
Citation: Li, C.; Jin, H.; Wu, W.; Yang,

M.; Wang, Q.; Pei, Y. Path Loss and

Auxiliary Communication Analysis

of VANET in Tunnel Environments.

Symmetry 2023, 15, 1230. https://

doi.org/10.3390/sym15061230

Academic Editor: Alexander

Zaslavski

Received: 1 May 2023

Revised: 25 May 2023

Accepted: 6 June 2023

Published: 9 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Path Loss and Auxiliary Communication Analysis of VANET in
Tunnel Environments
Chunxiao Li * , Honghui Jin, Wen Wu, Mei Yang, Qingyue Wang and Yuanpeng Pei

School of Information Engineering, Yangzhou University, Yangzhou 225000, China;
jinhongh2158@foxmail.com (H.J.); wuwen0913@foxmail.com (W.W.); yangm1216@foxmail.com (M.Y.);
wangqingyue1028@foxmail.com (Q.W.); yuanpeng5165@foxmail.com (Y.P.)
* Correspondence: licx@yzu.edu.cn

Abstract: Vehicular ad hoc network (VANET) communications face severe fading problems due to
the signal reflections and diffractions within tunnels. Unlike the open road, the space of a tunnel
is very limited, so VANET communication performance in a tunnel is seriously affected. In the
process of signal transmission, the reflected signal is symmetrical with the incident signal after it
is reflected by the road and the wall. In this paper, we establish a mathematical model of path loss
for V2V (Vehicle-to-Vehicle) communication based on the principle of signal reflection symmetry
in tunnels and considering several factors, such as the tunnel surface and the color of the tunnel
wall. In addition, we use cooperative communication to form a virtual multiple-input multiple-
output (V-MIMO) system, to improve the communication quality in tunnels. In the proposed system,
the OBU (On-Board-unit) and RSU (Road-Side-Unit) share each other’s antennas, so that wireless
cooperative communication can be employed, without increasing the number of antennas in a one-
way tunnel. Therefore, this multipath fading internal electromagnetic wave propagation model can
be used to improve performance. A deep reinforcement learning algorithm was used to solve the
pairing problem to obtain a more accurate OBU and RSU pair, to form a V-MIMO system. Here, the
RSU is regarded as an agent and interacts with the OBU in the tunnel. The optimal strategy was
learned in a real-time changing simulation environment, and the experiment verified the convergence
of the algorithm. The simulation results showed that, compared with the Q-learning based scheme,
the optimal matching algorithm based on V-MIMO and a DQN (Deep Q-network) could effectively
reduce the probability of transmission outages and improve the communication efficiency in tunnels.

Keywords: path loss; VANET; tunnel; V-MIMO; deep reinforcement learning

1. Introduction

With the development of science and technology, the latest mobile communication
technology defines three major technical scenarios: enhanced mobile Internet, massive
machine-type communication, and high-reliability and low-latency communication. The
VANET (vehicular ad hoc network) is an important application in high-reliability and
low-latency communication scenarios [1]. A vehicular ad hoc network can be divided into
three parts: the intra-vehicle network, the inter-vehicle network, and the in-vehicle mobile
Internet. In the intra-vehicle network, the vehicle communicates with the mobile terminal
through the built-in onboard unit (OBU), realizing mutual communication between the
vehicle and the driver [2–4]. In the inter-vehicle network, vehicles transmit messages device-
to-device (D2D) within a certain range, realizing information sharing between vehicles [5,6].
In the in-vehicle mobile Internet, the base station connects the road system and the Internet,
and acts as a relay for the interconnection between vehicles and the Internet, to provide
services [7,8].

In recent years, with the continuous development of the world economy, the number
of cars has continued to grow. On the one hand, the significant increase in the number

Symmetry 2023, 15, 1230. https://doi.org/10.3390/sym15061230 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15061230
https://doi.org/10.3390/sym15061230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7830-2848
https://doi.org/10.3390/sym15061230
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15061230?type=check_update&version=1


Symmetry 2023, 15, 1230 2 of 22

of cars has facilitated people’s daily travel; on the other hand, the increasing number of
cars on the road has brought huge challenges to the daily operation of the transportation
system. The carrying capacity of ordinary roads has reached saturation in many cities, and
in this context, fully developing highway tunnel traffic has become one of the effective
ways to alleviate the traffic pressure for certain vehicles. Tunnels are engineering buildings
buried in the ground, and unlike open spaces on land, the space of tunnels is very limited,
so the traffic problems of tunnel vehicles are different from road traffic. VANET technology
plays an extremely important role in addressing road traffic issues in tunnel scenarios.
In this network, the vehicle is treated as an independent node equipped with specific
communication devices, and it has communication, computing, storage, sensing, and
control capabilities. Real-time interaction between vehicles and the road can be achieved
within a tunnel. Unlike for urban highway scenarios, scholars have paid little attention
to tunnel-related traffic problems. The information transmission in a tunnel environment
with V2X (Vehicle-to-Everything) can be divided into line-of-sight (LOS) propagation and
non-line-of-sight (NLOS) propagation [9]. Moreover, the signal transmission in a tunnel is
restricted in a certain space limited by the tunnel wall, the ground, and the top wall [10].
Thus, the space is narrow and unique. On account of the special characteristics of the
tunnel environment, there are many reflections and diffractions, so V2V communication
has a large number of paths, in addition to the simplest LOS propagation path. Therefore,
the received signal is composed of multipath signals. These propagation paths of signals
are different in length and direction, which leads to a varying time, amplitude, and angle of
arrival at the receiving antenna. After being superimposed at the receiving vehicle, in-phase
superposition may occur and enhance the signal strength, or anti-phase superposition may
occur and weaken the signal. Under these circumstances, the amplitude of the received
signal changes drastically, resulting in multipath fading. This multipath fading seriously
deteriorates the quality of the received signal, affects the reliability of the communication,
reduces the coverage of the communication, and restricts the V2X signal transmission in a
tunnel. These are the issues that affect VANET communication in a tunnel. Therefore, it
is necessary to conduct in-depth research on the characteristics and rules of path loss in
tunnels [11], such as the propagation mechanism in a tunnel environment.

