous section, the initial
3 s data is used as the initial value matrix required for the initial period recognition of
the formula (3.100), the forgetting factor β = 0.9995, the number of rows and blocks i of
the data matrix is taken as 50, the percentage of the mean square value of the measured
noise and signal is 10%, and the results of the frequency fi, damping ratio ξi and mode
component ratio of each order of the structure after recursive identification are shown in
Figures 19–21, respectively.
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Figure 19. Structural frequency recursion recognition results of working condition 1 (β = 0.9995,
NL = 10%).
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Figure 20. Recursive identification results of structural damping ratio in working case 1 (β = 0.9995,
NL = 10%).
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Figure 21. Recursive identification results of mode component ratio in working case 1 (β = 0.9995,
NL = 10%).
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From 5 s to 50 s, the percentage difference between the frequency obtained by recursive
identification and the true frequency was 0.41%, 0.35%, 0.18% and 0.24%, respectively. The
percentage difference in the resulting damping ratio was 51.4%, 65.5%, 65.7% and 23.5%,
respectively. The percentage difference of the component ratios of each mode shape was
1.91%, 1.49%, 2.11% and 1.95% on average. It can be seen that similar to the covariance-
driven random subspace recursive recognition results, the accuracy of frequency and mode
shape is good, but the recognition effect of the damping ratio is average.

In case 2, the interlaminar stiffness damage of the first layer of the model is 50%, and
the forgetting factor has a significant impact on the recognition results, but its value range is
not large, here β = 0.999, 0.9985, 0.998 and 0.9975 are taken, respectively, and the recognition
results are shown in Figure 22. In the stiffness change segment, the recognition effect of
different forgetting factors was more obvious, and the tracking was more sensitive and
accurate at smaller values, but the forgetting factor no longer had a favorable effect on the
recursive results after it dropped to 0.998, but on the contrary, it caused greater oscillations
of the results, so β = 0.998 was taken in subsequent studies. Because β ≤ 1, its suitable
value change range is not large, that is, the identification result is more sensitive to it, which
will add certain difficulties to the adaptive study of forgetting factors.
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Figure 22. Recursive recognition results of structural frequencies under different forgetting factors in
case 1 (NL = 10%).

Under the determination of the forgetting factor of β = 0.998, the robustness of the
identification results to the measured noise is studied, and the percentage of the mean
square value of the measured noise and the signal is taken respectively, that is, the noise
level (NL) is 5%, 10%, 20%, 50%, respectively, the recursive identification results of the
structure frequency are shown in Figure 23, it can be seen that the degree of influence of
noise on different modes is different, this calculation has a more obvious impact on the 1st
order frequency results, and the robustness of the recursive recognition method is better
overall, about 20% The identification results are more reliable under the mean square value
noise. If the noise level is 20%, the percentage difference between the identified frequency
result and the true frequency is 3.49%, 0.69%, 0.30% and 0.31%, respectively, within the 5 s
to 50 s.

At this time, the recursive recognition results of the structural damping ratio and
mode shape component ratio are shown in Figures 24–26, respectively. The damping ratio
estimation is unreliable at 50% mean square noise, especially since the results of the 1st
and 2nd orders are very different. The mode component ratio results were reliable, and the
average percentage difference between the modal component ratio and the true value was
11.0%, 10.6%, 4.4% and 7.7% in the 5 s to 50 s, respectively.



Symmetry 2023, 15, 1243 18 of 21

Symmetry 2023, 15, 1243 18 of 19 
 

 

 
Figure 22. Recursive recognition results of structural frequencies under different forgetting factors 
in case 1 (NL = 10%). 

Under the determination of the forgetting factor of β = 0.998, the robustness of the 
identification results to the measured noise is studied, and the percentage of the mean 
square value of the measured noise and the signal is taken respectively, that is, the noise 
level (NL) is 5%, 10%, 20%, 50%, respectively, the recursive identification results of the 
structure frequency are shown in Figure 23, it can be seen that the degree of influence of 
noise on different modes is different, this calculation has a more obvious impact on the 
1st order frequency results, and the robustness of the recursive recognition method is bet-
ter overall, about 20% The identification results are more reliable under the mean square 
value noise. If the noise level is 20%, the percentage difference between the identified fre-
quency result and the true frequency is 3.49%, 0.69%, 0.30% and 0.31%, respectively, 
within the 5 s to 50 s. 

