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Abstract: Fast-changing demand in real traffic systems always leads to asymmetrical traffic flow
and queues, which aggravates congestion and energy waste. In this paper, the traffic signal control
problem of multi-phase intersections was studied with fast-changing traffic flows. First, a novel
model-free adaptive control-based symmetrical queuing balancing method was designed by using the
full-format dynamic linearization (FFDL) technique. Second, in order to deal with the fast-changing
traffic flow, a radial basis function neural network (RBFNN) was added to adjust parameters in a
two-layer structure. Moreover, a variable cycle tuning algorithm was introduced to further reduce
the time loss. Using the simulation, the proposed algorithm was compared with three other control
strategies under low and high traffic demand, respectively, and the results showed the capability of
the proposed algorithm.

Keywords: data-driven control; traffic signal control; model-free adaptive control; artificial
neural network

1. Introduction

Over the last few decades, urban traffic congestion was an intractable problem for
metropolises around the world, with negative follow-up effects on safety, economics, and
the environment. Thus, various countermeasures were proposed to overcome the traffic
congestion problem [1]. Additionally, the speed of traffic flow also has a strong relevance
for driving safety [2]. Therefore, alleviating traffic pressure as well as reducing traffic
accidents is an urgent problem that needs to be solved. With the development of technology,
traffic signal control gradually became the main solution to alleviate these problems.
An early work was reported in 1964 where a linear control algorithm was proposed to
switch the traffic light under unsaturated conditions [3]. Then, the representative systems
were developed and widely used throughout the world include SCATS [4], SCOOT [5],
and so on.

However, with the increase in vehicles, traffic dynamics became more complex and the
above-mentioned control systems were found to have serious limitations in reaching high
performance. Therefore, more algorithms were proposed. In [6], a fuzzy-based intelligent
traffic signal method was introduced for traffic signal control, which provided a convenient
and economical way to improve existing traffic light infrastructure. Ref. [7] proposed a cost-
effective model estimating traffic pattern changes when adding newly constructed roads
to existing facilities, which assisted decision-making processes. In [8], the road network
was divided into several agents and a distributed control scheme was then proposed. To
accelerate congestion dissipation, this controller design process was based on a performance
index aggregating the state of each agent and balancing their adjacent agents. In ref. [9], to
alleviate traffic congestion, a new control strategy was presented based on transition rules,
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proving that traffic signal timing optimization is an effective way to decrease congestion. In
order to reduce the total travel time, ref. [10] formulated a performance index constructed
using time delay and signal control variables and gave an optimized solution by using a
heuristic social learning-particle swarm optimization algorithm. The proposed method
was evaluated via real traffic data and ensured real-time application. Ref. [11] focused on
the lane drop issue on freeways and designed an integrated variable speed limit and lane
change control method to solve bottleneck congestion.

Additionally, considering the uncertainty of traffic conditions, a series of adaptive
algorithms were also developed. Ref. [12] gave an intensive study of the performance of an
adaptive traffic-responsive strategy that adjusts traffic light parameters in an urban network
to mitigate strong degradation of the infrastructure. In [13], an adaptive multi-input and
multi-output linear-quadratic regulator was designed based on a delay-related state space
model. This proposed strategy was tested in a 35-intersection microscopic traffic simulation
environment and proved to be more computationally feasible than existing centralized
signal control methods, including deep Q learning-based methods, max-pressure, and
self-organizing methods. Ref. [14] proposed a method for evaluating the effect of regional
traffic control based on genetic neural networks. At the same time, some researchers also
studied the impact of pedestrians on traffic flow. In [15], the concept of a dynamic traffic
management system was extended by designing control strategies for pedestrian flow,
learning the experience of a vehicle traffic management system. Ref [16] developed a
pedestrian-safety-aware traffic signal control strategy aiming to minimize vehicle traveling
delay and reduce pedestrian crossing risk.

However, the aforementioned methods were mostly model-based, and it is difficult to
accurately model traffic dynamics because of the randomness of demand, the difference in
driver behavior, and the complexity of intersections. Therefore, model-based methods are
difficult to apply in the actual process and their performance cannot be guaranteed. On the
other hand, with the development of detection technology, massive traffic data were stored
in everyday operations, providing a solid foundation for data-driven controller design [17].
Thus, the so-called data-driven control methods point out a promising direction in future
traffic control.

As an effective data-driven control method, model-free adaptive control (MFAC) gives
an originally proposed framework to address a class of nonlinear non-affine systems based
on a concept called pseudo-partial derivative [18]. In order to treat different work scenarios,
MFAC offers a compact/partial/full form dynamic linearization data model for controller
design [19,20]. For the stability analysis, based on some acceptable assumptions, MFAC
proves the convergence of the error dynamics by using a contraction mapping principle [21].
Additionally, model-free adaptive iterative learning control (MFAILC) was developed to
achieve perfect tracking performance when handling repetitive tasks [22].