In the process of VANET communication between vehicles in a tunnel, the topology of
VANET has the characteristics of high-speed dynamic change, which is mainly manifested
in the following aspects. First, the density distribution of network nodes (vehicles) is
different with different times and locations [12]. Second, the network topology is not fixed,
due to the uneven movement of network nodes [13]. Thus, the wireless channel is unstable,
and the real-time transmission of messages by VANET is greatly affected by the signal
propagation path when a vehicle is driving in a tunnel [14]. The tunnel environment is
complex, and research about the signal propagation in tunnels is relatively scarce. There
are still many problems that need to be deeply explored and studied.

At present, signal propagation models include the Okumura-Hata model [15], COST-
231 Hata model [16], LEE model [17], CCIR model [18], Egli model [19], Longley-Rice
Model [20], and Kriging model [21]. The parameters in the Okumura Data model are easy
to obtain and use. However, significant factors such as the height and density of buildings,
as well as the distribution of streets, were not considered, resulting in significant errors
between the predicted and actual values [15]. The COST-231 Hata model can be used to
estimate the path loss of cellular communication in urban environments [16]. The LEE
model is suitable for measuring data, and the main parameters are easy to obtain and adjust,
with high accuracy, a simple algorithm, and fast calculation [17]. The work in [20] used the
Longley Rice model to predict the wireless signal propagation of rural railways, and the
predicted results were compared with the measurement results using actual instruments.
In addition, comparisons were made with the predictions of the Okumura Data model. The
results demonstrated that the Longley Rice model is suitable for railway communication
prediction with irregular terrain. The study in [19] successfully established an optimized
path loss model in a mountainous environment with a frequency of 2100 MHz 3G UMTS.
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The results indicated that the COST-231 Hata model performed better in predicting path
loss in rural and urban environments than the Hata, Egli, and ECC-33 models, and the
optimized Egli model performed best in suburban areas. The study in [21] utilized a
Kriging model for predicting the path loss in the very high frequency (VHF) band, using
geostatistical methods. The prediction accuracy of path loss based on the widely established
empirical path loss propagation model was relatively evaluated. The results revealed the
applicability of geostatistical methods for predicting path loss. Each signal propagation
model has a different scope and applicable environment, so these propagation models
cannot be directly applied to a tunnel environment.

In most countries, tunnels generally use asphalt or concrete pavements [22]. Consider-
ing the safety issues in tunnels, high temperatures will cause serious damage to vehicles
and internal facilities [23,24], so fireproof coatings are applied around tunnel walls, and dif-
ferent fireproof coatings and road surfaces have different influences on the signal reflections
and diffractions [25]. These influences should be considered.

Multiple-input multiple-output (MIMO) communication systems utilize multiple spa-
tially separated antennas for multiplexing and diversity gain [26]. Relatively independent
signal paths can be obtained through independent channel gain matrices, which improve
the spectral efficiency [27]. After the signal is transmitted in a multipath manner, it can re-
sist multipath fading by being received and combined by multiple antennas at the receiver.
Although the use of multi-antenna technology brings attractive performance gains, the cost
cannot be ignored. On the one hand, multi-antenna technology requires increasing the
number of radio frequency modules, thereby increasing the equipment cost. On the other
hand, adding antennas will also increase the volume and power consumption of the device,
as well as the cost. In order to ensure that the transmission channels are not correlated, it is
necessary to ensure that the antenna spacing is greater than the maximum spacing of the
channels [28].

Virtual MIMO technology (V-MIMO), which has been deeply studied for wireless
sensor networks, can solve some problems of the traditional MIMO technology. V-MIMO
technology utilizes multiple single antenna terminals, to cooperate with each other to
form an effective antenna array [29]. After receiving the information forwarded by the
cooperative partner, the terminal combines the signals to achieve spatial diversity gain.
Traditional MIMO communication technology can be divided into single input single
output (SISO), single input multiple output (SIMO), multiple input single output (MISO),
and multiple input multiple output (MIMO) according to the configuration and number
of transceiver antennas [30,31]. Similarly, in V-MIMO communication, there is also such a
division according to the number of cooperative nodes participating. V-SISO means that
when only the source node transmits, only the destination receives. V-MISO means that
when the source node and its surrounding users transmit information at the same time,
only the destination receives it. V-SIMO means when the source node alone transmits, the
destination node and its cooperating nodes receive information at the same time. V-MIMO
means that when the sending and receiving nodes coexist in cooperating nodes, they send
and receive information at the same time.