 
Figure 23. Recursive identification results of structure frequencies under different noise levels under 
working condition 1 (β = 0.998). 

At this time, the recursive recognition results of the structural damping ratio and 
mode shape component ratio are shown in Figures 24–26, respectively. The damping ratio 
estimation is unreliable at 50% mean square noise, especially since the results of the 1st 
and 2nd orders are very different. The mode component ratio results were reliable, and 
the average percentage difference between the modal component ratio and the true value 
was 11.0%, 10.6%, 4.4% and 7.7% in the 5 s to 50 s, respectively. 

0 10 20 30 40 50
7

8

9

10

ω
1(H

z)

0 10 20 30 40 50
22

23

24

25

26

ω
2(H

z)

 

 
β=0.999
β=0.9985
β=0.998
β=0.997

0 10 20 30 40 50
37

37.5

38

38.5

39

Times(s)

ω
3(H

z)

0 10 20 30 40 50
47

47.5

48

48.5

Times(s)

ω
4(H

z)

0 10 20 30 40 50
7

8

9

10

ω
1(H

z)
0 10 20 30 40 50

22

23

24

25

26

ω
2(H

z)

 

 
N.L.=5%
N.L.=10%
N.L.=20%
N.L.=50%

0 10 20 30 40 50
37

37.5

38

38.5

39

Times(s)

ω
3(H

z)

0 10 20 30 40 50
47

47.5

48

48.5

Times(s)
ω

4(H
z)

Figure 23. Recursive identification results of structure frequencies under different noise levels under
working condition 1 (β = 0.998).
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Figure 24. Recursive identification results of structural damping ratio in operating condition 2
(damage 50%) (NL = 20%).
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Figure 25. Recursive recognition results of mode component ratio of structure in working case 2
(NL = 20%).
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Figure 26. Recursive identification results of damping ratio of structure in working condition 2 (when
damage is 30%) (NL = 20%).

4. Conclusions

In order to track the structural modal properties in real time, this article focuses on the
recursive recognition problem of the stochastic subspace method, and establishes covariance-
driven and data-driven recursive implementation algorithms for symmetric variables:

(1) In the covariance-driven recursive identification, a new weighted form is first
introduced to make the weights of the sampled data at each moment consistent everywhere
in the algorithm, and then the auxiliary variable PAST algorithm is introduced to obtain
the recursive formula of the extended observable matrix column space, so as to realize
the recursive solution of modal characteristics. This method can complete the modal
recursion identification problem under non-wideband white noise interference through the
appropriate selection of auxiliary variables.

(2) In data-driven recursive recognition, the rank-2 update form of the row space
projection matrix is first derived based on Givens rotation, and then the idea of the PAST
algorithm is followed again, and the matrix inverse lemma is applied twice to obtain the
recursive form of the extended observable matrix column space to complete the recursive
modal recognition.

(3) Numerical examples show that the two recursive recognition methods mentioned
in this paper have good tracking accuracy for frequency and mode shape. In the covariance-
driven recursive identification, the percentage difference between the frequency recog-
nition result and the true value at working condition 1~3 was 0.2~0.59%, 0.10~0.39%
and 0.31~1.45%, respectively, and the different percentage of mode component ratio was
0.54~1.6%, 0.73~3.77% and 0.73~3.77%, respectively. In data-driven recursive recognition,
the percentage difference between the frequency recognition result and the true value
at working condition 1~2 is 0.18~0.41% and 0.30~3.49%, respectively, and the different
percentage of mode component ratio is 1.91~2.11% and 4.4~11.0%, respectively.

(4) Numerical examples show that the tracking effect of the two methods on the damp-
ing ratio is inferior to the tracking results of frequency and mode shape. For example, in
the covariance-driven random subspace recursive identification, the difference percentage
of working condition 1 is about 20%, working condition 2 is about 20~40%, and working
condition 3 reaches 30~70%; In data-driven recursive identification, the difference percent-
age of working case 1 is about 23.5~65.7%, and the damping ratio results of the 1st and 2nd
mode modes in working condition 2 are unreliable, because this method cannot adapt to
excessive damage degree, such as reducing the damage degree such as when the damage is
changed to 30%, the difference percentage of damping percentage is about 47~89%, and
there is no longer a serious deviation from the true value. Of course, the recognition results
of the damping ratio are still not as ideal as the frequency and mode shape recognition
results, which is due to the fact that the measurement noise has a relatively sensitive effect
on the damping recognition results.
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