In addition, MFAC was widely used in many fields as well, such as underwater
vehicle manipulators, torque control of asynchronous motors, unmanned surface vehicles,
cable-driven robots, and multi-agent systems [23–28]. The feature of independence of
mathematical models also leads to the application intelligent transportation field. To ease
traffic pressure in a macroscopic sense, [29] provided a novel data-driven constrained
model-free adaptive predictive control scheme for the multi-region urban perimeter control
problem, where the merits of the MFAC method and model predictive control approach
were combined. Similarly, Ref. [30] proposed a model-free adaptive iterative learning
perimeter control (MFAILPC) scheme based on data collected from past days. By mining the
repetitive operation pattern via historical traffic data, the MFAILPC improves performance
iteratively and the learning gain is tuned adaptively along the iterative axis. To overcome
the strong coupled characteristic of the traffic system, ref. [31] proposed a novel data-driven
strategy called decentralized estimation and decentralized MFAC method for the multi-
region perimeter control problem, with the key advantage that it can only use traffic data,
instead of the traffic model.
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In the intersection level, ref. [32] designed a MFAC algorithm for signal intersections
control problem, to achieve queue length equalization, obtain less delay, and increase travel
efficiency. Moreover, ref. [33] proposed a novel distributed model-free adaptive predictive
control (D-MFAPC) approach for multi-region urban traffic networks. Different from the
traditional design process, D-MFAPC uses the dynamic linearized data models instead
of mathematical traffic models as the prediction model in the distributed control design.
Additionally, the formulated control problem was finally solved by an alternating direction
method with a multipliers-based approach. Motivated by the similarity and repeatability
of the traffic flow, ref. [34] proposed a data-driven MFAILC urban traffic control strategy, in
which the urban traffic dynamics is dynamically linearized along the iteration axis. Then,
an iterative compensation algorithm was added to the MFAILC to handle the data dropout
in the real traffic network system.

Although the above MFAC methods studied the intersections control, they cannot be
applied to general multi-phase intersections directly, and they show certain limitations
in self-regulation ability facing fast-varying traffic flow. So, in order to solve the above-
mentioned issues, an improved method needs to be further studied. Inspired by the
symmetric phenomenon, one promising way is to adjust the green time making the traffic
flow into a symmetric state. The balanced flow in the intersection further reduces time
delay and releases the congestion. Additionally, enlightened by the strong approximating
capability of artificial neural networks, this paper tried to construct a hierarchical frame to
improving the parameters adjusting process.

The main contributions of this work are summarized as follows:

(1) Based on the full-format dynamic linearization (FFDL), a novel MFAC traffic signal
control scheme was proposed for multi-phase intersections. The raised scheme com-
bines data-driven prediction technique with symmetrical queuing equalization rules
in order to balance the pressure of each phase.

(2) A two-layer parameters tuning framework was designed for the MFAC controller,
aiming to deal with the fast-changing demand. In the first layer, radial basis function
neural network (RBFNN) was used to just two key parameters in the second layer
(i.e., η(k) and µ(k)) based on the error function. Then, the two adjusted parameters
drove the projection algorithm to estimate pseudo partitioned Jacobian and give a
prediction of queuing length.

(3) A variable cycle mechanism was added to the above algorithm to make it work for
different traffic patterns and further reduce the time loss of vehicles. Finally, the
proposed method was tested on the micro traffic flow simulation platform compared
with other three control methods. The simulation results showed the superiority of
the proposed method.

The remainder of the paper is organized as follows: Section 2 describes the problem
formulation and preliminaries, and multi-phase traffic signal controller design is introduced
in Section 3. Section 4 presents the applying steps of the proposed algorithm. In Section 5,
simulations are given to prove the effectiveness of the proposed algorithm. The conclusions
are given in Section 6.

2. Problem Formulation and Preliminaries
2.1. Signal Control Problem Formulation

Consider the following nonlinear discrete-time m-phase signalized intersection dy-
namics:

l(k + 1) = f(l(k), . . . , l(k− nl), g(k), . . . , g(k− ng)) (1)

where g(k) ∈ Rm and l(k) ∈ Rm represent the vectors consisting of the green times and
queuing lengths of each phase at the k-th cycle, respectively, f ( . . . ) ∈ Rm×m is an un-
known nonlinear function, and nl ∈ Z+ and ng ∈ Z+ represent unknown orders of the
system, respectively.
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Remark 1. Dynamics (1) gives a general description of the isolated intersection. This multi-phase
form includes the commonly used four phases setting as shown in Figure 1 (the turn-right direction
is not controlled). Moreover, the queuing length of one phase is defined as the max queuing length of
lanes permitting to pass. And It is noteworthy that the following store-and-forward model is also a
special linear case of (1):