As a technology for interconnecting thousands of vehicles, a VANET can use V-MIMO
and combine artificial intelligence technology to improve the communication performance
of vehicles. Reinforcement learning is one of the main topics in the field of artificial
intelligence, and this includes several parts, such as the agent, environment, action, and
reward [32]. In general, the model defines the main body of decision making as the
agent, and the factors that can affect the agent’s decision making are referred to as the
surrounding conditions. The agent can accumulate learning experience by interacting with
the surrounding conditions continually [33]. In the interaction process, the agent can choose
a suitable action according to a learned strategy based on the current state. The environment
gives certain feedback according to the action selected by the agent in a certain state. The
feedback gives a reward in the environment. The reward is achieved by continuously
adjusting the strategy to maximize the long-term benefits. Intelligent agents can accumulate
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experience by using environmental perception and action interaction, continuously utilizing
learned experience to finish the designated task. Therefore, the core of reinforcement
learning is the interaction between the subject and the environment through continuous
learning processes [34]. The agent learns strategies and makes beneficial choices through the
information fed back by the environment. The Q-Learning algorithm, as one of the classic
reinforcement learning algorithms and mainly solves reinforcement learning problems by
establishing tables to store Q-values. DQN is a combination of Q-Learning and neural
networks. The neural network obtains Q-values for corresponding behaviors through input
state and behavior analysis of the network structure, which directly replaces the generation
of Q-tables in Q-Learning and improves the efficiency of reinforcement learning [34].

The contributions of this work can be summarized as follows:

(1) We propose a new path loss calculation scheme that can be used for information
transmission between vehicles in tunnels. In the proposed scheme, not only the
factors of the road and tunnel wall are considered, but also the differences in reflection
coefficient between the road materials and tunnel wall fireproof coatings, which can
better improve the accuracy of vehicle information transmission.

(2) We propose a solution based on a reinforcement learning algorithm to improve the
efficiency of vehicle RSU collaboration, to solve the problem of poor communication
performance between vehicles in tunnels and improve the information transmission
efficiency. By utilizing V-MIMO technology, vehicles can share their own data with
each other, and vehicles and RSUs can also collaborate to transmit data.

The structure of the article is as follows: The first chapter introduces the relevant
theories, and then the second chapter is divided into three parts. The first part is about the
calculation of path length and loss, the second part is about the analysis of the V-MIMO
model applied to vehicles, and finally the third part is an analysis of the simulation results.

2. System Model
2.1. Analysis of Path Loss in a Tunnel
2.1.1. Path Length

In order to improve the accuracy of vehicle information transmission in a tunnel, it is
necessary to design a more suitable and accurate signal propagation model, the following
assumptions were made before proposing the system model.

First, suppose the road surface in the tunnel is concrete or asphalt. Considering the
particulars of the tunnel, the top of the tunnel is partly coated with fireproof paint, and the
color of the fire retardant paint is black or white.

Second, suppose the speed of vehicles is constant and the moving direction is the same
when driving inside the tunnel. The height of each vehicle is H2 = 1.5 m. The transmitter
and receiver are located in the center of the vehicle and keep in the same horizontal position.
The euclidean distance between the two communication vehicles is within 10 m.

Then, suppose the top of the tunnel wall and the ground are flat, and the signal
reflected from the top or the ground is regarded as specular reflection [34].

Finally, due to the particularity of the tunnel environment, there are countless in-
direct paths for OBU1 to transmit signals to OBU2, as shown in Figure 1. In this closed
environment, this space is composed of countless two-dimensional planes, and the signal
propagates in each two-dimensional plane, so we can intercept a plane perpendicular to
the ground for research.
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Figure 1. Vehicle Signal Propagation Model in a Tunnel.

Shown in Figure 1 is the model proposed in this paper, where both the incident and
reflected rays are on a two-dimensional plane. When the two vehicles drive at a constant
speed and are relatively stationary, the signal propagation between OBU1 and OBU2 should
also be in a two-dimensional plane. There are two paths for the signal propagation of
the vehicle in the tunnel. The first is the direct path marked by the red line in Figure 1,
where OBU1 directly transmits the signal to OBU2. The second is the indirect path, which
is divided into two types. One is where the propagating signal passes through the ground
and then reflects to OBU2, as shown by the yellow line in Figure 1. The other is where the
propagating signal passes through the top of the tunnel wall and then reflects to OBU2, as
shown by the blue line in Figure 1 [35]. The green line represents the ground reflection first,
then the tunnel top reflection. The violet line represents the reflection from the top of the
tunnel first and then from the road surface.

The following is a detailed analysis of the signal propagation path according to the
difference in the number of signal reflections.

(1) One-time reflection path

As shown in Figure 2, H1 is the height of the tunnel, H2 is the height of the car, and
d is the length of the direct propagation path of the signal between OBUs, which directly
reaches the receiver without any reflections. Dtw(1) is the length of the indirect propagation
path between vehicles, which reaches the receiver through tunnel wall reflection, and Dtg(1)
is the length of the indirect propagation path between vehicles, which reaches the receiver
through ground reflection. According to the geometric relationship presented in Figure 2,
Dtg(1) and Dtw(1) can be obtained:

Dtg(1) =
√
(2H2)

2 + d2 (1)

Dtw(1) =
√
(2H1 − 2H2)

2 + d2 (2)
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Figure 2. One-time reflection path.

(2) Two-time reflection path

Figure 3 shows the two-time reflections path. The blue line Dtg(2) represents the
ground reflection first, then by the tunnel top reflection. The red line Dtw(2) represents the
reflection from the top of the tunnel first and then from the road surface. According to the
geometric properties shown in Figure 3, the path lengths for the two-time reflection can be
expressed as

Dtg(2) =
√
(2H1)

2 + d2 (3)

Dtw(2) =
√
(2H1)

2 + d2 (4)

Figure 3. Two-time reflection path.

(3) Three-time reflections path

Figure 4 shows the three-time reflection path. The blue line Dtg(3) represents the
first reflection from the road surface, followed by the reflection from the top, and then
the reflection from the road surface, and finally reaching the receiver. The red line Dtw(3)
represents the reflection first from the top, next the reflection from the road surface, and
then the reflection from the top, and finally reaching the receiver. According to the geo-
metric properties of the Figure 4, the following results can be obtained for the three-time
reflection case:

Dtg(3) =
√
(2H1 + 2H2)

2 + d2 (5)
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Dtw(3) =
√
(4H1 − 2H2)

2 + d2 (6)

Figure 4. Three-time reflections path.

(4) n-time refelection path

According to the above Formulas (1)–(6), we can deduce the length of the signal
propagation path after n times of reflection:

Dtg(n) =
√
{{n− [0.5 + 0.5× (−1)n+1]}H1 + [1 + (−1)n−1]H2}

2
+ d2 (7)

Dtw(n) =
√
{{n + [0.5 + 0.5× (−1)n+1]}H1 + [(−1)n − 1]H2}

2
+ d2 (8)

where Dtg(n) represents the path length that starts to be reflected by the road surface, and
Dtw(n) represents the path length that starts to be reflected by the top of the tunnel. Due to
the different reflection coefficients, the total length of the path from the ground to the top
of the tunnel is Dtgd(n):

Dtgd(n) =
{

0.5× Dtg(n) n = even
n−1
2n Dtg(n) n = odd

(9)

Reflected from the ground, the total length of the path that has traveled to the road
is Dtgs(n):

Dtgs(n) =
{

0.5× Dtg(n) n = even
n+1
2n Dtg(n) n = odd

(10)

In the same way, starting from the top of the tunnel, the total length Dtwd(n) of the
path going to the road is:

Dtwd(n) =
{

0.5× Dtw(n) n = even
n−1
2n Dtw(n) n = odd

(11)

Reflected from the top of the tunnel, the total length of the path that has traveled to
the top of the tunnel Dtws(n):

Dtws(n) =
{

0.5× Dtw(n) n = even
n+1
2n Dtw(n) n = odd

(12)
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2.1.2. Path Loss Calculation

For a directly propagated signal, the signal power can be expressed as [9]

PL =
√
(GtGr)

λ

4π
Γ

∣∣∣∣∣ e(−j2πd/λ)

L

∣∣∣∣∣ (13)

where Gt and Gr are the gains of the OBU1 and OBU2 antennas, and Γ is the reflection
coefficient, λ is the wavelength, and L is the total length of the path.

For a signal that is reflected n times from the road ground, the signal power can be
calculated as

PDtg =
√
(GtGr)

λ

4π
(Γ1

∣∣∣∣∣ e(−j2πDtgs/λ)

Dtgs

∣∣∣∣∣+ Γ2

∣∣∣∣∣ e(−j2πDtgd/λ)

Dtgd

∣∣∣∣∣) (14)

Γ1 is the reflection coefficient of the signal passing through the road surface, and Γ2 is
the reflection coefficient of the signal passing through the top of the tunnel.

Similarly, for the signal that starts to reflect n times through the top of the tunnel, the
signal power can be calculated as:

PDtw =
√
(GtGr)

λ

4π
(Γ1

∣∣∣∣∣ e(−j2πDtwd/λ)

Dtwd

∣∣∣∣∣+ Γ2

∣∣∣∣∣ e(−j2πDtws/λ)

Dtws

∣∣∣∣∣) (15)

Thus, the total power of signal transmission is equal to the signal power of direct
propagation plus the signal power of indirect propagation, which is presented in the
following formula:

Ptotal = PL +
n

∑
i=1

(PDtg + PDtw) (16)

The path loss when arriving at the OBU is

LOBU = 10 lg
∣∣∣∣Ptotal

PL

∣∣∣∣−1
(17)

According to the ITU-RP.1238 propagation model [36], the path loss for the tunnel free
space transmission can be written as

Lt f = 20 lg f + 20 lg d− 28(dB) (18)

Therefore, the total path loss of the vehicle in the tunnel is expressed as

Lsum = Lt f + LOBU (19)

2.2. V-MIMO Model in a Tunnel
2.2.1. The Probability of Successful V2R (Vehicle-to-RSU) Transmission in a Tunnel

The V-MIMO system is composed of several vehicles and RSUs that support receiving
and transmitting terminals. The adjacent relay transmitting and receiving terminals form a
multi-level distributed V-MIMO system. When transmitting information, the transmitting
vehicle shares the information to be sent with other wireless terminals that form multiple
inputs within a certain range, ensuring that other terminals within the multiple inputs will
contain copies of the sent data. Then, all wireless terminals with multiple inputs unite to
send the data to the next multi-input terminal, continuously engaging in this behavior and
transmitting the information until the destination terminal receives the signal sent by the
source terminal.