Li(k) = max(0, Li(k− 1)− s× gi(k) + qi(k)× C) (2)

where Li(k), gi(k), and qi(k) represent the queuing length, the green time and vehicle arrival rate of
the i-th phase of k-th cycle, respectively, s represents vehicle queuing dissipation rate, C denotes the
period duration.
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2.2. Basic Assumptions

For the controller design purpose, the unknown nonlinear discrete-time system (1) is
assumed to satisfy following conditions:

Assumption 1. The partial derivative of f(...) is continuous with respect to each term of the variable g(k).

Assumption 2. System (1) satisfies the generalized Lipschitz condition:

‖l(k1 + 1)− l(k2 + 1)‖ ≤ b‖g(k1)− g(k2)‖ (3)

for any k1 6= k2, k1, k2 ≥ 0, g(k1) 6= g(k2), l(k1 + 1) and l(k2 + 1), and b are positive constants.

Remark 2. Assumptions 1–2 are basic assumptions in the MFAC design framework. From a
practical point of view, above assumptions imposed on the plant are reasonable and acceptable.
Assumption 1 is a typical constraint for general nonlinear systems in the field of control system
design. Assumption 2 determines an upper bound on the change rate of the system output driven by
the change of the control input. For instance, in the real traffic system, the variations in queuing
lengths are finite by the limited changes in green times.

2.3. RBF Neural Network

RBFNN is a kind of widely used artificial neural network with strong approximating
ability. In general, RBFNN consists of three layers: the input layer, the hidden layer, and
the output layer [35]. A multi-input and multi-output RBFNN is displayed as Figure 2, d
represents the number of input layers, p represents the number of hidden layers, and q
represents the number of output layers.Symmetry 2023, 15, x FOR PEER REVIEW 5 of 19 
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The output of RBFNN [36,37] is

o(k) = WΨ(u(k)) (4)

where u(k) ∈ Rd and o(k) ∈ Rq are called the input vector and output vector of network,
respectively, W = [wpq] ∈ Rp×q is the weight matrix to be turned, Ψ(u(k)) = [Ψ1(u(k)), . . . ,
Ψp(u(k))]T ∈ Rp is the basis function, p is the node number of RBFNN. The basis function is
chosen as the following Gaussian function:

Ψp(u(k)) = exp(−
∥∥u(k)− vp

∥∥
σ2

p
) (5)

where vp∈ Rp is the width and σp is the center of RBFNN.
In order to improve the readability, the symbols used in this paper are listed in Table 1 below.

Table 1. Symbols.

Symbol Meaning

l The vector consisting of queuing lengths of each phase
l̂ The predicted values of l
g The vector consisting of green times of each phase
m The number of phases
d The number of input layer nodes of the RBFNN
p The number of hidden layer nodes of the RBFNN
q The number of output layer nodes of the RBFNN
u The input vector of RBFNN
o The output vector of RBFNN
Ψ The basis function between input and hidden layer
Ψ The vector consisting of Ψ
w The weight coefficient between hidden and output layer
W The vector consisting of w
v The width matrix of RBFNN
σ The center of RBFNN

Φ f ,Ll ,Lg Pseudo partitioned Jacobian matrix (PPJM)
∆GLl ,Lg The vector consisting of corresponding output and input

y The vector consisting of the differences between l and l̂
ŷ The desired values of y

α, β Inertia coefficient, learning rate
a, b Weight coefficient
e The vector consisting of the differences between y and ŷ
η Step factor of MFAC
µ Weighting factor of MFAC

Cbase The basic cycle used in the intersection
Cmax The max cycle used in the intersection

ls The parameter used in the variable cycle algorithm

3. Multi-Phase Traffic Signal Controller Design
3.1. FFDL-MFAC Symmetrical Controller Design

Lemma 1 [38]. Consider nonlinear system (1) satisfying Assumptions 1–2. If ‖∆g(k)‖ 6= 0,
then there exists a time-varying vector called pseudo partitioned Jacobian matrix
Φ f ,Ll ,Lg(k)= [Φ1(k), . . . , ΦLl+Lg(k)

]
∈ Rm×(mLl+mLg), PPJM for short, such that system

(1) can be transformed into the following FFDL data model:

∆l(k + 1) = Φ f ,Ll ,Lg(k)∆GLl ,Lg(k) (6)

∆g(k) = g(k)− g(k− 1) (7)



Symmetry 2023, 15, 1235 6 of 18

∆l(k + 1) = l(k + 1)− l(k) (8)

Φi(k) =


ϕ11i(k) ϕ12i(k) . . . ϕ1mi(k)
ϕ21i(k) ϕ22i(k) . . . ϕ2mi(k)

...
...