Symmetry 2023, 15, 1230 9 of 22

Within Figure 5, Figure 5a shows a physical image of the vehicle driving in the tunnel.
In order to more intuitively express the state of the vehicle and RSU, Figure 5b shows a
simulated image of a vehicle driving in the tunnel. As shown in Figure 5b, it is assumed
that a pair of RSUs are deployed on the two sides of the tunnel wall. Suppose the RSUs
can transmit their own messages and receive safety messages from the automotive node.
One is the agent-RSU, abbreviated as A-RSU, which is a device with the capabilities of
communication, computing, storage, automatic control, and so on. The other is an ordinary
RSU. The height of the two RSUs from the ground is H3 meters, as shown in Figure 5b.

Figure 5. Vehicles and RSUs in tunnels.

For the communication transmission link established by a RSU and the vehicle user, if
the free space path loss model or the shadow fading model is used, it is difficult to reflect the
attenuation changes in the signal with distance and obstacles at the same time. Therefore,
following the literature, a mixed channel model of line-of-sight and non-line-of-sight is
used to reflect signal changes. Assuming that the distance between any OBU within the
RSU signal range detection and the projected position of the RSU on the ground is d2, as
shown in Figure 5b, the received power gain obtained by the OBU from the LOS and the
NLOS respectively is as follows [37]:

Gr =


√
(H3)

2 + d22
−ar

LOS

η

√
(H3)

2 + d22
−ar

NLOS
(20)

where ar is the path loss index of V2R transmission, and η is the additional attenuation
coefficient of NLOS transmission. H3 refers to the distance from the A-RSU antenna
position to the ground. Assume that the RSU transmit power is Pt. According to the
channel transmission power formula, the received power of the OBU can be obtained:

Pre = PtGr (21)

Due to the influence of the different positions of the OBU and the height of the RSU in
the tunnel environment, the probability that the OBU can establish communication with
the RSU through LOS transmission is [37]

PLOS =
1

1 + A exp(−B[arctan H3
d2
− A])

(22)

where A and B are constants determined by the tunnel environment.
Correspondingly, the probability that the OBU can establish a transmission with the

RSU through the NLOS transmission link is

PNLOS = 1− PLOS (23)
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Considering the two transmission situations that actually exist in tunnel communica-
tion, the total channel power obtained by the OBU can be expressed as [38]

Psum = PLOS.Pre|LOS + (1− PLOS)Pre|NLOS (24)

Assuming that Pno is the noise power, then we obtain the signal-to-noise ratio(SNR) of
the OBU:

SNR =
Psum

Pno
(25)

Let the SNR of any OBU transmitted through V2R be γ1, and γ1 can be obtained from
Equation (25) above. According to the literature [37], the SNR threshold for successfully
decoding the message received by the OBU in the LOS environment is γ2, and the SNR
threshold in the NLOS environment is γ3. When the SNR value is greater than the SNR
threshold, the OBU can pass the transmission. Therefore, for the OBU, the probability of
successful transmission is expressed as

Psuccess = PLOS Pr(γ1 ≥ γ2) + PNLOS Pr(γ1 ≥ γ3)

= PLOS Pr(d2 ≤
√(

Pt
γ2Pno

) 2
ar − (H3)

2) + PNLOS Pr(d2 ≤
√(

Pt
γ3Pno

) 2
ar − (H3)

2)
(26)

2.2.2. Analysis of V-MIMO Transmission in Tunnels

(1) V-MIMO Case

As shown in Figure 6, when the vehicle is driving in the tunnel, a V-MIMO system
is formed by using cooperative communication to share each vehicles antennas with the
two RSUs in the tunnel, improving the wireless communication quality. That is, the tunnel
wireless cooperative communication can improve the channel capacity using the multipath
fading of electromagnetic wave propagation in the tunnel, without increasing the number
of antennas for each node, and thereby improving the wireless communication performance
of vehicles in the tunnel.

Figure 6. V-MIMO.

In the Figure 6, the transmitter is a virtual multi-input, composed of OBU2 and A-RSU;
the receiver is a virtual multi-output, composed of OBU1 and RSU; and a virtual MIMO
system is formed. The signal transmission is mainly multipath fading, so it can be treated
as a Rayleigh fading channel; and assuming that the CSI (channel state information) is
unknown, then the capacity of the virtual MIMO system is obtained as [39]

C1 = log2 det(I2 +
SNR

2
HHH)bps/Hz (27)
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where I2 is the second-order matrix, H is the channel matrix, HH is the conjugate transposed
channel matrix, HHH is the semi-positive definite Hermitian matrix, and det(∗) represents
the determinant of the correlation matrix. In the virtual MIMO environment, the outage
probability of the V2V communication link is Pout, which is obtained using the following:

Pout =
km

m!
e−k(1−

Cj

Cmax
Psuccess)

k(j = 1, 2, 3 . . . n) (28)

k is the maximum number of OBUs that the A-RSU can handle within a certain range at
time t, and m is the actual traffic flow. Cj is the actual channel capacity, and Cmax is the
maximum channel capacity that can be achieved under the current environment.

(2) V-SIMO Case

As shown in Figure 7, if there is only one vehicle driving in the tunnel, it needs to
communicate with the external base station, and it transmits signals with the RSU. In this
case, the OBU1 is used as a virtual single input, and then the two RSUs are paired with
each other as virtual multiple outputs, to form a virtual SIMO system. In this case, the
capacity of the system is

C2 = log2 det(I2 + SNR× HHH)bps/Hz (29)

Figure 7. V-SIMO.

(3) V-MISO Case

As shown in Figure 8, if there is only one vehicle driving in the tunnel, the external
base station needs to transmit information using this vehicle. The base station and RSU
first transmit the signals, and then the RSU sends messages to the OBU1. At this time, the
two RSUs are paired with each other as a virtual multi-input system, and the OBU1 is used
as a virtual single output, to form a virtual MISO system. At this time, the capacity of the
system is

C3 = log2 det(I1 +
SNR

2
HHH)bps/Hz (30)

where I1 is the first-order matrix.
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Figure 8. V-MISO.

(4) V-SISO Case

As shown in Figure 9, if there is only one vehicle driving in the tunnel and only one
RSU communicates with the OBU, the RSU is used as a virtual multi-input. Meanwhile,
the OBU1 is used as a virtual single output to form a virtual SISO system. At this time, the
capacity of the system is

C4 = log2 det(I1 + SNR× HHH)bps/Hz (31)

Figure 9. V-SISO.

2.3. Application of Deep Reinforcement Learning Models in Tunnels

Since the path loss between vehicles in the tunnel is relatively large, in order to better
use the V-MIMO to improve the communication quality, the A-RSU requires real-time
interactive decision-making with the environment. To improve the V2V communication
quality, a deep-Q network using deep reinforcement learning theory, that is, the DQN
method, is used to analyze the V2V communication path loss by building a reinforcement
learning framework. In V2V scenarios, the current state of the system is only related to the
state and action of the previous moment. Thus, this process can be viewed as a Markov
decision process (MDP), which can be expressed as

MDP = (si, ai, pi, ri) (32)

where si represents the state set, ai represents the action set, pi represents the state transition
probability, and ri represents the reward.
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In this paper, V-MIMO technology is combined with a deep reinforcement learning
algorithm DQN (named V-DQN) to obtain a better performance. The A-RSU deployed
on one side of the tunnel wall is used as the learning agent in the DQN. The number of
OBUs and the path loss of V2V within the detection range of the RSU signal are set as the
environment. The framework of the A-RSU interacts with the continuous environment
and makes decisions during the entire reinforcement learning process, as shown in the
Figure 10. At time T, the A-RSU observes a current state from the environment, and then
the A-RSU takes the corresponding actions based on policy π, according to the observed
state. The policy π is determined by the state-action value function; that is, the strategy
function Q in reinforcement learning and the corresponding Q value is obtained, and the Q
value is measured by the deep learning part. According to the behavior of the RSU, in the
next slot, the environment moves to the next state si+1, and the A-RSU obtains a gain from
the environment.

Figure 10. Application of Reinforcement Learning in Tunnel Environments.

The three key elements of the optimal matching algorithm based on V-DQN are the
state space, action space, and reward function.

The number of vehicles no and the path loss between vehicles Lsum present in (19) are
used as the state space of the deep reinforcement learning algorithm, denoted as:

si = {Lsum, no}, no = {0, 1, 2, 3 . . . . . . S} (33)

For the action space, there are four cases when the A-RSU faces tunnel vehicle com-
munication. First, only two vehicles communicate within the monitoring range. The
transmit power of auxiliary V2V communication is Pt. If the vehicle communication effect
is not good, the A-RSU interferes with the RSU and induces the RSU to perform auxiliary
communication with the following vehicles. This situation is shown in the Figure 11. At
this time, the transmission power is Ptd. Third, there is no need to communicate between
the vehicles, and the vehicle only needs to communicate with the RSU. This situation is
shown in Figure 11, and in this case, the A-RSU is connected with the RSU to form a virtual
multi-output system, and the transmission power is set as Ptc. The last case is where there
no vehicles pass through the tunnel, so the A-RSU is in a monitoring state. In this case, the
power is Pts. Considering the above four cases, the action space can be written as

ai = {Pt, Ptd, Ptc, Pts} (34)
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Figure 11. Application of Reinforcement Learning in Tunnel Environments.