. . .
...

ϕm1i(k) ϕm2i(k) · · · ϕmmi(k)

 ∈ Rm×m (9)

∆GLl ,Lg(k)= [∆lT(k), . . . , ∆lT(k− Ll + 1), ∆gT(k), . . . , ∆gT(k− Lg + 1)
]T

(10)

where f represents the nonlinear function, Ll and Lg represent the control output and input
linearization length constant in the FFDL, respectively, Φi(k) represents the corresponding
sub-square arrays, g(k) and l(k) represent the green times and queuing lengths of each phase
in the k-th cycle, respectively, ∆lT(k) = lT(k) − lT(k − 1), and ∆gT(k) = gT(k) − gT(k − 1).

Note that (6) gives a dynamically linearized data model abound the operational point.
Then, the rest of the task is to estimate the PPJM Φ f ,Ll ,Lg by traffic data. The following
performance index is used to acquire the projection algorithm:

J(Φ f ,Ll ,Lg(k)) =
∥∥∥∆l(k)−Φ f ,Ll ,Lg(k)∆GLl ,Lg(k− 1)

∥∥∥2
+ µ

∥∥∥Φ f ,Ll ,Lg(k)−Φ f ,Ll ,Lg(k− 1)
∥∥∥2

(11)

Differentiating and simplifying the cost function, one derives Equation (12). Addi-
tionally, reset condition (13) are added to improve the estimation ability of (12), where
ϕij1(1) is the initial value of ϕij1(k), ϕii1(1) is the initial value of ϕii1(k), and µ > 0, η > 0 are
two parameters.

Φ f ,Ll ,Lg(k) = Φ f ,Ll ,Lg(k− 1) +
η(∆l(k)−Φ f ,Ll ,Lg(k− 1)∆GLl ,Lg(k− 1))∆GT

Ll ,Lg
(k− 1)

µ +
∥∥∥∆GLl ,Lg(k− 1)2

∥∥∥ (12)

ϕii(Ll+1)(k) = ϕii(Ll+1)(1), i f
∣∣∣ϕii(Ll+1)(k)

∣∣∣< b2 or
∣∣∣ϕii(Ll+1)(k)

∣∣∣> αb2 or sign(ϕii(Ll+1)(k)) 6= sign(ϕii(Ll+1)(1)),

i = 1, . . . , Ll + Lg

ϕij(Ll+1)(k) = ϕij(Ll+1)(1), i f
∣∣∣ϕij(Ll+1)(k)

∣∣∣> b1 or sign(ϕij(Ll+1)(k)) 6= sign(ϕij(Ll+1)(1)), i, j = 1, . . . , Ll + Lg, i 6= j
(13)

From Equations (6)–(13), one obtains:

l̂(k + 1) = l(k) + Φ f ,Ll ,Lg(k)∆GLl ,Lg(k) (14)

gi(k + 1) = b× l̂i(k + 1)× (C−m× yy)/
m

∑
i=1

l̂i(k + 1) + a× li(k)× (C−m× yy)/
m

∑
i=1

li(k) (15)

where l̂(k) represent the estimated queuing lengths of each phase in the k-th cycle, and
a > 0, b > 0 satisfying a + b = 1.

Remark 3. Equations (14) and (15) plays the key role of symmetrical queuing balancing method
design. Equation (14) predicts the queuing length in the next cycle based on the FFDL data model
with estimated PPJM. Equation (15) calculates the green time via the idea of driving symmetrical

flow by balancing the queuing length. The term l̂i(k + 1) × (C − m × yy)/
m
∑

i=1
l̂i(k + 1) gives

phase i the effective green time by the ratio of the prediction queuing result in the k + 1-th time

instant, while li(k)× (C−m× yy)/
m
∑

i=1
li(k) is the effective green time according to the queuing

length of current time instant. The parameters a and b are utilized to coordinates these two terms in
case of drastic changes in the signal timing.
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Green light time constraint:
Case 1: gi(k) < gmin

gi = gmin

Case 2: gi > gmin and
m
∑

i=1
gi > C− gmin

gi = max{gmin, (C− ∆t)× gi/
m

∑
i=1

gi}

Case 3:
m
∑

i=1
gi > C− gmin, gi > gmin, gj < gmin and the number of gi is n, the number of

gj is m − n.

gi = max{gmin, (C− ∆t− (m− n)× gi)/
n

∑
i=1

gi}

where gmin, C, and gi(k) represent the minimum green time, the fixed period duration and
the green time in i-th phase of the k-th cycle, respectively, and ∆t represents the delay and
the sum of the non-green time such as the yellow time.