Suppose the RSU can successfully establish transmission with the OBU, and the correct
V-MIMO technology can be used in a certain period of time to maximize the channel. Then,
the appropriate capacity probability under the successful transmission can be treated as
the reward function, which is expressed as follows:

ri = E(ai|si) = Psuccess
Cj

Cmax
(35)

The deep reinforcement learning algorithm DQN uses the state si and behavior pa-
rameter as the input of the neural network of Θn , and then analyzes the Q value under
different behaviors using a neural network, so as to form a mapping relationship between
the state−behavior and the Q value. The estimated Q function is used to replace the above
method of updating the Q table, thereby effectively accelerating the learning convergence
speed of the agent A-RSU and achieving an efficient learning effect. This uses two con-
volutional neural networks with the same structure: one is used to estimate the Q value
under the current state behavior, and the other is used as the target Q network to update
the Q value [40]. Here, the experience replay mechanism is adopted in the DQN method.
Setting up a memory replay unit allows storing the experience data obtained by the online
interaction between the agent A-RSU and the vehicle communication environment in the
tunnel in the process of training the neural network. In this way, the network parameters
are updated each time during training, and a small batch of sample data from the memory
playback unit is randomly selected and trained [41]. Meanwhile, the stochastic gradient
descent method is used to break the correlation between the sample data and make the
updating of the neural network more efficient.

For a given state behavior (si, ai), the Q (si ai) can be calculated according to the policy
π, which is a measure of the quality of the behavior made at the current moment. Once
the Q value of each behavior is known, the agent A-RSU can make appropriate behavior
choices in the current state:

ai
∗ = arg max Q(si, ai) (36)

The agent A-RSU performs actions that maximize the Q value. In the case that the
dynamic information of the tunnel environment cannot be known in advance, the iterative
update of the following equation can be used to obtain the optimal Q value under the
optimal strategy

Q∗(si, ai) = Q(si, ai) + α[ri+1 + γ max Q(si+1, ai+1)− (si, ai)] (37)
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α represents the learning rate of the agent A-RSU. γ represents the reward discount factor
of the agent A-RSU.

The target Q network is expressed as

yi = ri + max Q(si, ai, θn) (38)

The loss function is the mean square error loss function, as follows:

L(θn) = E[(yi −Q(si, ai,θn))
2] (39)

The parameters of the neural network are updated using the gradient descent method:

θn=θn +∇Q(si, ai, θn)[ri + γ max Q(si+1, ai+1, θn)−Q(si+1, ai+1, θn)] (40)

The proposed V-DQN algorithm can be summarized as follows: the agent creates a
strategy in the action space, and selects the appropriate power size as the action strategy.
After the vehicle user equipment receives the action strategy, the communication module
executes the action strategy. Then, the environment gives feedback and uses this feedback
to reward or punish the action accordingly. This process is then executed in a loop, until
the optimal strategy is found, according to the environment. M represents the maximum
training round. T represents the number of loop traversals. The detail description of the
proposed Algorithm 1 is shown in the following.

Algorithm 1 Optimal channel matching algorithm based on V-DQN

1: Initialize the memory playback unit D and Q network parameters
2: for episode = 1 : M do
3: Initialize tunnel vehicle environment information and status
4: for i = 1 : T do
5: A-RSU uses a greedy strategy to select ai according to the vehicle environment

state si
6: A-RSU obtains instant reward ri according to the execution of action ai
7: A-RSU transitions to the next state si+1
8: Store the data (si, ai, ri, si+1) in D
9: Randomly extract a set of empirical data in D (si+1, ai+1, ri+1, si+2)

10: yi = ri f inal state
11: yi = ri + maxQ(si, ai, θn) non− f inal state
12: Use the mean squared loss function to update all parameters of the Q network

through gradient backpropagation
13: end for
14: end for

3. Performance Evaluation
3.1. The Relationship between the Path Loss and the Reflection Times

As shown in Figure 12, a tunnel environment was randomly selected in this article. In
the case of white walls and concrete roads, the safety distance of the vehicle remained un-
changed. As the number of reflections n increased, the numerical difference was significant
when n was within the range of 1 to 3. When n was greater than 3, the curve became more
and more stable.
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Figure 12. The influence of reflection times on path loss.

3.2. Analysis of V2V Path Loss under Different Reflections

The simulation was based on Matlab. It simulated a one-way tunnel. The related
parameters in the simulation were set as follows: the height of the tunnel was H1 = 8 m,
and the height of the OBU was H2 = 1.5 m. The frequency of the VANET radio wave was
5.8GHz, with λ = 0.05 m. Considering that the reflection coefficient of the tunnel pavement
was different from the reflection at the top of the tunnel wall, this article mainly studied
the path of the first three reflections.

When two vehicles communicated in the tunnel, it was assumed that there were n
times reflection paths during the communication period. Several different fireproof coatings
and road surfaces were studied under different reflection coefficients. Here, the reflection
coefficient of the black tunnel wall was 0.01, the reflection coefficient of the white tunnel
wall was 0.78, the reflection coefficient of the asphalt road was 0.14, and the reflection
coefficient of the concrete tunnel wall and road was 0.31 [42]. The simulation results are
shown in the following Figures 13–15:

Figure 13. Path loss under 6 different reflection coefficients when n = 1 reflection.
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Figure 14. Path loss under 6 different reflection coefficients when n = 2 reflections.

Figure 15. Path loss under 6 different reflection coefficients when n = 3 reflections.

As shown in Figures 13–15, when the distance d increased, the path loss inside the
tunnel increased. At the same time, as the distance increased, the difference in path loss
between the black tunnel wall and the asphalt road became larger and larger compared
to the path loss between the white tunnel wall and the cement road. By comparing these
three different reflections, we can infer that at the same distance, when the vehicle traveled
on the asphalt road and with the black tunnel wall, the signal propagation path loss was
the maximum. When the vehicle traveled on the concrete road and with the white tunnel
wall, the signal propagation path loss was the minimum.