3.2. RBFNN-Enhanced Controller Design

To further exploit the potential of signal control, a variable cycle algorithm is added in
this section. Additionally, the green time assignment in the variable cycle case is presented
as follows:

gi(k + 1) = b× l̂i(k + 1)× (C(k + 1)−m× yy)/
m

∑
i=1

l̂i(k + 1) + a× li(k)× (C(k + 1)−m× yy)/
m

∑
i=1

li(k) (16)

C(k + 1) = min

(
Cbase /

(
1−

(
m

∑
i=1

li(k) / ls

))
, Cmax

)
(17)

where gi(k + 1) ≥ gmin, ls is a parameter, Cbase/Cmax is the basic/maximum cycle used in
the intersection, and a > 0, b > 0 satisfying a + b = 1.

Remark 4. Equation (17) gives a variable cycle algorithm. The basic idea is to change the cycle
based the saturation of queuing length of each phase. Cbase and Cmax can be determined by the
Webster method or just use the real cycle on the intersection. ls is a parameter should be the
estimated by the historical data, e.g., the max sum of queuing length in the past 3 months. In
the simulation, according to the investigation and a trial-and-error method, we chose them as
Cbase = 100, Cmax = 260, ls = 256.

Now, the following section illustrates the tuning process enhanced by the RBFNN.
From (6), (12), (16), and (17), one obtained Equations (18) and (19).

gi(k + 1) = b(C(k+1)−m×yy)×l̂i(k+1)
m
∑

i=1
l̂i(k+1)

+
a(C(k+1)−m×yy)×li(k)

m
∑

i=1
li(k)

=
a(C(k+1)−m×yy)×li(k)

m
∑

i=1
li(k)

+
b(C(k+1)−m×yy)×li(k)+

¯
Φi(k−1)∆GLl ,Lg (k)

m
∑

i=1
li(k)+

m
∑

i=1

¯
Φi(k−1)×∆GLl ,Lg (k)+H(k)

+
bη(k)(C(k+1)−m×yy)×(∆li(k)−

¯
Φi(k−1)∆GLl ,Lg (k−1))∆GT

Ll ,Lg (k−1)∆GLl ,Lg (k)

(µ(k)+
∥∥∥∆GLl ,Lg (k−1)

∥∥∥2
)×(

m
∑

i=1
li(k)+

m
∑

i=1

¯
Φi(k−1)×∆GLl ,Lg (k)+H(k))

(18)
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H(k) =
η(k)(

m
∑

i=1
∆li(k)−

m
∑

i=1

¯
Φi(k− 1)× ∆GLl ,Lg(k− 1))∆GT

Ll ,Lg
(k− 1)∆GLl ,Lg(k)

µ(k) +
∥∥∥∆GLl ,Lg(k− 1)

∥∥∥2 (19)

and

Φ f ,Ll ,Lg(k− 1) =



¯
Φ1(k− 1)
¯
Φ2(k− 1)
¯
Φ3(k− 1)
¯
Φ4(k− 1)

 (20)

Define two following error variables for the tuning purpose.

yi(k) = li(k)− l̂i(k) (21)

ei(k) = y∗i (k)− yi(k) (22)

where yi(k) represents the difference between actual and predicted queuing lengths in i-th
phase of the k-th cycle, and yi

*(k) is the desired value of yi(k), i = 1, . . . , m.

u1(k) =
m
∑

i=1
ei(k)

u2(k) =
m
∑

i=1

k
∑

k=1
ei(k)

u3(k) =
m
∑

i=1
(ei(k)− ei(k− 1))

(23)

Therefore, the Input vector is: u(k) = [u1(k), u2(k), u3(k)]T. In the same time, as shown
in Equation (5), the hidden layer is: Ψ(u(k))= [ψ1(u(k)), · · · , ψp(u(k))

]T.
Additionally, the output vector is:

oq(k) =
p

∑
j=1

wjqψj(u(k)) (24)

The connection weights between the hidden layer and the output layer are W. Addi-
tionally, W is the vector consisting of w. Define following performance indicator function:

M =
1
2

m

∑
i=1

e2
i (k) (25)

Search for the negative gradient direction of the coefficient according to Equations (18)–(25),
and result is as shown in Equation (26).

∆W = −β ∂M
∂W + α∆W

∂M
∂W =

m
∑

s=1

m
∑

i=1

∂M
∂ys(k)

∂ys(k)
∂gi(k)

∂gi(k)
∂oq(k)

∂oq(k)
∂W

(26)
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Simplifying Equation (26) obtains Equation (27) for updating the weight coefficient
of RBFNN.

∆W = βΨ(u(k))l(k) + α∆W

lq(k) =
m
∑

s=1

m
∑

i=1
es(k)sign( ∂ys(k)

∂gi(k)
) ∂gi(k)

∂oq(k)

l(k) = [l1(k), l2(k), · · ·lq(k)]

(27)

where η(k) = o1(k), µ(k) = o2(k). So, q = 2, and Equation (28) can be obtained from the above:

∂gi(k)
∂o1(k)

=
∂gi(k)
∂η(k)

∂gi(k)
∂o2(k)

=
∂gi(k)
∂µ(k)

i = 1, . . . , m
(28)

In summary, the overall design block diagram is given in Figure 3, and the application
procedure is expressed by pseudo code, as shown in Algorithm 1.
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4. Application Steps of the Proposed Algorithm

Algorithm 1: RBFNN-FFDL algorithm for the intersection with fast-changing traffic flow

Import traci
Input: maximum control cycle number kmax, non-green time yy, minimum green time gmin, α, β;
the initial values of l, l̂, g, y, Φ f ,Ll ,Lg ,∆GLl ,Lg , C, W, η, µ, e, v and σ.
1. Initialization: Q(k) = 0;
2. for k = 2 to kmax

3. The queuing lengths of each phase are obtained through the detectors.
li(k) = traci.lanearea.getJamLengthVehicle()
4. If Q(k) < T

5. l̂(k) = l(k− 1) + Φ f ,Ll ,Lg (k− 1)∆GLl ,Lg (k− 1), as Formula (14). The queuing
lengths of k-period is predicted by the data of (k − 1)-period.
6. y(k) = l(k)− l̂(k), as Formula (21). The difference between the actual queuing
lengths of k-period and the predicted queuing lengths are calculated.
7. e(k) = y ∗ (k)− y(k), as the input of RBFNN, as Formulas (22) and (23).
8. Search for the negative gradient direction of the coefficient, as Formulas
(24)–(28), to update weight coefficient W.
9. Q(k) += 1

10. End if
11. Select the η(k) and µ(k) that corresponds to the requirements when e(k) meet the
requirements.
12. ∆GLl ,Lg (k) = X(∆l(k), ∆l(k− 1), ∆g(k), ∆g(k− 1)), X(h) represents a function about h.
13. Φ f ,Ll ,Lg (k) = Φ f ,Ll ,Lg (k− 1) + K(η(k), µ(k), l(k), ∆GLl ,Lg (k)), K(t) represents a
function about t.
14. The variable period C(k + 1) can be calculated from Formula (17).
15. l̂(k + 1) = l(k) + Φ f ,Ll ,Lg (k)∆GLl ,Lg (k), predict the queuing lengths for the next cycle.
16. gi(k + 1) = Λ(l(k), l̂(k + 1), C(k + 1)), Λ(θ) represents a function about θ, i represents
phase.
17. Set gi(k + 1) to traffic light.
SET: traci.trafficlight.setPhaseDuration(‘ ‘, g(k + 1))
18. k = k + 1

19. End for
Traci.simulationStep()

5. Simulation
5.1. Simulation Platform

The simulation was conducted on SUMO (Simulation of Urban Mobility), an open-
source microscopic traffic simulation software. It supports the user-defined control algo-
rithm obtaining real-time traffic information. The test was developed by Python using the
TraCI (Traffic Control Interface) interface, while controlling the vehicle states and signal
light states in real time. It is noteworthy that Algorithm 1 was also presented in the SUMO
environment. Thus, one can easily recurrent or transplant the method into the traffic signal
controller in the field test. Please see the official website for more details of SUMO.

The simulation intersection is shown in Figure 4 with four phases. There were three
lanes in each direction: straight, left turn and right turn, and the roads were set as 600 m,
the detectors in each phase were set as 500 m (i.e., the queuing length can be measured
completely). The simulation time was 19,800 s.

The test platform versions were SUMO 1.15.0 and Python 3.10.0. Additionally, the
CPU was 11th Gen Intel(R) Core (TM) i7-11800H @ 2.30GHz.

5.2. Low Traffic Demand

The flow rates of vehicles used in the simulations are shown in Figure 5, which were
the actual values with fluctuations in a certain range based on the values in Table 1. The
traffic flow of arriving vehicles was subjected to the Formula (29):

ñ(k) = n(k) + U(−1/25, 1/25) (29)
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where ñ(k) and n(k) represent the actual flow rates and basic flow rates as Table 2, and U
represents a random variable subjecting to the uniform distribution. For example, in the
time interval 0–6600 s, the vehicle base arrival rate of Phase 2 was 1/10. So, the actual
vehicle arrival rate of this phase was [1/10 − 1/25, 1/10 + 1/25] = [3/50, 7/50], i.e., the
number of arrived vehicles was a random number between [6 and 14] for 100 s.
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Table 2. Basic vehicle arrival rate under low traffic demand.