The standard deviation represents the degree of dispersion of the sample data. Through
vertical comparison, we could obtain the reflection times of the signal and the influence of
the tunnel environment on the path loss at the same distance. The simulation results are
shown in Figure 16.
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Figure 16. Standard deviation of the number of reflections with different tunnel environments.

In Figure 16, when n = 1, the standard deviation increased relatively steadily. Consider-
ing the reflections, the weight of the first reflection (that is n = 1) was much higher than the
others, as shown in the above Figure 12. In addition, the path loss was also very sensitive
to the path length distance between the transmitter and receiver. When the distance was
shorter than 4 m, this meant that the direct path contributed the most compared with the
other reflection path. Thus, when n = 1 and d was less than 4 m, the curve showed a small
fluctuation. When n = 2 or n = 3, the standard deviation rose sharply with distance. The
larger the standard deviation, the more discrete the data. On the contrary, the smaller
the standard deviation, the more stable the data. Therefore, we can conclude that as the
number of reflections increased, the signal became more susceptible to the influence of
different environments.

3.3. Analysis of V-MIMO Channel Capacity Simulation in a Tunnel

The simulation results are shown in Figure 17.

Figure 17. Channel capacity of V-MIMO vs. SNR.

According to Figure 17, with the increase of the SNR, the channel capacity of the
system also increased. The gap between the channel capacity of V-MIMO and the channel
capacity of the other three techniques gradually increased, while the gap between the other
three methods was small with the increase of the SNR. Meanwhile, the MIMO channel
capacity had the maximum growth rate, so it had the best communication quality. On the
contrary, the SISO had the minimum growth rate, thus its communication effect was not
good. The reason for this was that the channel capacity was affected by the number of
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receivers and senders. When both receivers and senders increased, the channel capacity
continued to increase. Therefore, when the communication path loss of the two vehicles
in the tunnel was relatively large, using the V-MIMO improved the reliability of OBU
signal transmission.

3.4. Analysis of Deep Reinforcement Learning

The related simulation parameters are shown in the above Table 1. The body Q learning
algorithm was compared and analyzed. Here, 5000 training rounds were set. The training
results are shown in the following figures:

Table 1. Related parameters of V−DQN.

Simulation Parameters Parameter Value

Carrier frequency 5.8 GHz
Noise power Pno −125 dB

Additional attenuation coefficient of NLOS link η 20 dB
Environmental parameters A, B in tunnel scene 0.2, 12

V2R transmit power Pt 0.5 W
Height of A-RSU H3 6 m

A-RSU interference power Ptd 1 W
R2R transmission power 0.5 w

SNR threshold 10 dB
V2R Path Loss Index ar 3

Learning rate 0.01
Reward discount Factor γ 0.8

Road type one-way tunnel

From Figure 18, we can see that the training efficiency of V-DQN was relatively high.
Although there were small fluctuations during training, it was more stable than the Q-
learning algorithm. With the strengthening of the deep neural network strategy, the V-DQN
greatly improved the channel matching. The rate was finally trained to about 0.7 at 5000
iterations. The Q-learning algorithm had a relatively large fluctuation range during training,
and finally only trained to about 0.4.

Figure 18. Training results of the V-DQN and Q-Learning.

Figure 19 shows the relationship between the outage probability and the number of
OBUs. In Figure 19, it appears that, for the three cases, the V-DQN algorithm performed
better than the other two algorithms. Although the difference was relatively small in nu-
merical terms, there were still some differences in a vertical comparison. From a horizontal
comparison perspective, it can be seen that the V2R outage probability decreased as the
number of OBUs increased. This was because, according to the vehicle movement model,
the smaller the vehicle density, the smaller the average vehicle spacing. Therefore, in
order to ensure the reliability of the V2R link, the RSU needed to increase the transmit
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power, and the total V2R channel capacity gradually increased. At the same time, the
DQN with multiple hidden layers had more complex network layers, so compared with the
Q-learning algorithm, the learning effect with environmental data was better. This shows
that the proposed V-DQN could effectively improve the communication in a high-density
traffic environment.

Figure 19. Outage probability of V2R.

4. Conclusions

This paper mainly analyzed the performances of vehicle communication in a tunnel.
First, by establishing a mathematical model, the influence of different road surfaces and
tunnel walls on V2V communication path loss was analyzed. The simulation results
showed that, at the same distance, when vehicles communicated with asphalt roads and
black tunnels, the signal propagation path loss was the highest, while when vehicles
communicated with concrete roads and white tunnels, the signal propagation path loss
was the lowest. Then, aiming at the problem of the relatively large path loss in tunnel
V2V communication, a method combining V-MIMO technology and a deep reinforcement
learning algorithm(V-DQN) was proposed. The simulation results showed that the V-DQN
could achieve a higher total capacity compared with the traditional Q learning method, and
it had a low probability of interruption. In addition, the simulation results showed that the
DQN demonstrated a significant improvement in convergence speed and stability, which
has guiding significance for future research on tunnel–vehicle communication optimization.
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