Period of Time (s)
Phase

Phase1 Phase2 Phase3 Phase4

0–6600 1/9 1/10 1/10 1/12
6601–13,200 1/9 1/10 1/11 1/9

13,201–19,800 1/11 1/9 1/10 1/10

(1) Fixed timing control (FC)

In the fixed time control strategy, the green time and cycle were set to be constants as
g1 = 31, g2 = 30, g3 = 29, g4 = 30, yy = 3, C = 132, and the cycle number Kf = 150.

(2) Linear control (LC)

See more details of the control flow diagram in [3]. Based on the cut-and-trial method,
parameters were chosen as α1 = α2 = α3 = α4 = 2; β1 = β2 = β3 = β4 = 0.1; gmin = 15, gmax = 60.

(3) Variable-period queuing feedback control (VQF)
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In this strategy, the green time for each phase was calculated by the equation

gi(k) = li(k) × (C − m × yy)/
m
∑

i=1
li(k), with parameters gi(1) = 30, C (1) = 132, yy = 3,

gmin = 15, i = 1, 2, 3, 4.

(4) FFDL control based on queuing feedback (FFDL-QF)

For comparison purse, FFDL-QF strategy (without the two-layer tuning part) com-
prises of (6)–(9) and (14)–(15) were used, where gi(1) = 30, ∆gi(1) = 1, yy = 3, C = 132, a = 0.9,
b = 0.1, η = 0.01, µ = 0.1, li(1) = 0, ∆li(1) = 1, ∆GLl ,Lg(1) = I20×1, Φ f ,Ll ,Lg(1) = I4×20, I is the
matrix with element 1, and the cycle number KF = 150, gmin = 15, i = 1, 2, 3, 4.

(5) The proposed algorithm control (FFDL-RBFNN)

For the proposed method, the parameters were chosen as gi(1) = 30, ∆gi(1) = 1,
yy = 3, C(1) = 132, a = 0.9, b = 0.1, li(1) = 0, ∆li(1) = 1, yi(1) = 0, yi*(1) = 0, ∆yi(1) = 1,
α = 0.75, β = 0.5, W= 0.5 ∗ I5×2, ∆W = O5×2, ∆GLl ,Lg(1) = I20×1, Φ f ,Ll ,Lg(1) = I4×20, I is
the matrix with element 1, O is the matrix with element 0, vp = [−1, −2, 3, 2, 0], σp = 2,
gmin = 15, i = 1, 2, 3, 4, and T = 1000.

The simulation results under low traffic demand are shown in Figures 5–9 below.
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The dimension of Φ f ,Ll ,Lg in the calculation process was 4 × 20, consisting of five
matrices whose dimensions were 4 × 4. To show the estimating process and avoid the
overlap, five elements ϕ111, ϕ112, ϕ113, ϕ114, and ϕ115 (i.e., the elements in the first row and
first column of Φ1(k) − Φ5(k)) were selected for drawing in Figure 6.

Figure 7 shows the histograms of green times for each phase, Figure 8 shows the
values of η and µ under low traffic demand, and Figure 9 shows the histograms of the sum
of the maximum queuing lengths of the four phases in each cycle for the different control
strategies under low traffic demand.

Observing Figure 9 and Table 3, it can be seen that the queuing lengths and time loss
in FC were much longer in this random traffic flow. FFDL-QF and VQF (with 162 cycles
running) showed better performance in turn. Finally, the proposed FFDL-RBFNN (with
163 cycles running) had an optimal control effect with shortest average queuing lengths of
each cycle (42.22% less than the FC) and less average time loss of vehicles (31.21% less than
the FC) under low traffic demand.
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Table 3. The values of queuing lengths and time loss of different control strategies under low
traffic demand.

Control Strategies FC LC FFDL-QF VQF FFDL-RBFNN
Improvement of

FFDL-RBFNN Compared
with FC

The average queuing
lengths of each cycle

(veh/cycle)
78.81 \ 48.58 47.97(162 *) 45.54(163 *) 42.22%

Average time loss of
vehicles (s/veh) 93.41 65.39 68.01 65.53 64.26 31.21%

Note: * means the number of cycles. In the LC design, it does not define a strict cycle concept, so the queuing
lengths of each cycle are omitted in the table.

5.3. High Traffic Demand

Table 4 shows the basic vehicle arrival rate under high traffic demand. In the high
demand case, the traffic flow still followed Equation (29), while the base arriving rate was
increased. Figure 10 shows the actual values with fluctuations in the certain range [−1/25,
1/25], which were used to simulate traffic uncertainty in the real system.

Table 4. Basic vehicle arrival rate under high traffic demand.

Period of Time (s)
Phase

Phase1 Phase2 Phase3 Phase4

0–6600 1/7.8 1/9 1/6 1/7
6601–13,200 1/7.8 1/7 1/6.7 1/9

13,201–19,800 1/7.5 1/7.7 1/7 1/7Symmetry 2023, 15, x FOR PEER REVIEW 15 of 19 

 

 

Figure 10. Actual number of vehicles arriving in each phase per cycle under high traffic demand. 

 

Figure 11. Values of the φ11i for each cycle under high traffic demand (I = 1, …, 5). 

 
Figure 12. Histograms of green times for each phase under high traffic demand (a)–(d) represent 
phase 1, phase 2, phase 3, and phase 4, respectively, the red lines indicate the position of the 0.95 
quantiles). 

Figure 10. Actual number of vehicles arriving in each phase per cycle under high traffic demand.

(1) Fixed timing control (FC)

In the high demand case, after ten times tests, we manually found the following
relative good signal timing: g1 = 29, g2 = 28, g3 = 34, g4 = 29, yy = 3, C = 132, and the cycle
number Kf = 150.

(2) Linear control (LC)

Parameters were the same as the low traffic demand case.

(3) Variable-period queuing feedback control (VQF)

Parameters were the same as the low traffic demand case.

(4) FFDL control based on queuing feedback (FFDL-QF)

Parameters were the same as the low traffic demand case.
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(5) The proposed algorithm control (FFDL-RBFNN)

Parameters were the same as the low traffic demand case.
Figure 10 represents actual number of vehicles arriving in each phase per cycle under

high traffic demand. Figure 11 shows the changes in the values of ϕ11L. Figure 12 depicts
the histograms of green times for four phases in each cycle. Figure 13 shows the values of η
and µ under high traffic demand. Additionally, Figure 14 shows the histograms of queuing
lengths of each cycle of different control strategies under high traffic demand.
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The result is summarized in Table 5. In this case, FC performed poorly against high
demand and fast-changing flow. This usually happened if the signal time was not adjusted
according to the change of the area traffic flow after a long time. FFDL-QF and VQF
improved a certain level compared with FC, but there still was room to promote. Observing
the results in Tables 3 and 5, it can be seen that LC was effective under low traffic demand.
However, it did not perform well under high traffic demand. The main reason for this was
that it was designed based on the simplified linear relationship of each phase, and only
analyzed under on the unsaturated condition (note that the high demand case may cause
an oversaturated condition). The proposed FFDL-RBFNN produced the shortest average
queuing lengths of each cycle (58.00% less than the FC) and less average time loss of vehicles
(54.78% less than FC), which showed its superiority in a high demand fast-changing traffic
flow. In addition, one may also notice that the cycle number of FFDL-RBFNN was 141
(original Kf = 150), which indicates the cycle tended to increase in a high demand case.
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Table 5. The values of queuing lengths and time loss of different control strategies under high
traffic demand.

Control Strategies FC LC FFDL-QF VQF FFDL-RBFNN
Improvement of

FFDL-RBFNN Compared
with FC

The average queuing
lengths of each cycle

(veh/cycle)
173.63 \ 79.80 76.77(140 *) 72.92(141 *) 58.00%

Average time loss of
vehicles (s/veh) 208.12 298.20 102.65 97.39 94.11 54.78%

Note: * means the number of cycles. Like the low traffic demand case, the average queuing lengths of each cycle
with LC was omitted in the table.

6. Conclusions

In this paper, a novel MFAC-based symmetrical signal timing design was proposed
by combining FFDL and RBFNN. To treat with fast-changing traffic flow in the real world,
a two-layer tuning framework was designed, with BRFNN in the first layer continuously
accelerating the PPJM estimation process in the second layer. Then, the variable cycle
algorithm was further introduced to explore the possibility of single intersection signal
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control. In order to draw as close as possible to the real traffic flow, this paper set up
two simulation scenarios: low traffic demand and high traffic demand superposed with
fast-changing random traffic flow. Simulation tests on the SUMO showed that the proposed
method outperformed the other four chosen control strategies (FC, LC, FFDL-QF, and VQF).

However, there were still some limitations. This study did not analyze the impact of
buses, non-motor vehicles, and pedestrians on traffic flow in detail, which can be added to
traffic control for specific analysis in the future. Additionally, the future work included two
directions. Firstly, the two-layer tuning frame should be extended from a single intersection
to a multi-intersection region. Secondly, an algorithm choosing the initial parameters can
be developed. As a priority, the research group is making an attempt to apply the proposed
method to real intersection signal control systems.
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